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Abstract. We study the entropy of actions on function spaces with the focus on doubly
stochastic operators on probability spaces and Markov operators on compact spaces.
Using an axiomatic approach to entropy we prove that there is basically only
one reasonable measure-theoretic entropy notion on doubly stochastic operators.
By ‘reasonable’ we mean extending the Kolmogorov–Sinai entropy on measure-preserving
transformations and satisfying some obvious continuity conditions for Hµ. In particular,
this establishes equality on such operators between the entropy notion introduced by
R. Alicki, J. Andries, M. Fannes and P. Tuyls (a version of which was also studied
by I. I. Makarov), another notion of entropy introduced by E. Ghys, R. Langevin and
P. Walczak, and our new definition introduced later in this paper. The key tool in
proving this uniqueness is the discovery of a very general property of all doubly stochastic
operators, which we call asymptotic lattice stability. Unlike the other explicit definitions
of entropy mentioned above, ours satisfies many natural requirements already on the level
of the function Hµ, and we prove that the limit defining hµ exists. The proof uses an
integral representation of a stochastic operator obtained many years ago by A. Iwanik.
In the topological part of the paper we introduce three natural definitions of topological
entropy for Markov operators on C(X). Then we prove that all three are equal. Finally,
we establish the partial variational principle: the topological entropy of a Markov operator
majorizes the measure-theoretic entropy of this operator with respect to any of its invariant
probability measures.

1. Introduction
Measure-theoretic and topological entropy has been thoroughly studied in the context
of measure-preserving transformations or continuous maps. Entropy quantifies the
complexity of the dynamics by means of exponential growth in time of information
obtained by observing the processes on finite partitions or covers.
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A natural generalization of a deterministic dynamical system is a stochastic process
in which every point x moves to an a priori undetermined location according to a
certain probability distribution P(x, ·) (called transition probability) associated with this
point. Such dynamics is best understood by studying the evolution of functions under
the generated stochastic operator Tf (x) = ∫

f (y)P (x, dy). In this work we extend the
notion of both measure-theoretic and topological entropy to a wide variety of actions on
function spaces including those generated by transition probabilities and other stochastic
operators.

We operate on three major levels of generality. The key definition of measure-theoretic
entropy applies to any (not even linear) action T : L → L, where L is any collection
of measurable functions on a measure space (X,�,µ), with range contained in the unit
interval [0, 1]. Most of our results on properties of measure-theoretic entropy concern
doubly stochastic operators—analogs of measure-preserving transformations. Topological
entropy and its relation with measure-theoretic entropy is studied for Markov operators—
analogs of continuous transformations.

Let (X,�) be a measurable space. A stochastic operator is a linear map T defined at
least on bounded measurable functions satisfying the conditions
(i) Tf is a positive function if f is positive,
(ii) T 111 = 111,
where 111 is the constant function equal everywhere to 1. This includes operators defined by
transition probabilities, though not every stochastic operator is such. In our theory general
stochastic operators play only a technical role and do not appear in assumptions of the
results.

For a fixed measure µ on �, a linear operator T is called doubly stochastic (with respect
to µ) if, in addition to (i) and (ii), it satisfies
(iii)

∫
X

Tf dµ = ∫
X

f dµ,
for every f . We will usually consider doubly stochastic operators on L∞(µ), but it is quite
clear that such operators extend to a doubly stochastic contraction on L1(µ).

If X is a compact Hausdorff space and C(X) denotes the space of all real-valued
continuous functions on X, then a linear operator T : C(X) → C(X) satisfying conditions
(i) and (ii) is called a Markov operator. It is well known that on a metrizable space every
Markov operator T is generated by the transition probability P(x, ·) = T ∗δx , where δx is
the point mass at x and T ∗ is the operator adjoint to T , acting on the dual to C(X), the
space of signed Radon measures on X. Such a transition probability is called Feller; it is
a continuous map from X into the set of probability measures with the weak-* topology.
The set of T ∗-invariant (i.e. satisfying (iii) for every continuous f ) Radon probability
measures is a non-empty convex set, compact in the weak-* topology. For every such
measure µ, the operator T becomes a doubly stochastic operator acting on L∞(µ) by the
formula

Tf (x) =
∫

f (y)P (x, dy). (1.0.1)

Every measurable (measure-preserving, continuous) transformation S : X → X

induces a stochastic (doubly stochastic, Markov) operator T on the relevant function space
by the formula Tf = f ◦ S. Such operators are called pointwise generated. One of the
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most important requirements concerning operator entropy is the demand that for pointwise
generated operators one obtains the classical entropy of a generating transformation in both
the measure-theoretic and topological cases.

