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Outer layer turbulence dynamics in a
high-Reynolds-number boundary layer up to
Reθ ≈ 24,000 recovering from mild separation
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The outer layer dynamics of a high-Reynolds-number boundary layer recovering from
non-equilibrium is studied utilising the multi-resolution approach of zonal detached eddy
simulation mode 3. The non-equilibrium conditions are obtained from a boundary layer
separation over a rounded step enhancing the turbulent production, and recovery happens
during redevelopment after reattachment at high Reynolds numbers (Reθ,max ≈ 24,000).
Most of the outer layer turbulence is resolved by the simulation, which reproduces
accurately the experimental boundary layer relaxation. The spectral analysis of streamwise
velocity fluctuations and turbulent kinetic energy (TKE) production evidences the different
turbulent content distribution at separation and within the redevelopment region, at which
very large-scale motions are identified with streamwise wavelengths up to λx = 9δ, where
δ is the boundary layer thickness. The redevelopment of the boundary layer is analysed
in terms of the persistence of a secondary peak in the TKE production and the evolution
of the wall-shear stress statistics. The skewness and probability density function of the
skin friction show a slower relaxation than the downstream flow fraction. This confirms
the long-lasting impact of perturbations of the outer layer in high-Reynolds-number
wall-bounded flows. This persistent non-equilibrium state is suggested to be the reason for
the reported lack of accuracy of the considered Reynolds-averaged Navier–Stokes models
in the relaxation region.

Key words: boundary layer structure, turbulent boundary layers, turbulence simulation

1. Introduction

The study of wall-bounded turbulent flows is still nowadays very active despite being a
research topic for several decades. In the effort to understand turbulence as deeply as
possible, studies have focused mostly on canonical flows (channel flows, pipe flows and
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flat-plate boundary layers, for instance). According to Smits (2020), research should focus
as well on less canonical flows, not only because of their practical relevance, but also to
identify how much the knowledge acquired for canonical flows applies in these flows as
well. Thus wall turbulence would be understood more profoundly, and the capability to
predict more general flows would be increased.

Reynolds number effects have been identified to play an important role in wall-bounded
flows. Studies have shown that there exist some Reynolds-number-dependent effects,
which are recalled, for instance, in the work of Smits, McKeon & Marusic (2011).
Turbulent structures of long spatial scales are observable at high Reynolds numbers, with
sizes of about 2–3 δ for the large-scale motions, and 5–6 δ for the very large-scale motions
in turbulent boundary layers (where δ corresponds to the boundary layer thickness), and
they are located in the logarithmic region of the boundary layer. The effect of these
structures will not go unnoticed in the profiles of mean quantities, and in particular,
they are clearly observable when looking at the premultiplied turbulent-kinetic-energy
production term and profiles of streamwise velocity standard deviation, urms. For the
production of turbulent kinetic energy (TKE) in pre-multiplied form, a plateau develops
within the boundary layer around the log region. Regarding the streamwise velocity
fluctuation, the levels away from the near-wall peak increase mainly due to the large-scale
turbulent structures (a secondary peak may be observable at very high Reynolds numbers;
see, for instance, the work of Hultmark et al. 2012). This is evidenced clearly when splitting
the contribution of small-scale (smaller than δ) and large-scale (greater than δ) structures
to urms. Also, there is an amplitude modulation of small-scale structures by the outer
large-scales in the inner region of the boundary layer as found by Mathis, Hutchins &
Marusic (2009). A review of the organisation of turbulent structures within wall-bounded
flows may be found in the work of Jiménez (2013).

Another topic that is very commonly present and studied in turbulent boundary layers
research is the pressure gradient. Pressure gradient effects are also responsible for some
differences in the development of turbulent boundary layers. In the case of an adverse
pressure gradient (APG), some of the mentioned aspects have been found to be somewhat
similar to high-Reynolds-number effects, such as the increased turbulent activity in the
outer part of the boundary layer due to large-scale structures, observed in the urms profile
and the streamwise energy spectrum (Harun et al. 2013; Kitsios et al. 2017; Lee 2017;
Sanmiguel Vila et al. 2020). Sanmiguel Vila et al. (2020) studied different boundary
layers data sets under moderate APG, intending to separate pressure gradient and Reynolds
number effects. They were able to identify that small-scale activity is enhanced in the
outer layer by the APG, which is not the case when increasing the Reynolds number in
zero pressure gradient (ZPG) (Marusic, Mathis & Hutchins 2010). Therefore, contrary to
ZPG turbulent boundary layers, small-scale activity is not universal, but it is dependent
on the pressure gradient. Another important result concerns the outer peak of urms
in high-Reynolds-number ZPG turbulent boundary layers. According to Marusic et al.
(2010), the mentioned peak is located in the centre of the logarithmic region, given by
y+ = 3.9Re1/2

τ and associated to turbulent structures of length scale λx ≈ 6δ. The symbol
+ is used for variables normalised in wall units, and Reτ = δuτ /ν is the friction Reynolds
number, where uτ is the friction velocity, and ν is the kinematic viscosity. Sanmiguel Vila
et al. (2020) found two external peaks (at sufficiently high Reynolds number): one for
length scales λx ≈ 6δ (which corresponds to the high-Reynolds-number ZPG outer peak)
and another one for smaller length scales λx ≈ 3δ resulting from the APG. The second
peak has already been observed in APG turbulent boundary layers by Harun et al. (2013).
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Outer layer dynamics in a high-Reynolds-number boundary layer

Also, Sanmiguel Vila et al. (2020) found that the position of the external peak due to the
APG is dependent not on the Reynolds number when normalised in outer units (contrary
to ZPG), but only on the APG intensity, in the range of Reynolds numbers considered in
their study, which is 103 � Reθ � 2 × 104. The results of Schatzman & Thomas (2017)
using embedded shear scaling parameters are in accordance with Sanmiguel Vila et al.
(2020) for similar values of the Reynolds number, and their discussion of data at higher
Reynolds numbers suggests the same conclusion.

The study of turbulence dynamics in wall-bounded canonical flows has also shown
some differences in the behaviour of the inner layer and the outer layer. Jiménez (1999)
performed a numerical experiment in a turbulent channel flow simulation in which
turbulent structures were removed from the outer layer. Despite the absence of outer
layer turbulence, the inner layer turbulent structures were still present, suggesting that
the turbulence generation process in the inner layer is autonomous, although there is an
interaction with the outer layer turbulence such as the amplitude modulation (Mathis
et al. 2009). In the work of Flores & Jiménez (2006), the dynamics of the buffer layer
is artificially removed, but the turbulence observed further away is barely changed. In
line with this work, Flores & Jiménez (2010) showed that the turbulence dynamics is
self-sustained in the logarithmic region. Indeed, the dynamics in this region survives in
spite of the suppression of both the larger scales located further from the wall and the
buffer layer dynamics. Similar results were also obtained by Hwang & Cossu (2010),
who showed that large-scale and very-large-scale structures exist in turbulent channel
flows even when smaller-scale structures are quenched (only the dissipation induced by
the smaller-scale structures is considered). Also, Hwang & Cossu (2011) pursued their
previous research by isolating structures in the logarithmic region, and they concluded that
a self-sustained process also exists for scales that range from the buffer layer characteristic
scale to the large scales.

All of the studies mentioned in the previous paragraph have been made for canonical
flows, i.e. in near-equilibrium conditions. Regarding the behaviour of turbulent boundary
layers in non-equilibrium conditions, most studies rely on the perturbation of the boundary
layer either by wall disturbances (wall roughness or wall tripping devices) or by external
flow conditions such as the streamwise pressure gradient. A change in wall roughness
will mainly perturb in a direct manner the inner layer of the boundary layer. On the
contrary, despite an indirect change of intensity, there is no direct change of the nature
of the turbulence dynamics in the outer layer provided that the size of roughness elements
is small enough not to disturb the logarithmic layer significantly (in practice, as long as
the inverse blockage ratio is δ/kR > 40–80, where kR is the roughness height) (Jiménez
2004). When greater perturbations are considered, the evolutions of the inner and outer
layers are quite different: the inner layer reaches a new near-equilibrium state faster than
the outer layer (Clauser 1956; Marusic et al. 2015; Sanmiguel Vila et al. 2017). Marusic
et al. (2015) used rods to disturb the boundary layer with heights of the order of the
boundary layer thickness. The effect was noticeable directly in the outer layer, where more
energetic structures developed as a result, which was also observed by Sanmiguel Vila
et al. (2017), and a faster recovery happened in the near-wall region. An external pressure
gradient may also lead to non-equilibrium conditions in the boundary layer. However, this
is not necessarily the case since near-equilibrium conditions may be obtained for a given
family of streamwise pressure gradient distributions (Rotta 1962; Mellor & Gibson 1966;
Townsend 1976; Bobke et al. 2017; Vaquero, Renard & Deck 2019b).

In the present work, the non-equilibrium conditions are introduced by a rounded
backward-facing step with a height similar to the boundary layer thickness so that the
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outer layer will be perturbed directly. The non-equilibrium state of the outer layer is
thus obtained, employing a boundary layer separation over the rounded step. Near the
separation region, pressure gradient effects become important and contribute to the
boundary layer’s perturbation. The study focuses on the redevelopment after reattachment,
where the boundary layer will be in strong non-equilibrium conditions. Also, in the
redevelopment region, the pressure gradient will remain close to zero for simplicity and
because a null pressure gradient belongs to the family of pressure gradient distributions
allowing for near-equilibrium conditions. Therefore, the strongly disturbed boundary
layer downstream of the reattachment region will be developing under flow conditions
compatible with near-equilibrium, which would eventually lead back to a canonical state.