In the literature one can find several attempts to define entropy for operators. In the
measure-theoretic case, the most deeply investigated notion is the quantum-dynamical
entropy introduced by R. Alicki, J. Andries, M. Fannes and P. Tuyls (see [AF] for full
details on this type of entropy), based on von Neumann’s definition of entropy of a
density matrix. A similar definition, formulated for doubly stochastic operators (called
there Markov operators) on the space of integrable functions was given by I. I. Makarov
in [M]. A quite different approach was presented by E. Ghys, R. Langevin and P. Walczak
in [GLW]. The only topological entropy of a Markov operator known to us was defined
by Langevin and Walczak in [LW]. All these definitions extend the classical cases,
i.e. for pointwise generated doubly stochastic or Markov operators they are equal to the
Kolmogorov–Sinai or topological entropy of the generating pointwise map. No other
relations between the above approaches to operator entropy have been established.

In this work we achieve progress in understanding the phenomenon of entropy observed
on functions. Section 2 presents an axiomatic approach to measure-theoretic entropy.
Accepting certain basic properties of entropy of measure-preserving transformations as
indispensable, we formulate five construction steps and four axioms, which a general
entropy of an action on functions should follow. Our main result asserts that all entropy
notions satisfying the axioms coincide on doubly stochastic operators, establishing in
particular the equality, on such operators, between all the above mentioned measure-
theoretic entropies introduced by other authors.

In §3 we introduce a new definition of measure-theoretic entropy, also fulfilling our
axioms. It uses a very natural and effective way of quantifying the exponential growth of
‘information content’ in an evolution of a finite family of functions by tracing the partitions
of X×[0, 1] determined by graphs of the functions. In addition to the axioms, this entropy
satisfies some other desirable properties such as quasi-subadditivity, and the existence of
certain limits. We present an example revealing that the entropy of a doubly stochastic
operator captures essentially more than just the dynamics of factors behaving as pointwise
transformations.

For Markov operators we propose, in §4, three natural methods of defining topological
entropy. The fact that all three lead to the same quantity confirms that these notions
are suitable. Two of these definitions exploit open covers, while the third one uses
separated sets. Our notion coincides on continuous maps with the classic Adler–Konheim–
McAndrew topological entropy. We provide simple examples identifying two other
possible definitions, via the pointwise entropy of the shift on trajectories and via the action
of T ∗ on probability measures, as not being satisfactory (too large). We do not investigate
the relation between our topological entropy and that introduced by [LW].

Finally, in §5 we are able to prove the analog of the famous Goodwyn theorem (see e.g.
[DGS, Theorem (18.4)], or [W, Theorem 8.6], the ‘≥’ part): the topological entropy of
a Markov operator dominates its measure-theoretic entropy with respect to each invariant
Radon probability measure. The converse inequality completing the operator variational
principle remains an open question.
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2. The axiomatic measure-theoretic definition
2.1. The axioms. For a measurable space (X,�) consider an operator (not even
necessarily linear) T : L → L on some set L of measurable functions with range contained
in [0,1], and let µ be a probability measure on �. Any reasonable way to define the entropy
hµ(T ) of T with respect to µ would have to follow the major steps listed below:
(1) one needs to specify F, a collection of selected finite families F of functions from L;

this collection should be T -invariant, so that F ∈ F implies TF ∈ F, where TF
stands for {Tf : f ∈ F};

(2) one has to specify an associative and commutative operation � of joining these
families, so that F � G ∈ F whenever F ∈ F and G ∈ F, and with the cardinality
of the joint family bounded by a number depending on the cardinalities of the
components;

(3) one needs to define the entropy Hµ(F) of a family F ∈ F with respect to µ;
(4) denoting

Fn =
n−1⊔
k=0

T kF

one then defines

hµ(T ,F) = lim sup
n→∞

1

n
Hµ(Fn);

(5) and eventually one sets
hµ(T ) = sup

F∈F
hµ(T ,F).

For example, the classical Kolmogorov–Sinai entropy for measurable maps uses F
defined as families of characteristic functions corresponding to measurable partitions,
joining is obtained by pointwise multiplication or equivalently by the application of
pointwise infima. Some other more general definitions (see [AF, GLW]) use for F the
measurable partitions of unity, F = {fi : 1 ≤ i ≤ r} with each fi non-negative and with∑

i fi = 1 (actually,
∑

i f 2
i = 1 in [AF]). In both cases joinings are done via pointwise

multiplication. In our (new) definition (see §3) we let F be all finite families of functions
with range in [0, 1] and we use the ordinary set union for joining.

This standard construction is usually accompanied with some definition of a conditional
entropy—a tool useful in verifying properties of entropy. At this level of generality we
define this quantity by the formula

Hµ(F |G) = Hµ(F � G) − Hµ(G).

A notion of entropy should possess some elementary ‘nice’ properties, known for the
Kolmogorov–Sinai entropy of measurable maps, and it should coincide with this classical
notion on transformations. This leads to formulation of several conditions which we call
the axioms of entropy.

Axiom (A). (Monotonicity and subadditivity axiom) For F , G and H belonging to F we
require that

0 ≤ Hµ(F |H) ≤ Hµ(F � G|H) ≤ Hµ(F |H) + Hµ(G|H),

where, by convention, Hµ(F |H) = Hµ(F) for H being the empty family.
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We point out that this axiom alone implies the following, the proof of which is standard
in entropy theory and will be omitted:

Hµ

( n⊔
k=1

Fk

∣∣∣∣ n⊔
k=1

Gk

)
≤

n∑
k=1

Hµ(Fk|Gk). (2.1.1)

It also easily implies that, for every n ≥ 1,

hµ(T , T nF) = hµ(T ,F). (2.1.2)

Axiom (B). (L1-continuity axiom) For two families of functions F = {fi : 1 ≤ i ≤ r}
and G = {gi : 1 ≤ i ≤ r ′}, r ′ ≤ r , we define their L1 distance as

dist(F ,G) = min
π

{
max

1≤i≤r

∫
|fi − gπ(i)| dµ

}
,

where the minimum ranges over all permutations π of the set {1, 2, . . . , r}, and where G is
considered an r-element family by setting gi ≡ 0 for r ′ < i ≤ r . In this axiom we require
that for every r ≥ 1 and ε > 0 there is a δε > 0 such that if F , G and H have cardinalities
at most r and dist(F ,G) < δε then

dist(F � H,G � H) < ε

and
|Hµ(F) − Hµ(G)| < ε. (2.1.3)

Combining both parts of the continuity axiom we obtain, in particular, that for every r

and ε there exists a δ such that dist(F ,G) < δ implies

|Hµ(H|F) − Hµ(H|G)| < ε, (2.1.4)

whenever all families involved have at most r elements.

Axiom (C). (Partitions axiom) If A is a measurable partition of X then 1A = {1A :
A ∈ A} denotes the family of the corresponding characteristic functions. We require
that characteristic functions of measurable sets belong to L and F contains 1A for every
measurable partition A of X. The joinings and entropy Hµ should coincide on partitions
with the classic notions:

1A � 1B = 1A∨B, Hµ(1A) = −
∑
A∈A

µ(A) log µ(A).

In the proofs that a given entropy notion coincides on maps with the classic one, the
entropy of each family F must be majorized by the entropy of some partition. Usually such
a partition is obtained by preimages via the functions in F of a sufficiently fine partition of
the range. The axiom below along with axiom (C) is easily seen to guarantee coincidence
with the Kolmogorov–Sinai entropy for measure-preserving transformations.

Axiom (D). (Domination axiom) For every r ≥ 1 and ε > 0 there exists γ > 0 such that
for every family F = {fi : 1 ≤ i ≤ r} and every partition α of the unit interval into
finitely many subintervals of lengths not exceeding γ ,

Hµ(F |1∨
i f −1

i (α)
� α) < ε,
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where α is some finite family depending only on α and satisfying limn(1/n)

Hµ

(⊔n
k=1 α

) = 0 (usually α is the empty family, meaning that it should be skipped,
or it is a family of some constant functions).