When a turbulent boundary layer separates from the wall, the shear rate increases
significantly in the outer region, resulting in an increase of turbulent production. An
inflexion point appears in the mean velocity profile upstream of separation at the point
of maximum shear rate, which moves further away from the wall as we get closer to
the separation point. The structure of the detached region is sketched by Simpson (1989)
with two clearly separate regions: one close to the wall where the mean flow is reversed,
and another further away where a shear layer forms. In the back-flow region, turbulent
fluctuations exist that are of the same order of magnitude as the mean back-flow velocity
(Simpson 1989). However, these fluctuations result not from turbulence production, but
rather from turbulent diffusion from the large-scale structures lying in the shear layer
(Simpson, Chew & Shivaprasad 1981). In fact, in the back-flow region, the Reynolds
shear stress is negligible compared to the normal Reynolds stresses (Song 2002). Thus the
back-flow does not come from permanently reversed flow starting downstream; instead, it
seems to result from intermittent reversed flow induced locally by large-scale structures
located right above the mean back-flow region. In the shear layer, the Kelvin–Helmholtz
instability develops, and coherent structures in the shape of roll-up vortices are created
and grow by vortex pairing as they are convected downstream. Turbulent structures may
complicate the identification of roll-up vortices due to turbulent diffusion. However, they
have still been observed both numerically and experimentally as, for instance, in the works
of Na & Moin (1998), Song & Eaton (2004) and Fadla et al. (2019).

In the study of turbulent separation bubbles, three modes have been identified to be
relevant to their dynamics. The first mode is the shear layer mode associated with the
Kelvin–Helmholtz instability resulting from the inflexion point in the mean velocity profile
across the shear layer. As reported by Hasan (1992), this mode does not scale with the
ramp geometry or the separation length. Instead, it scales with the properties of the shear
layer or the boundary layer before separation. In particular, Hasan (1992) indicates that the
Strouhal number corresponding to this mode is Stθ = 0.012, where θ is the momentum
thickness of the boundary layer at the point of separation. It is also found that, using the
vorticity thickness δω and the average between the maximum and minimum velocity, the
Strouhal number is Stω = 0.135 (Huerre & Rossi 1998). The second mode is the shedding
mode associated with the vortex pairing in the shear layer. According to Hasan (1992) and
the recent numerical and experimental results of Fadla et al. (2019), its frequency seems to
scale with the step/ramp height such that StH = 0.2. The last mode is the flapping mode.
It corresponds to a low-frequency mode that Eaton & Johnston (1981) associated with an
instantaneous imbalance between the entrainment of fluid from the shear layer and the
re-injection of fluid into the separation bubble in the proximity of the reattachment point.
The size of the recirculation region seems to be the relevant length scale for the frequency
normalisation. Indeed, Dandois, Garnier & Sagaut (2007) summarised several previous
works in the literature and found the Strouhal number to be around St = 0.12–0.18 (with
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Outer layer dynamics in a high-Reynolds-number boundary layer

St = fLR/U∞, where f is the frequency, LR is the mean recirculation length, and U∞ is the
free stream velocity upstream of separation), a result that is also confirmed for instance in
the recent work of Fadla et al. (2019).

As already mentioned, in a turbulent separation bubble, turbulence production is
enhanced in the shear layer and negligible in the back-flow region. Coleman, Rumsey &
Spalart (2018) performed direct numerical simulation of a turbulent separation bubble with
varying pressure gradient intensities and Reynolds numbers. They analysed the turbulent
kinetic energy budget across a separation bubble on a flat plate, and they showed the
strong non-equilibrium between the production term and the dissipation term both near
separation and in the reattachment region. Similar results have also been observed in
the case of turbulent boundary layer separation over a rounded step, for instance, in the
work of Bentaleb, Lardeau & Leschziner (2012). However, in the latter, the peak of the
ratio between production and dissipation is larger, and it is noticeable further downstream.
Such an imbalance between production and dissipation suggests that after reattachment,
the boundary layer is in strong non-equilibrium conditions.

In the present work, a high-Reynolds-number turbulent boundary layer is studied
by means of a wall-modelled large-eddy simulation (WMLES) utilising the zonal
detached-eddy simulation (ZDES) approach (Deck 2012), which has already been used
in other high-fidelity simulation studies (Deck & Laraufie 2013; Deck et al. 2014b). The
study focuses on the outer layer, which is driven by a self-sustained process (Flores
& Jiménez 2010; Hwang & Cossu 2010, 2011). In particular, the flow considered is
a turbulent boundary layer redeveloping from non-equilibrium conditions caused by a
turbulent separation bubble. Similarly to the procedure of Hwang & Cossu (2010), the
turbulent activity in the inner layer is quenched, but the dissipation is still present by using
a Reynolds-averaged Navier–Stokes (RANS) model, and the turbulence is solved in the
outer part of the boundary layer utilising the large-eddy simulation (LES) approach.

When simulating this kind of flow, the reliability of the RANS approach in the
outer layer has been shown to be limited. For instance, Coleman et al. (2018) applied
different RANS models to their turbulent separation bubble and compared them to a direct
numerical simulation (DNS). Turbulence models of different families were considered.
Most of them showed quite similar results regarding the separation point, which is
explained by Coleman et al. (2018) by the fact that these models behave similarly near
the wall. However, the eddy-viscosity fields were quite different, especially downstream
of separation, and the behaviour of the models was still quite similar. All of them
showed greater deviation from DNS results in the friction coefficient in the redevelopment
region.

Higher reliability could be obtained by wall-resolved large-eddy simulation (WRLES)
or DNS of the flow. However, there is an important limitation on the computational
effort, limiting these approaches to low or moderate Reynolds number flows (Piomelli
2008; Deck et al. 2014a). For instance, in the recent DNS of Abe (2017), Coleman
et al. (2018) and Wu, Meneveau & Mittal (2020), the Reynolds numbers based on the
momentum thickness (Reθ ) were respectively 900, 3121 (they also performed simulations
at lower Reynolds numbers in the same work) and 490. In the present work, due to
the interest of high-Reynolds-number effects in the research community, the Reynolds
number is significantly greater (Reθ = 13,200 in the reference station and reaching up to
Reθ = 24,000). The increase of the computational effort with the Reynolds number of the
flow makes such high-Reynolds-number flows not affordable to be reproduced by DNS or
WRLES, which again justifies the use of ZDES.
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U

x ′ = –2 x ′ = 0

Reθ = 13,200

δ = 1.26h

x ′ = 1
h  = 0.3L

L

δ

Figure 1. Schematic representation of the flow configuration.

Following the past extensive validation of ZDES at somewhat lower Reynolds numbers
(Deck et al. 2014a,b; Renard & Deck 2015a; Deck, Weiss & Renard 2018), the
present study contributes to better understanding and quantifying the applicability of
scale-resolving approaches to predict the properties of out-of-equilibrium wall-bounded
turbulence at Reynolds numbers that may not be reached easily by DNS.

The present work is structured as follows. The numerical simulation is described in
§ 2. In § 3, the instantaneous and mean flow fields are analysed, and spectral analysis of
streamwise velocity fluctuations is performed as well. The turbulence dynamics of the
outer layer in the recovery region is analysed in § 4, through the spectral analysis and
the streamwise evolution of turbulent kinetic energy production, together with a statistical
study of the friction coefficient evolution. The long-lasting non-equilibrium state in the
separation and relaxation region is identified as the likely reason for the lack of accuracy
of the RANS approaches in this region.

2. Numerical simulation description

2.1. Flow configuration
The experimental study from Song & Eaton (2004) is reproduced numerically for the
Reynolds number Reθ,ref = 13,200. The boundary layer undergoes separation over a
rounded step, then reattaches and develops downstream. A representation of the flow
configuration is sketched in figure 1. Several works in the literature have simulated this
kind of flow but at lower Reynolds numbers. For instance, in the works of Lardeau &
Leschziner (2011) and Bentaleb et al. (2012), WRLES is performed for a similar geometry
(although slightly modified) at almost Reθ = 1200. Radhakrishnan et al. (2006) simulated
the same flow at higher Reynolds number, Reθ = 13,200, the same as in the present
study, but with a much coarser grid than the one considered in ZDES, and employing
the standard detached-eddy simulation (DES) as in Nikitin et al. (2000) as a WMLES
approach. The length of the round step is L, the height is h = 0.3L, and the ′ symbol is
used in length-type variables when normalised by the step length (for instance, x′ = x/L).
The reference station is placed at x′ = −2, where Reθ,ref = 13,200 as mentioned earlier.
An illustration of the flow configuration is given in figure 4 below, and x, y and z are
respectively the streamwise, vertical and spanwise directions. It is important to mention
that the geometry of the top wall is slightly modified in the present study, as explained in
§ 2.2.

2.2. Numerical set-up
In the present work, the outer part of the boundary layer is resolved by means of an LES
approach using ZDES mode 3 (Deck 2012; Renard & Deck 2015a). This method, which
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10110010–110–210–3
0

0.2

0.4

0.6

0.8

Exp. Österlund (1999)
Exp. Vallikivi et. al. (2015)
ZDES

1.0

〈u〉
/U

∞

y/δ

Figure 2. Mean velocity profile of a ZPG turbulent boundary at Reθ = 15,500 and Reτ = 4900, from a ZDES
mode 3. Experimental results of Vallikivi, Hultmark & Smits (2015) (Reτ = 4635) and Österlund (1999)
(Reτ = 4758) are also included.

is described in Appendix A, employs the Spalart–Allmaras (Spalart & Allmaras 1994)
turbulence model as a subgrid-scale (SGS) model, in order to link the SGS stress tensor to
the mean field variables. In addition, a thin near-wall RANS layer is acting as a wall model.
This method has already been used in other high-fidelity simulation studies, such as in
Deck et al. (2011, 2014a,b) and Deck & Laraufie (2013). Figure 2 illustrates the results
obtained from a quasi-incompressible ZPG turbulent boundary layer at high Reynolds
number employing ZDES mode 3, where very good agreement with experimental data
is observed for the mean velocity profile.

This work focuses mainly on the outer layer turbulent structures in out-of-equilibrium
conditions. Even though turbulence resolving methods are essential for this type of study,
simulations based on the RANS approach have also been carried out in the present work
for mean field comparisons. The two eddy-viscosity models considered for the RANS
simulations are the Spalart–Allmaras (SA) model (Spalart & Allmaras 1994) and the k-ω
shear stress transport (SST) from Menter (1994). Regarding the Reynolds stress model
(RSM), the SSG-LRR-ω (Launder, Reece & Rodi 1975; Speziale, Sarkar & Gatski 1991;
Cécora et al. 2015) model is employed in this study. The Reynolds average of a variable •
is denoted in this work by 〈•〉.

The geometry of the computational domain (top wall) has been modified slightly to
take into account the side-wall effects present in the wind tunnel, without simulating the
side-wall boundary layers. This allows us to reduce the computational effort in ZDES,
while keeping the proper pressure coefficient evolution. The method detailed in Vaquero,
Renard & Deck (2019a) has been employed, for which the results are presented in figure 3
for both the Spalart–Allmaras model and ZDES. Also, a comparison is made against a
RANS simulation with a flat top and the side-wall boundary layers (SA 3-D), and very
accurate results are obtained with ZDES, thus validating the geometry of the top wall
for the statistically two-dimensional (2-D) simulations. Moreover, it is interesting to point
out the good prediction of the pressure coefficient by ZDES, especially in the separation
region.

Table 1 gathers the grid parameters for ZDES mode 3. Parameters for the other
simulations are not included since these are two-dimensional and the grid in the (x, y)
plane is identical, i.e. �x = 0.0108L and �y|w = 0.000054L. In the present case, we have
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x ′

Cp

0 2–2 4

Exp.
SA 2-D modified top wall
SA 3-D flat top wall
ZDES

6 8

0

0.2

–0.2

Figure 3. Pressure coefficient evolution over the bottom wall for different top wall geometries, including a
full three-dimensional (3-D) computation with a flat top wall.

�x �y|w �z Lz Nx × Ny × Nz

200+ 1+ 100+ — 2492 × 288 × 405
0.0108 L 0.000054 L 0.0054 L 2.187 L (i.e. 290 × 106 points)
0.03350 δin 0.0001675 δin 0.01675 δin 6.78 δin
0.03086 δref 0.0001543 δref 0.01543 δref 6.25 δref
0.03562 δ0 0.0001781 δ0 0.01781 δ0 7.22 δ0
0.0187 δ10 0.000094 δ10 0.0094 δ10 3.80 δ10

Table 1. Grid parameters and numerical domain specifications for ZDES. Here, �y|w is the spacing in the y
direction for the first cell away from the wall. The values given in wall units (superscript +) are taken at the
most restrictive region of the domain. Quantities δin, δref , δ0 and δ10 correspond to the boundary layer thickness
at the inlet, at x′ = −2 (reference station), at x′ = 0 and at x′ = 10, respectively.

taken Lz = 3.8δ10 for the ZDES computation (leading to Nxyz = 290 × 106, see table 1),
which has been verified to be enough to avoid any spanwise correlation. As we remarked
in the Introduction, such an investigation at high Reynolds number cannot be tractable
with DNS or WRLES, for which it is estimated Nxyz = 320 × 109 and Nxyz = 16 × 109,
respectively. Radhakrishnan et al. (2006) also simulated the experiment of Song &
Eaton (2004) using standard DES at the same Reynolds number, but the span was less
than half the span in the present work (Lz = 3δref ), and the mesh was coarser as well
(Nxyz = 5.7 × 106).

In the ZDES computation, the position of the inlet of the domain is different than
in RANS simulations. Instead, the inlet is placed at x′ = −15.7, whereas in the RANS
simulations, the inlet is located further upstream (x′ = −43). The reason for the inlet
being placed further downstream in the ZDES computation is to reduce computational
effort since the simulation is three-dimensional. Also, turbulent inflow conditions are used
due to the presence of resolved turbulence when using ZDES mode 3. In particular, the
synthetic-eddy method (Pamiès et al. 2009; Deck et al. 2011; Laraufie & Deck 2013) is
employed to generate turbulent structures, and it is coupled with a dynamic forcing method
as presented by Laraufie, Deck & Sagaut (2011) that allows accelerating the transition
of the injected turbulent structures to become proper turbulent structures of the actual
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simulation. Regarding the outlet, even though the last station where experimental data of
Song & Eaton (2004) are available is placed at x′ = 7, in all the simulations it is located
at x′ = 14, thus allowing for a greater relaxation region.

Two different solvers have been used in the present work. The RANS simulation with
the Spalart–Allmaras turbulence model and ZDES mode 3 have been carried out with
the solver FLU3M developed at ONERA, which has already been used for high-fidelity
simulations (see, for instance, the work of Deck & Laraufie 2013; Deck et al. 2014b, 2018).
The simulations with the k-ω SST model and the RSM have been performed utilising the
ONERA solver elsA (Cambier, Heib & Plot 2013). Even though different solvers are used
in this study, the numerics employed in all the simulations are very similar. Moreover, a
comparison between FLU3M and elsA simulations using the Spalart–Allmaras model has
been made keeping the same numerics, and differences were not noticeable. This allows
excluding the use of different solvers as a possible source of error.

The numerics employed in the RANS simulations are the same regardless of both the
turbulence model and the solver. The spatial integration is performed through the finite
volume method using Roe’s scheme and the MUSCL (Monotonic Upstream Scheme for
Conservation Laws) approach for flux reconstruction at the cell faces. RANS simulations
are steady, and the pseudotemporal integration is computed through an implicit Euler’s
scheme.

For ZDES, the finite volume method is also used. In the numerical domain, only the
lower-wall boundary layer is solved with ZDES mode 3, and the upper-wall boundary
layer is treated in RANS (with the Spalart–Allmaras model) thanks to the zonal feature
of ZDES. The numerical scheme applied is the AUSM + (P) suggested by Liou (1996)
and modified according to Mary & Sagaut (2002). The temporal integration in the ZDES
computation is made by means of a Gear’s scheme with time step �t = 2.67 × 10−7 s.
In the present simulation, �t+ = �tu2

τ /ν is below 0.2 in the whole domain, which is
in accordance with the requirement �t+ < 0.4 proposed by Choi & Moin (1994). Also,
the inner RANS region is located within 0.1δ from the wall in attached regions, which
corresponds to the whole inner layer, as in previous studies (Deck et al. 2014a, 2018;
Renard & Deck 2015a). Due to the presence of local mean pressure gradients in the flow,
the boundary layer thickness is evaluated by employing a method inspired by that used in
the work of Spalart & Watmuff (1993) or Kitsios et al. (2017). Within the recirculation
bubble, the RANS region extends up to a distance from the wall of about 0.1δx′=0. The
mean field comparison to the experimental measurements presented in both § 3.2 and
Appendix B confirms the accurate flow prediction obtained using the mentioned definition
of the RANS region location.

3. Turbulent flow field analysis

3.1. Visualisation of the instantaneous flow field
An insight into the flow is presented through the instantaneous field obtained from ZDES.
Figure 4 shows the Q-criterion (Hunt, Wray & Moin 1988) of the flow, and figure 5
presents a numerical schlieren. From the Q-criterion, it is observed that turbulence is
resolved finely in the outer layer, and the typical hairpin-like structures are recognisable.
Also, the boundary layer is thicker than upstream of separation, and turbulent structures are
more easily observable in the redevelopment region due to the high increase in Reynolds
number (Reθ ≈ 13,200 at x′ = −2, and Reθ ≈ 24,000 at x′ = 8). In the numerical
schlieren (figure 5), it is possible to identify the typical elongated turbulent structures
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Figure 4. Isosurface of Q-criterion for Q = 0.16(Ue/δ)
2
ref coloured by the instantaneous streamwise velocity.
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Figure 5. Numerical schlieren (
√

(∂ρ/∂xi)(∂ρ/∂xi)) in the (x′, y′) plane, where ρ is the fluid density.

inclined in the flow direction due to the streamwise velocity shear, which for ZPG
turbulent boundary layers are inclined at angle 14◦ according to Marusic & Heuer
(2007). Those structures correspond to the large-scale structures of high-Reynolds-number
turbulent boundary layers since their sizes are commensurable to the boundary layer
thickness. Indeed, as already mentioned, large-scale motions have streamwise lengths λx
of approximately 2–3 δ.

3.2. Comparison to experimental measurements
Integral properties of the mean flow boundary layer as well as mean velocity and
Reynolds stress profiles are presented in this section. Comparisons are made not only
to the experimental data but also to popular RANS eddy-viscosity models and one RSM
(see § 2.2). Regarding the mean quantities displayed in figure 6, ZDES gives excellent
agreement with experimental results for the shape factor in the whole domain. Very good
agreement is also obtained for the friction coefficient, especially after reattachment, in the
redevelopment region, which is the main region of interest in the present study.

Concerning the results from the RANS models computations, there are some
discrepancies in reproducing the friction coefficient in the redevelopment region. In
particular, both the Spalart–Allmaras and k-ω SST models underestimate the friction
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Figure 6. Friction coefficient (a) and shape factor (b) evolutions in the streamwise direction.

coefficient and give an increasing trend. This very likely results from the flow being
out of equilibrium, whereas these models are calibrated in near-equilibrium conditions.
Some differences are also present in the shape factor, where the Spalart–Allmaras model
underestimates the shape factor in the recirculation bubble, whereas the other RANS
models (and ZDES) are very accurate. This difference for the Spalart-Allmaras model
results from a less satisfactory prediction of the displacement and momentum thicknesses
(not shown) compared to the other models. Indeed, the friction coefficient is related to the
momentum thickness and the shape factor through the Von Kármán equation.

Figures 7–10 present the mean velocity and Reynolds stress profiles for x′ = 4 and x′ =
7, which are located downstream of reattachment, in the relaxation region, which is the
main focus of this study. Predictions of mean velocity profile and Reynolds shear stress
(figure 7) by ZDES match the experimental measurements very accurately. The boundary
layer is not in canonical conditions, as evidenced clearly by the external peak observed in
the outer layer for the Reynolds shear stress, which results from the increased turbulent
activity in the shear layer after separation. Further downstream, at x′ = 7 (figure 9), ZDES
results are again in strong agreement with experimental measurements. The boundary layer
is recovering from non-equilibrium induced by excess turbulent activity resulting from the
shear layer in the separated region, although canonical conditions have not been reached
yet. This is observable in the profile of Reynolds shear stress, where the outer peak is still
present (both in the experiment and in the ZDES computation), although it has decreased
significantly compared to station x′ = 4. Also, in the mean velocity profile at x′ = 7, the
log region is more clearly identifiable, and extends in a vast extension of the mean velocity
profile due to the high Reynolds number at this station, which is about Reθ = 23,400.

RANS results in the reattachment region are less accurate. The mean velocity profile at
x′ = 4 presents a small underestimation in the inner layer for both eddy-viscosity models,
and is better reproduced by the RSM. Regarding the Reynolds shear stress at this same
station, all the models give an outer peak, but its level is clearly underestimated by the
Spalart–Allmaras model. The peak from the k-ω SST model is closer to the experiment,
but still underestimated, whereas the RSM predicts a slightly overestimated Reynolds shear
stress for the peak. An important discrepancy between RANS computations and ZDES is
observed regarding the position of the mentioned outer peak. In fact, ZDES adequately
predicts the peak to be around y ≈ 0.32δ, which is very similar to the experiment, but
RANS computations provide a lower location of the peak, being at about y ≈ 0.24δ for
the three RANS models considered. This misprediction of the peak location is very likely
responsible for the departure from experimental data in the RSM mean velocity profile,
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Figure 7. Mean velocity (a) and Reynolds shear stress (b) profiles at x′ = 4. The dashed vertical line indicates
the position of the RANS/LES interface. For ZDES, the Reynolds shear stress profile is split into modelled
(dotted) and resolved (dashed) contributions.
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Figure 8. Streamwise (a) and wall-normal (b) velocity fluctuations profiles at x′ = 4. The inner RANS region
for ZDES is shaded in grey.
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Figure 9. Mean velocity (a) and Reynolds shear stress (b) profiles at x′ = 7. The dashed vertical line indicates
the position of the RANS/LES interface. For ZDES, the Reynolds shear stress profile is split into modelled
(dotted) and resolved (dashed) contributions.

with an underestimation around y ≈ 0.1δ followed by a minor overestimation around y ≈
0.5δ.

At x′ = 7, predictions from RANS models are closer to the experiment because
the boundary layer is relaxing from non-equilibrium conditions. However, the same
discrepancy as the one just described for x′ = 4 is still observed for RANS computations
compared with ZDES and the experiment, although to a lesser extent. Predictions of
Reynolds shear stress levels from RANS models are in better agreement at this station,
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Figure 10. Streamwise (a) and wall-normal (b) velocity fluctuations profiles at x′ = 7. The inner RANS
region for ZDES is shaded in grey.

but the position of the peak remains moderately shifted closer to the wall. Concerning
the mean velocity profile, a better agreement is also observed at this station from RANS
simulations, and discrepancies are limited to a small underestimation of the mean velocity
in the log region by the k-ω SST model, and a slight overestimation in the wake region by
the Spalart–Allmaras model.

The profiles of urms and vrms at x′ = 4 and x′ = 7 are displayed in figures 8 and 10,
respectively. The wall-normal velocity fluctuations at x′ = 4 are reproduced accurately
by ZDES, and fluctuations in the streamwise direction are slightly underestimated below
y ≈ 0.5δ. Further downstream, at x′ = 7, the velocity fluctuations in both the streamwise
and wall-normal directions are fairly well reproduced, although there is a moderate
underestimation compared to the experimental results. The RSM, conversely, does not
properly predict velocity fluctuations at these stations, regarding both the levels and the
trend. At both stations, urms and vrms are below the experimental values in the whole
profile, and a faster decay away from the wall is predicted by this model.

Profiles of mean velocity and Reynolds shear stress at two stations upstream of
separation and at the recirculation region are discussed further in Appendix B, for the sake
of conciseness. Results from the ZDES computation are again in fairly good agreement
with the experimental measurements, and some non-canonical features of the flow are
well reproduced in this simulation, which is not the case for all the RANS simulations
considered. Also, in the recirculation bubble, the inflexion point is well reproduced by
ZDES in terms of both velocity magnitude and position from the wall, whereas less
accurate results are provided by the RANS computations. Another interesting aspect to
point out is the prediction of negative Reynolds shear stress (−〈u′v′〉 < 0) very near the
wall, which is observed in neither the ZDES profile nor the experiment (see figure 23).

3.3. Spectral analysis of streamwise velocity fluctuations
The spectral content of velocity fluctuations in the streamwise direction is studied in
this subsection at different domain stations. In the study of turbulent boundary layers,
it is common to focus on the spatial length scales of coherent structures. However, the
evolution of the boundary layer in the streamwise direction makes this a non-homogeneous
direction, therefore the analysis of streamwise coherent structures is performed by utilising
time signals of the streamwise velocity at a given spatial position and a link between
frequency and streamwise wavenumber, which is given assuming Taylor’s hypothesis; see,
for instance, the work of Renard & Deck (2015b).
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Figure 11. Positions of data extraction for spectral analysis.

The one-sided power spectral density (PSD) for 〈u′2〉 = (urms)
2 is given by Guu;f ( f ),

expressed such that

〈u′2〉 =
∫ +∞

0
Guu;f ( f ) df . (3.1)

It is very common to present the PSD in logarithmic scale for the frequency. It is then
usually chosen to plot the pre-multiplied PSD, f Guu;f ( f ), because the area under the curve
of f Guu;f ( f ) in a semi-logarithmic scale at a given position dw/δ is proportional to the
contribution to 〈u′2〉 at the considered dw/δ.

In the present study, the signal of streamwise velocity has been collected from ZDES
for a total time T ≈ 430(δ/Ue)ref . That recording time is long enough to capture the
low-frequency dynamics of the flow since it corresponds to around 30 periods of time
for the flapping mode. Figures 12 and 13 display the distribution of the pre-multiplied
PSD, estimated using Welch’s method (Welch 1967), at positions P1, P3 and P6, located
at x′ = 0, x′ = 1 and x′ = 7 (and following the mesh lines, see figure 11). The boundary
layer quantities δ, Ue and ν/uτ employed for normalisation at station P3 (figure 13) are
taken from station P1 since station P3 is located within the recirculation bubble. In fact,
in the recirculation bubble, the boundary layer is completely separated, and δ and ν/uτ ,
though calculable, do not play the same role in the normalisation from a physical point of
view. Hence in order to make proper comparisons, the values at P1 have been employed
at P3, but P6 is located downstream of reattachment, therefore at P6, values of δ, Ue and
ν/uτ are computed locally.

The convection velocity could be evaluated by using the local mean velocity, or even
more sophisticated convection velocities such as the one proposed by Deck et al. (2014a)
based on the two-point two-time correlation coefficient, or the one suggested by Renard
& Deck (2015b), which is dependent on turbulent structures length scale. Even though
we have mentioned the use of Taylor’s hypothesis for linking frequency content and
spatial length scales, such a hypothesis cannot be applied in the backward flow region
since turbulent velocity fluctuations and the mean back-flow velocity are of the same
order of magnitude (Simpson 1989). For this reason, plots in figures 12 and 13 are given
in frequency content (even for P1 and P6), with f + = f ν/u2

τ . However, since λx/δ =
Uc/( f δ), it has been chosen to plot the PSD as a function of the inverse of the frequency
because Ue/( f δ) is representative of λx/δ when Taylor’s hypothesis may be applied (as
with P1 and P6). Even though it is not strictly the same because using Uc(dw/δ) = Ue as
the convection velocity would not be very suited, Uc remains a fraction of Ue even in the
near-wall region (Deck et al. 2014a; Renard & Deck 2015b).
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Figure 12. Pre-multiplied spectrum of streamwise velocity fluctuations at P1 (see figure 11). The shaded area
indicates the RANS region.
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Figure 13. Pre-multiplied spectrum of streamwise velocity fluctuations at P3 (a) and P6 (b) (see figure 11).
The shaded area indicates the RANS region. The values of δ, Ue and ν/uτ at P3 are taken as those from P1
since the P3 station is located within the recirculation bubble.

At stations P1 and P6, analysis of the pre-multiplied PSD as a function of the
wavenumber (kx Guu;kx(kx)) has been performed using the two-point two-time correlation
coefficient for the convection velocity as described by Deck et al. (2014a). However, it is
not shown since changes to the figures presented are limited to a slight shift of the energy
content to lower wavelengths. Nevertheless, values of λx/δ from the plot of kx Guu;kx(kx)
will be indicated in the discussion.

The turbulent content before separation, presented in figure 12, shows a quite
homogeneous distribution in a wide range of scales at dw ≈ 0.2δ, with length scales from
λx = 0.4δ to λx = 40δ. It is interesting to notice that turbulent fluctuations at large scales
are still present within the RANS region, but small structures present in the LES region
are dissipated in the RANS region. This is not surprising because, as recalled by Renard
& Deck (2015c), the fraction of resolved Reynolds shear stress decreases gradually within
the RANS region. As already mentioned, Ue ≥ Uc across the boundary layer profile, so
Ue/( f δ) ≥ λx/δ, which causes the PSD in figure 12 to be shifted slightly towards greater
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values in the vertical axis, when plotted against Ue/( f δ) instead of λx/δ. For instance,
the length scale associated with Ue/( f δ) ≈ 10 is λx/δ ≈ 8–9 instead. It is also important
to notice that values of λx/δ with important energy content are significantly higher than
those for very large-scale motions (VLSM) in ZPG turbulent boundary layers (for which
λx is 5–6 δ).

The spectral content is very different within the recirculation bubble, as illustrated in
figure 13. Again, energy is distributed in a broad range of scales. It is important to mention
that for this station, Ue/( f δ) may not be as accurate as at P1 for estimating λx/δ because
the values of δ, Ue and ν/uτ used are those from P1. It is recalled that this choice is
made for the sake of comparison because the boundary-layer-like thickness and the friction
velocity at P3 do not represent an adequate scaling within the recirculation bubble. Energy
levels at P3 are much more important than at P1 (the range of values in the colourbar
is not the same), and we can observe three localised energy sites for Ue/( f δ) = 10 and
above that likely correspond to the shear layer mode and the shedding mode, as will be
described later, in § 4.2. Regarding the flapping mode, the present flow configuration does
not discern clearly this mode from the others. Indeed, the flapping mode is characterised
by St = fLR/U∞ = 0.12–0.18, and the shear layer mode by Stθ = f θsep/U∞ = 0.012. In
the flow field studied, U∞ = Uref and θsep/LR ∼ 0.1, hence although the shear layer mode
and the flapping mode have certainly distinct Strouhal numbers, in the present case, their
absolute characteristic frequencies are very close to each other.

In the relaxation region (figure 13), the PSD changes significantly with respect to the
separated region, and some similarities to the P1 station are recovered. In particular, energy
in the RANS region is observable again, and energy levels are lowered with respect to
those in the separated region, and they are closer to, yet greater than, those upstream of
separation. In the outer layer, energy is more concentrated for structures whose length
scales range from λx = 1.5δ to λx = 9δ. However, the peak location related to VLSM
falls within the RANS region and is not observed, evidently, as was the case at P1. The
energy in the outer layer at P6 is significantly greater and more broadly distributed across
the boundary layer. There is still some important turbulent activity even at dw = 0.5δ.
This is probably the result of the high Reynolds number at this station, which is Reθ =
23,400 and Reτ = 6285, but some trace of the high outer layer activity from the shear
layer at separation probably influences the turbulent content at this station. Indeed, the
mean velocity profile is close to canonical ZPG conditions, but the Reynolds shear stress
profile still shows an external peak as a consequence of the excess of turbulence created
by boundary layer separation (see figure 9).

4. Analysis of boundary layer relaxation

The relaxation process of the boundary layer downstream of reattachment is assessed in
this section through in-depth analysis of the turbulent kinetic energy (TKE) production and
friction coefficient evolutions. As already stated, the boundary layer after reattachment
is perturbed strongly due to the separation process. The evolution downstream of
reattachment occurs at almost ZPG conditions on a plane wall, which should lead the
boundary layer back to equilibrium.

4.1. Spatial evolution of turbulence production
The shear layer in the separated region creates an excess of turbulence that is convected
in the outer part of the boundary layer once reattachment takes place. In order to analyse
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better the extent of the shear layer trace, the mean field of the whole TKE production term
as in equation (4.1) is here presented. The production term for the turbulent kinetic energy
k in a statistically two-dimensional flow is given by

Pk = −〈u′v′〉
(

∂〈u〉
∂y

+ ∂〈v〉
∂x

)
+ (〈v′2〉 − 〈u′2〉)∂〈u〉

∂x
. (4.1)

Results from RANS simulations are included as well, for comparison purposes. In the case
of the two eddy-viscosity models (Spalart–Allmaras and k-ω SST), for which Boussinesq’s
hypothesis (A1) is considered, the TKE production may be written as

Pk = νt

(
∂〈u〉
∂y

+ ∂〈v〉
∂x

)2

+ 2νt

(
∂〈u〉
∂x

− ∂〈v〉
∂y

)
∂〈u〉
∂x

, (4.2)

where νt = μt/ρ, with μt the eddy viscosity and ρ the fluid density. It is important to
mention that the production of TKE considered in (4.1) corresponds to the true production,
and in (4.2) to its evaluation with Boussinesq’s hypothesis, which may differ from the
production term considered for the transport equation of TKE, k, in the k-ω SST model.

The field of Pk, as in (4.1) and (4.2), is displayed in figure 14 for all the RANS
simulations and ZDES. For the latter, the total production is considered, i.e. the sum of
the resolved production, as in (4.1), and the modelled one, as in (4.2). The results obtained
are significantly different depending on the RANS model considered. In all cases, there
is a clear excess of Pk away from the wall resulting from the turbulence enhancement
happening in the shear layer. Such an excess results in a second peak in the outer part of
wall-normal profiles of TKE production. However, this excess of Pk disappears in shorter
distances for the two eddy-viscosity models, which seem to be too diffusive, especially
in the Spalart–Allmaras computation. Indeed, the last position of the outer peak of Pk
detected for ZDES is located at x′ ≈ 11, whereas for the k-ω SST and Spalart–Allmaras
models, the secondary peak disappears beyond x′ ≈ 6 and x′ ≈ 3.5, respectively, and for
the RSM the outer peak is still present at the end of the computational domain. The
discrepancies observed in the friction coefficient after reattachment, where RSM and
ZDES are significantly more accurate than the two eddy-viscosity models (see figure 6),
are very likely related to the higher dissipation of Pk for the eddy-viscosity models. In
fact, TKE production plays a key role in the friction coefficient, which has been evidenced
explicitly, for instance, in the mean skin friction decomposition suggested by Renard &
Deck (2016).

Quite similar results are obtained between the RSM computation and ZDES, despite
some discrepancies being present. Even though for both simulations the excess of Pk
disappears very far downstream, the RSM appears to be not diffusive enough since the
field is narrower around the secondary peak. This is consistent with the profiles of normal
Reynolds stresses in the redevelopment region (figures 8 and 10), which are also narrower
for RSM than for ZDES and the experiment. Also, the furthest position for the outer
peak detected in ZDES is at x′ ≈ 11, whereas the outer peak seems to be still present
at the end of the computational domain for the RSM simulation. Moreover, in the RSM
computation, the outer peak is positioned further away from the wall (in outer scale) in the
boundary layer until x′ ≈ 7, and then it seems to be placed at y/δ ≈ 0.5. Thus the distance
between the wall and the outer peak is monotonically increasing with x′, whereas in ZDES,
the wall-normal distance of the peak does not change significantly beyond x′ = 6. This
means that the further downstream of x′ = 6, the lower the outer peak is located within
the boundary layer in outer scale since the boundary layer thickness keeps increasing.
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Figure 14. Mean field of TKE production Pk with all terms considered as in (4.1). From (a)–(d):
Spalart–Allmaras model, k-ω SST model, RSM and ZDES. Pink dots indicate the position of the outer peak.
Yellow-filled dots indicate the position of the furthest-downstream outer peak. The white line corresponds
to the boundary layer thickness (y′ = δ′, with δ′ = δ/L the normalised local boundary layer thickness). The
vertical axis is magnified for visualisation purposes.

The production term of turbulent kinetic energy presented in figure 14 has been
integrated in the y direction in order to analyse the streamwise evolution of the bulk
production of TKE, Pk. As illustrated in figure 15, different evolutions of the bulk TKE
production are provided by the different models. More precisely, it is interesting to notice
the underestimation obtained from the Spalart–Allmaras model, which could have been
inferred from the previous analysis of figure 14. On the contrary, a more surprising result
is obtained from the k-ω SST model. This model predicts an evolution of the bulk TKE
production that is not only in better agreement with ZDES, but also very close to the
evolution obtained from the RSM model, despite the important differences between the
two models regarding the spatial distribution of the TKE production (figure 14), mainly
concerning the outer peak. One may suppose that the fact of having the same transport
equation for the specific TKE dissipation rate in both models is partly responsible for the
close behaviour between them. It is also observed that even though both models provide
an accurate prediction of the bulk TKE production levels with respect to ZDES, there is a
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Figure 15. Streamwise evolution of the bulk production of TKE, (Pk/U3
ref ) × 103, where

Pk(x′) = ∫ +∞
0 Pk(x′, y) dy.

slight discrepancy in the trend, which results in minor underestimation and overestimation
at the beginning and the end of the redevelopment region, respectively.

4.2. Spectral analysis of turbulence production
In the previous subsection, it was observed that there is a trace in production of turbulent
kinetic energy from the shear layer in the separated region that is still visible far
downstream, until x′ ≈ 11. In this subsection, the production term of TKE is studied by
means of a spectral analysis of turbulence at some stations in the flow. For ZPG turbulent
boundary layers, some of the terms may be neglected in (4.1), and the production can be
expressed as (considering y the wall-normal direction)

Pk = −〈u′v′〉 ∂〈u〉
∂y

, (4.3)

which is the expression that will be employed in the spectral analysis presented here.
Indeed, for the flow studied in this work, the term considered in (4.3) remains the most
dominant term in the whole domain.

The spectral analysis of Pk is performed through the Reynolds shear stress according to
(4.3). Signals of u(t) and v(t) are recorded for the same duration T ≈ 430(δ/Ue)ref as in
subsection 3.3. According to Deck et al. (2014b), one can write

〈u′v′〉 =
∫ +∞

0
2 Re(Suv;f ( f )) df =

∫ +∞

0
Guv;f ( f ) df , (4.4)

where Re(•) denotes the real part, and Guv;f = 2 Re(Suv;f ) is the real part of the
cross-PSD. Finally, according to (4.3) and (4.4), the production may be expressed as

Pk = −
∫ +∞

0

∂〈u〉
∂y

Guv;f ( f ) df . (4.5)

The co-spectrum of Pk is presented at stations P1, P3 and P6 in figures 16, 17(a) and
17(b), respectively. In these figures, the cross-PSD is pre-multiplied by the frequency as
explained previously in § 3.3 for Guu;kx , and by the wall distance as well. Indeed, the total
production of TKE across the whole boundary layer profile (per boundary layer thickness)
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Figure 16. Pre-multiplied co-spectrum of Pk at P1 (see figure 11). The shaded area indicates the RANS
region. The solid lines show the pre-multiplied PSD of 〈u′2〉 as in figure 12.
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Figure 17. Pre-multiplied co-spectrum of Pk at P3 (a) and P6 (b) (see figure 11). The shaded area indicates
the RANS region. The solid lines show the pre-multiplied PSD of 〈u′2〉 as in figures 13(a) and 13(b). The white
dashed lines indicate Ue/( f δ) = 8.5, 17 and 34. The values of δ, Ue and ν/uτ at P3 are taken as those from P1
since the P3 station is located within the recirculation bubble.

is

Ptot =
∫ +∞

0
Pk d

(
dw

δ

)
=

∫ +∞

−∞
dw

δ
Pk d

(
ln

(
dw

δ

))
, (4.6)

thus the area under the curve of (dw/δ)Pk(dw/δ) in logarithmic scale is directly
proportional to the contribution to the whole TKE production across the boundary layer
profile.

As in the case of the spectral analysis of streamwise velocity fluctuations (§ 3.3), analysis
of the cross-PSD as a function of the wavelength has also been performed at stations P1
and P6, and the relevant results are recalled in the present discussions even if figures are
not shown. In particular, even though the order of magnitude of Ue/( f δ) is representative
of λx/δ at stations P1 and P6, true values of the wavelength will be given. At P3, the values
of Ue, δ and ν/uτ employed are those of station P1 for the same reasons exposed in § 3.3.
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Outer layer dynamics in a high-Reynolds-number boundary layer

The spectral content of Pk upstream of separation, displayed in figure 16, evidences
an important activity of turbulent structures of sizes ranging from λx ≈ 0.7δ to λx ≈ 5δ

located around dw = 0.13δ. The contributions of VLSM, which were identified clearly
in the PSD of 〈u′2〉, are also observed, with wavelengths reaching λx = 20δ, although
levels are slightly lower. There is also some weak activity in Pk at higher locations in the
boundary layer, mainly between dw = 0.3δ and dw = 0.8δ.

When looking at the spectral content of Pk within the recirculation bubble, the
distribution changes completely. Figure 17(a) displays the cross-PSD of Pk at station
P3. Similarly to the case of Guu;f discussed in § 3.3, turbulent activity is concentrated
in the outer part, where the shear layer resulting from separation is located. It is important
to point out that levels in the legend are much greater than in figures 16 and 17(b). A
broad range of frequencies (scales) participates in the production of TKE. As observed,
frequencies from Ue/( f δ) = 1 to Ue/( f δ) = 7 contribute the most in terms of cross-PSD
levels, but important values are observed even beyond Ue/( f δ) = 100. According to
the frequency of the shear layer, three peaks on the cross-PSD are highlighted. Based
on the Strouhal number Stω = f δω/Ū (where Ū = 0.5(〈u〉min + 〈u〉max) denotes the
shear velocity), the corresponding frequency is represented in figure 17(a), for which
Ue/( f δ) = 8.5, and also Ue/( f δ) = 17 and Ue/( f δ) = 34 are indicated. Thus the two
lower-frequency peaks (higher values of Ue/( f δ)) likely correspond to the subharmonics
due to vortex pairing since the frequency is respectively twice and four times that of the
shear layer mode (Stω = 0.135).

Downstream of reattachment (figure 17b), the cross-PSD of Pk recovers some of the
mentioned features for the station P1. A contribution to production around dw = 0.13δ,
which is negligible in figure 17(a), is again present, for which large structures are
responsible; structures in this region have sizes from λx ≈ δ up to λx ≈ 10δ. The largest
structures correspond to VLSM, already identified in § 3.3, and a small peak appears for
slightly smaller structures, for which λx = 3δ. Even if the present station is located far
enough away to recover the mentioned features, the main contribution to Pk remains the
high turbulent activity in the outer part, which is the trace of the shear layer at separation.
The levels of the cross-PSD are much higher than at dw = 0.13δ, and the contribution
is quite broadly distributed in a wide range of wavelengths. The longest structures have
λx/δ > 10, and smaller structures, of λx/δ down to 0.2, are observable. Small structures
of λx = 0.4δ are also observed upstream of separation (figure 16), but in the recovery
region, they are located further away from the wall.

4.3. Friction coefficient
Even though the friction coefficient is a wall quantity, several studies have focused on the
interaction between the outer layer and the inner layer, as well as on the contribution to
the friction coefficient of large turbulent motions located in the outer layer. According to
Balakumar & Adrian (2007), at high Reynolds numbers, about 40–50 % of the contribution
to the Reynolds shear stress at y > 0.1δ comes from turbulent structures with wavelength
λx > 3δ, and in the present study, the LES region corresponds approximatively to y >

0.1δ. Also, studies on the friction coefficient decomposition (see, for instance, Fukagata,
Iwamoto & Kasagi 2002; Renard & Deck 2016) have highlighted the relevance of the
Reynolds shear stress contribution. As an example, Deck et al. (2014b) employed the
decomposition from Fukagata et al. (2002) to identify that turbulent structures for which
λx > δ contribute to more than 60 % of the second term of the friction coefficient
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Figure 18. Evolution of the fraction of time for which the flow moves downstream (γu) at the first cell away
from the wall, and friction coefficient skewness near the reattachment region and further downstream. Here,
SCf

′,ZPG is taken from a ZPG turbulent boundary layer at Reθ = 13,000.

decomposition from Fukagata et al. (2002), which is the most relevant term in the friction
coefficient, since it represents more than 80 % of the total friction coefficient.

Before studying the friction coefficient, the reverse flow is analysed by the fraction
of time for which the flow moves downstream, γu = t(u > 0)/T , and it is displayed
in figure 18, for the first cell away from the wall, because of the no-slip condition
at the wall. According to Simpson (1981), there are several states of boundary layer
separation that may be identified: incipient detachment (ID) for γu = 0.99, intermittent
transitory detachment (ITD) for γu = 0.80, and transitory detachment (TD) for γu = 0.50.
Simpson (1981) defined another state as detachment (D), based on the mean wall shear
stress 〈τw〉, instead of the fraction of time for which the flow moves downstream. Thus
detachment appears when 〈τw〉 = 0, and several studies have shown that TD and D
take place at the same location (see, for instance, the work of Simpson 1989; Na &
Moin 1998). The parameter γu is a classical quantity very often analysed in turbulent
boundary layer separation studies (Simpson 1989; Na & Moin 1998; Driver, Seegmiller
& Marvin 1987; Mohammed-Taifour & Weiss 2016, 2021; Elyasi & Ghaemi 2019), and
according to Simpson (1989), it is a feature that should be documented in this kind
of work. It may also be a quantity of practical interest for the experimental detection
of separation onset and reattachment (see, for instance, Mohammed-Taifour et al. 2015;
Weiss, Mohammed-Taifour & Schwaab 2015).

The skewness of the friction coefficient is also presented in figure 18, normalised by
the value obtained for a ZPG turbulent boundary layer at Reθ = 13,000 also using ZDES
mode 3. Since the focus is set on the redevelopment and relaxation of the boundary layer
towards ZPG canonical flow, the authors have chosen to use the mentioned normalisation.
The analysis of this quantity gives relevant information about the near-wall fluctuations,
and it is an essential quantity to study the influence of outer layer large scales on inner
layer small scales in high-Reynolds-number wall-bounded turbulent flows (Mathis et al.
2011).

As observed in figure 18, γu is significantly low within the recirculation bubble, reaching
values of about 0.17 for the small plateau at 1.1 < x′ < 1.3. Downstream, γu increases
monotonically, even after reattachment (where γu = 0.5), and reaches γu = 1 at some
point between x′ = 1.7 and x′ = 2.5, downstream of which almost no reverse flow is
observed. It is interesting to notice that in the recirculation bubble, there is still some
downstream flow (γu > 0), something that is also observed, for instance, in the DNS of Na
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Outer layer dynamics in a high-Reynolds-number boundary layer

& Moin (1998), because the velocity fluctuations and the mean velocity are of the same
order of magnitude in the recirculation bubble (Simpson 1989). Another aspect worth
mentioning is the high values of γu upstream of x′ = 1.1, that reach γu > 0.5. It is the
consequence of a very tiny recirculation bubble located in the corner of the rounded step
resulting from this sharp geometry change, and it is similar to the secondary recirculation
identified in backward-facing step studies (such as in Le, Moin & Kim 1997).

An increase of the skewness of the friction coefficient (SCf
′) within the recirculation

bubble in the streamwise direction is observable as well. As already specified, the
skewness is normalised by the value in a ZPG turbulent boundary layer flow, simulated
with the same approach. In figure 18, the skewness varies significantly: within the
recirculation bubble, it takes mainly negative values and increases from SCf

′ ≈ −3SCf
′,ZPG

until reaching SCf
′ ≈ SCf

′,ZPG at the reattachment point. Contrary to γu, downstream of
x′ = 1.05, the skewness seems to increase monotonically inside the recirculation bubble,
even surpassing the ZPG value downstream of reattachment, up to a maximum of about
3SCf

′,ZPG, and then it decreases, almost reaching the ZPG level, although it is not yet
attained at x′ = 7. It is interesting to notice that it is around x′ = 7 where the outer peak
in Pk changes its trend in the way described in § 4.1. This shows that non-equilibrium
conditions are significant upstream of x′ ≈ 7, and downstream the boundary layer is close
to near-equilibrium. Such a result is evidenced in the evolution of both the outer peak
of Pk and SCf

′ , contrary to that of γu. Near x′ = 1, the skewness is significantly greater
than it is around x′ = 1.1, and it decreases right downstream, which is in contrast with the
behaviour described earlier, but this is likely due to the presence of the small secondary
recirculation bubble mentioned before.

The probability density function (PDF) of the friction coefficient is presented in
figure 19 around the reattachment region and at three different locations downstream
(stations P4, P5 and P6), and in figure 20 as normalised profiles at different streamwise
positions. The PDF is very narrow near x′ = 1 and then broadens (Cf ,rms increases) in the
recirculation bubble until x′ = 1.3, downstream of which it seems to maintain a similar
width that changes very slowly. Very far downstream, at x′ = 7, the PDF has clearly
narrowed (Cf ,rms has decreased) and resembles the most what is observed in a ZPG
turbulent boundary layer from ZDES. For 1.1 < x′ < 1.3, the flow is reversed and the
friction coefficient increases in magnitude (it decreases in figure 19), which suggests that
a stronger reversed flow develops. However, the PDF is broader and Cf ,rms increases as
well in this region, which indicates that some downstream flow is still present, as already
mentioned. The increase in Cf ,rms is enough to compensate the stronger reversed flow such
that a plateau is observed for γu.

From figure 20, it is possible to observe the change in the position of the peak of the
PDF. At x′ = 1.2, the peak is located the most to positive values of τ ′

w = τw − 〈τw〉 when
normalised with τw,rms, and it shifts to negative values upstream of x′ = 1.63. Then from
x′ = 2.5 to x′ = 7, the peak is shifted again back to higher values of τ ′

w/τw,rms, although
it remains at negative levels of τ ′

w/τw,rms. This behaviour corresponds to what has already
been described for the skewness in figure 18. Indeed, for this kind of PDF distribution, a
negative skewness will result in a shift of the peak position to positive values of τ ′

w/τw,rms,
and vice versa. At the furthest position presented, the PDF resembles very accurately that
of the ZPG boundary layer. Moreover, the high values of skewness identified in figure 18,
which overcome by far the ZPG value, are also evidenced clearly in the shape of the PDF at
P4 in figures 19 and 20. In particular, in figure 20, the relaxation towards near-equilibrium
conditions is clearly evidenced. It is also interesting to notice that at the position of
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Figure 19. Probability density function of the mean friction coefficient near the reattachment region and
further downstream. The continuous line indicates streamwise evolution of the mean friction coefficient. The
dashed lines indicate streamwise evolution of the friction coefficient root-mean-square. Stations P4, P5 and P6
are located respectively at x′ = 2.5, x′ = 4 and x′ = 7.
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Figure 20. Probability density function of the friction coefficient at different streamwise positions. The black
dashed line corresponds to a ZPG turbulent boundary layer at Reθ = 13,000.

minimum friction coefficient, which is x′ = 1.3, the skewness is SCf
′ ≈ −SCf

′,ZPG, which
means that the skewness is the same as in ZPG conditions, but with the opposite sign due
to the contrary flow direction.

5. Conclusions

The non-equilibrium dynamics of a high-Reynolds-number turbulent boundary layer
recovering from a strong disturbance caused by separation at a rounded step is studied
utilising ZDES mode 3. The simulation resolves finely the outer layer turbulence and
its relaxation towards near-equilibrium at high Reynolds numbers ranging from Reθ =
22,800 to 24,300, and Reτ = 5900 to 6600, along the redevelopment region, which are
probably non-affordable for DNS or WRLES. After reattachment, the boundary layer
redevelops under almost ZPG conditions, but the outer layer contains an excess of turbulent
activity generated in the shear layer above the recirculation bubble. The simulation shows
very good agreement with experimental profiles, and in particular, it has been observed
that the outer peak in the Reynolds shear stress in the relaxation region, following the
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Outer layer dynamics in a high-Reynolds-number boundary layer

excess of turbulent activity above the separated region, is very well predicted in terms of
both levels and position within the boundary layer.

The spectral analysis of the streamwise turbulent fluctuations has evidenced the
substantial modification of energy distribution between scales due to the separation of
the boundary layer. Upstream of separation, large turbulent structures have been identified
to carry most of the contribution to urms, and the Reynolds number seems great enough
so that activity from very large structures, longer than the typical VLSM of ZPG
turbulent boundary layers, is observable. At the recirculation bubble, the energy levels
are increased sharply due to the turbulence generated in the shear layer, and three spots
(one corresponding to the shear layer mode and two to the shedding mode) are observed.
Far downstream of reattachment, the PSD recovers lower levels, close to those obtained
upstream of separation, but turbulent fluctuations are spread broadly between structures
ranging from λx = 1.5δ to λx = 9δ. Also, turbulent activity is more important than
upstream of separation due to both the effect of the high Reynolds number (Reθ = 23,400)
and the imprint of the shear layer from the recirculation bubble.

The spectral analysis of turbulent kinetic energy production has manifested a wide range
of turbulent scales involved in the excess of production in the shear layer. Dominating
this broadband content, the shear layer and the shedding modes are again identified.
For station P6, despite its location being far downstream of reattachment, the excess
of TKE production from the shear layer is still clearly visible in the outer part of the
boundary layer, mainly between y = 0.25δ and y = 0.8δ, which is significantly higher in
the boundary layer profile than what is observed in canonical conditions. The wavelengths
of the structures participating in this excess of Pk range from λx = 0.2δ to λx > 10δ, with
the large scales (λx > δ) comprising the main contribution. This results in a non-canonical
secondary peak in Pk moving away from the wall until x′ = 6, beyond which its wall
distance does not change significantly up to x′ ≈ 11, where the peak disappears.

The fraction of downstream flow at the first cell away from the wall, γu, and the friction
coefficient skewness SCf

′ , have shown interesting behaviours within the recirculation
bubble and in the recovery region. A plateau for γu is obtained inside the recirculation
bubble, but γu remains positive, which means that there is still some downstream flow
happening right above the wall. The skewness near the reattachment point is very close to
values in ZPG canonical conditions, and downstream it continues to grow until a maximum
around 3SCf

′,ZPG. Beyond this, SCf
′ decreases, and it is very close to ZPG values around

x′ = 7 (although still slightly larger than SCf
′,ZPG), which is more or less the same location

where the behaviour of the outer peak location of Pk changes. Therefore, upstream of
x′ = 7, the boundary layer is in strong non-equilibrium conditions, but the relaxation is
evidenced, even if at x′ = 7, near-equilibrium is not yet reached completely. The PDF of
the friction coefficient has been analysed further, showing an important change throughout
the recirculation bubble and downstream of it. Indeed, the normalised PDF tends to the
distribution obtained in ZPG canonical conditions, which is almost reached at x′ = 7.

The capacity of three RANS models of increasing complexity to reproduce the mean
flow has also been assessed, namely two classical RANS eddy-viscosity models (the
Spalart–Allmaras and the k-ω SST) and a Reynolds stress model (RSM). Upstream of
separation, results from all the RANS models are quite satisfactory. However, in the
recovery region, results from both eddy-viscosity models are perfectible, and the trend
of the friction coefficient is well captured only by the RSM. Nevertheless, the levels of the
Reynolds normal stresses after reattachment, not provided by the eddy-viscosity models,
are underestimated significantly by the RSM. In the relaxation region, all RANS models
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predict a secondary peak of the Reynolds shear stress at position y ≈ 0.24δ, which is lower
than y ≈ 0.32δ obtained in both the ZDES computation and the experiment.

The field of production of TKE has also been assessed through the different RANS
models. Both eddy-viscosity models, particularly the Spalart–Allmaras model, are too
dissipative, and the secondary peak disappears at shorter distances downstream than in
the case of ZDES. The RSM model, in turn, is less dissipative than the Spalart–Allmaras
and k-ω SST models; however, it happens to be too little dissipative compared to ZDES.
Also, the streamwise evolution of the outer peak location is only partially well reproduced
by the RSM.

For the first time, the recovery of a separated turbulent boundary layer at high Reynolds
number has been studied numerically in detail with experimental validation, thanks to
the ZDES mode 3 approach. The Reynolds number is too high for DNS or WRLES, and
quite high even for lower-resolution methods. This is a major step forward in terms of
understanding and quantifying the applicability of scale-resolving approaches to predict
the properties of out-of-equilibrium wall-bounded turbulence at Reynolds numbers that
may not be reached easily by DNS. More precisely, the present investigation confirms
the long-lasting impact of perturbations of the outer layer in high-Reynolds-number
wall-bounded flows. It is shown that the relaxation distance depends on the observed
quantity. In particular, the wall quantities seem to converge faster towards near-equilibrium
values than outer layer quantities such as the secondary peak of the production of turbulent
kinetic energy. Also, the significant region where the turbulence is out of equilibrium
induces difficulties for RANS modelling. This adds to the ever-broadening range of results
suggesting that the study of non-canonical flows will be a pacing item in turbulence
research in the coming years, as advocated by Smits (2020).
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Appendix A. ZDES mode 3: a WMLES approach

The outer layer turbulence is resolved using an LES approach by means of ZDES mode 3
(Deck 2012). The Spalart–Allmaras turbulence model (Spalart & Allmaras 1994) plays the
role of the SGS model, linking the filtered component of the Reynolds stress tensor to the
mean field according to Boussinesq’s hypothesis:

− ρ〈u′
iu

′
j〉 = 2μt〈Sij〉 − 2

3
ρkδij, 〈Sij〉 = 1

2

(
∂〈ui〉
∂xj

+ ∂〈uj〉
∂xi

)
, (A1)

where ρ is the density, μt is the eddy viscosity, k is the turbulent kinetic energy, and
δij is the Kronecker delta (tensor). Equation (A1) gives Boussinesq’s hypothesis for
incompressible flows, which may be applied to the flow studied in the present work, and
the operator for the LES filter is denoted by 〈•〉. The Reynolds average is a particular
case of operator. It is important to note that the Spalart–Allmaras model does not provide
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the turbulent kinetic energy field, and therefore the second term on the right-hand side
of (A1) is not included in ZDES, but this is not problematic for quasi-incompressible
flows. For LES, the Spalart–Allmaras model shows behaviour similar to the Smagorinsky
SGS model in equilibrium conditions. Indeed, when the length scale of the model dw
is substituted with CDESΔ (where CDES is a constant, and Δ is the filter length scale)
and it is assumed that there is equilibrium between production and destruction of νt, it is
obtained that νt ∼ SΔ2, where S is the local deformation rate (Spalart et al. 1997; Deck
2012; Sagaut, Deck & Terracol 2013). According to Deck (2012), a better LES behaviour
is obtained when modifying some of the functions included in the model of Spalart &
Allmaras (1994): fv1 = 1, fv2 = 0, fw = 1. Moreover, ZDES has already been used by
Deck et al. (2014b) for a wall-resolved LES of a high-Reynolds-number turbulent boundary
layer.

In this study, the inner layer turbulent structures are less resolved the closer to the wall
they are located. As presented by Renard & Deck (2015a), the resolved fraction of the
Reynolds shear stress gradually decreases within the RANS region. Nevertheless, a RANS
approach is considered, again using the Spalart–Allmaras turbulence model, in the inner
layer region of the boundary layer, to take the effect of the inner layer structures on resolved
structures and mean field into account. Thus ZDES mode 3 may be seen as a WMLES,
and it has already been employed in this form in several studies (Deck et al. 2011, 2014a;
Renard & Deck 2015a). The separation between the RANS region (near the wall) and the
LES region (in the remainder of the domain) is defined explicitly by an interface dinterface

w
specified by the user (typically a fraction of the boundary layer thickness, as defined in
§ 2.2). The modified length scale d̃III

ZDES considered in the Spalart–Allmaras equation for
ZDES mode 3 can be expressed as (Deck 2012)

d̃III
ZDES =

{
dw if dw < dinterface

w ,

min(dw, CDESΔvol) if dw ≥ dinterface
w ,

(A2)

where dw is the wall distance, CDES = 0.65, Δvol = V1/3 and V is the cell volume. A
recent improvement of ZDES mode 3 has been proposed by Renard & Deck (2015c),
aiming to regularise the binary switch from RANS to LES in (A2) through a smooth
function fδ . Finally, d̃III

ZDES is written as

d̃III
ZDES = (1 − fδ) × dw + fδ × min(dw, CDESΔvol), (A3)

and the modified functions become

f III
v1 = (1 − fδ) × fv1 + fδ,

f III
v2 = (1 − fδ) × fv2,

f III
w = (1 − fδ) × fw + fδ.

⎫⎪⎪⎬
⎪⎪⎭ (A4)

Appendix B. Further comparisons of mean flow quantities

For the sake of clarity in the paper, comparisons of the mean field to the experimental
measurements at different stations upstream of the region of interest of this study are
not shown in § 3.2, but are recalled here. Figures 21 and 22 display the mean velocity
and Reynolds shear stress profiles at two different stations upstream of separation, more
precisely at x′ = −2 and x′ = 0. For both stations, the wake region and the log layer are
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Figure 21. Mean velocity (a) and Reynolds shear stress (b) profiles at x′ = −2. The dashed vertical line
indicates the position of the RANS/LES interface. For ZDES, the Reynolds shear stress profile is split into
modelled (dotted) and resolved (dashed) contributions.
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Figure 22. Mean velocity (a) and Reynolds shear stress (b) profiles at x′ = 0. The dashed vertical line indicates
the position of the RANS/LES interface. For ZDES, the Reynolds shear stress profile is split into modelled
(dotted) and resolved (dashed) contributions.

barely distinguished in the mean velocity profiles, and a small excess in the Reynolds shear
stress appears in the outer layer due to the curvature effects experienced upstream. ZDES
slightly underestimates the experimental results in the log region of the mean velocity
at x′ = −2. However, this difference is small, and the prediction of the Reynolds shear
stress is very satisfying for ZDES, especially considering the outer peak that is not well
reproduced by RANS models (it is even absent for the two eddy-viscosity models). At
station x′ = 0, ZDES is in excellent accordance with the experiment, and there is still a
minor disagreement in the log region between RANS models and ZDES, where RANS
models overestimate the mean velocity. Again, the Reynolds shear stress is fairly well
reproduced by ZDES. It is possible to observe that ZDES reproduces the slight excess of
Reynolds shear stress in the outer layer, almost at the edge of the boundary layer.

Profiles of mean velocity and Reynolds shear stress are given in figure 23 at x′ = 1,
which corresponds to the end of the round step. These profiles are placed within the
recirculation bubble, and they are normalised by the inflexion velocity Uinfl, which is
the mean velocity at the inflexion point of the shear layer, and the distance from the
inflexion point to the wall, yinfl. The values of yinfl and Uinfl are given in table 2, and
they are reproduced satisfactorily by ZDES, whereas RANS models are less accurate.
In particular, the Spalart–Allmaras model predicts the inflexion point too close to the wall.

942 A42-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.389


Outer layer dynamics in a high-Reynolds-number boundary layer

1.0

0.8

0.6

〈u
〉/U

e

0.4

0.2

0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SA
Exp.

RSM
ZDES

k–ω SST

0.08

0.06

0.04

0.02

0

10–2

0.005

0

0.01 0.05

y/yinf ly/yinf l

10–1 100 101

SA
Exp.

RSM
ZDES

k–ω SST

(b)(a)

– 
〈u′

v′ 〉
/U

 2 in
fl

Figure 23. Mean velocity (a) and Reynolds shear stress (b) profiles at x′ = 1.

Experiment ZDES SA k-ω SST RSM

yinfl/L 0.153 0.158 0.099 0.141 0.144
Uinfl/Ue,ref 0.404 0.366 0.277 0.366 0.359

Table 2. Inflexion point position and streamwise mean velocity at x′ = 1. Here, Ue,ref corresponds to the
external velocity at the reference station x′ = −2.

ZDES reproduces the mean velocity profile satisfactorily (figure 23), and the minimum
value appears to be well positioned despite the mean velocity underestimation (in absolute
value). In the experiment, the minimum value is located at y ≈ 0.1yinfl, and ZDES gives
y ≈ 0.13yinfl. Regarding the Reynolds shear stress profile, the prediction of ZDES is
very accurate compared to experimental measurements, although there is a moderate
underestimation for y ≈ 0.6yinfl.

When looking at RANS results in the mean velocity profile, the k-ω SST model and
RSM give very close results above 0.5yinfl, but they do not reach the levels of ZDES
above 1.2yinfl. Greater discrepancies are found for the Spalart–Allmaras model, which
underestimates strongly the mean velocity profile away from the wall. In the near-wall
region, the RSM shows the same underestimation as observed for ZDES. However, the
trend obtained from the three RANS models is quite different from the experiment, and
the minimum value of the mean velocity is located closer to the wall, around y = 0.05yinfl
compared to y ≈ 0.1yinfl in the experiment. Much more discrepancies with the experiment
are evidenced in the profiles of Reynolds shear stress for the RANS models. The observed
peak and values below it are underestimated significantly, and in the near-wall region,
all RANS models predict negative levels of the Reynolds shear stress −〈u′v′〉, contrary
to ZDES and the experiment. This is probably a modelling issue for both RSM and the
eddy-viscosity models. Indeed, for the eddy-viscosity models, it is common practice to
ensure that the eddy viscosity is always positive, and at this location, the term 〈S12〉 of the
stain-rate tensor takes negative values. Above the peak, RSM results are quite satisfactory,
but both eddy-viscosity models overestimate the Reynolds shear stress, especially the
Spalart–Allmaras model. It is important to mention that the position of the peak in the
Reynolds shear stress is reasonably well reproduced by all the computations, but this is
not surprising due to the normalisation by the inflexion point position of the mean velocity
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profile. Indeed, the inflexion point corresponds to the position of maximum mean shear,
hence turbulent production is large at this location.
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