By a brief inspection we verify that all the mentioned examples of notions of entropy
satisfy the above axioms (see [AF, Lemmas 11.1 and 11.4] for Axiom (A) with regard to
the quantum entropy, the Axiom (D) is implicitly included in the proof of Theorem 11.2
there; see [KSL] for the Axiom (A) with regard to the [GLW] entropy, and the proof of
the main theorem in [GLW] for Axiom (D); the rest is either obvious or explicit). In what
follows we prove that all notions of entropy satisfying the axioms coincide not only on
transformations but also on all doubly stochastic operators; in other words, we prove the
following theorem.

THEOREM 2.1. If T is a doubly stochastic operator on L∞(µ) then the Axioms (A)–(D)
(along with the construction steps (1)–(5)) completely determine the value of hµ(T ).

The proof will be based on two observations concerning a doubly stochastic operator:
it eventually nearly preserves lattice operations, and, as a consequence, it sends certain
characteristic functions to nearly characteristic functions.

2.2. Asymptotic lattice stability. Throughout the rest of this section we assume that T

is a doubly stochastic operator on L∞(µ).

LEMMA 2.2. Let f , g be two bounded measurable functions on X. For every δ > 0 there
exists N ∈ N such that for every k ∈ N, l ≥ N we have∫

|T k(T lf ∨ T lg) − (T k+lf ∨ T k+lg)| dµ < δ

and ∫
|T k(T lf ∧ T lg) − (T k+lf ∧ T k+lg)| dµ < δ.

Proof. Clearly, we have T (f ∨ g) ≥ Tf and T (f ∨ g) ≥ Tg, implying

T (f ∨ g) ≥ Tf ∨ Tg

(and analogously T (f ∧ g) ≤ Tf ∧ Tg).
(2.2.1)

Since T preserves the measure, for each n we obtain∫
T nf ∨ T ng dµ =

∫
T (T nf ∨ T ng) dµ ≥

∫
T n+1f ∨ T n+1g dµ,

leading to a decreasing and bounded (hence convergent) sequence of integrals. Given δ > 0
one can find N so large that for every l ≥ N and every k

0 ≤
∫

T lf ∨ T lg dµ −
∫

T k+lf ∨ T k+lg dµ ≤ δ. (2.2.2)

Since T k preserves the measure and the pointwise inequality (2.2.1) between
T k(T lf ∨ T lg) and T k+lf ∨ T k+lg holds, the above difference represents the desired
L1-distance. The proof for infima is analogous. �
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Definition. For a function f and two constants a < b denote f b
a = (f ∨ a) ∧ b. We say

that f has property CZ(δ) if ∫
|T n(f b

a ) − (T nf )ba| dµ < δ,

for every n ≥ 0 and every pair of constants a < b.

LEMMA 2.3. For every bounded function f and every δ > 0 there exists an integer l such
that T lf has property CZ(δ).

Proof. Temporarily fix the constants a, b. By Lemma 2.2 there exists l′ such that for any n

the L1-distance between T n((T l′f ) ∨ a) and (T n+l′f ) ∨ a is smaller than δ/9. The same
result applied to g = (T l′f ) ∨ a allows us to find l′′ such that for every n∫

|T n((T l′′g) ∧ b) − (T n+l′′g) ∧ b| dµ <
δ

9
.

By the choice of g, and because T is an L1-contraction and so is the application of an
infimum with a constant, we obtain∫

|T n((T l′+l′′f )ba) − (T n+l′+l′′f )ba | dµ <
δ

3
.

Let l be the largest of the integers l′ + l′′ obtained for finitely many choices of constants
a, b distributed in δ/3 distances over the range of f . Since changing the constants by less
than δ/3 moves the function f b

a by at most δ/3 in L1, we can see that the last inequality
holds for l replacing l′ + l′′, δ replacing δ/3, and any a, b, as required. �

The same technique allows us to prove another result, which is of independent interest.
By a lattice polynomial on r functions we shall mean any r-argument formal expression
involving the lattice operations ∨ and ∧ (and brackets). An example of a lattice polynomial
on three functions is θ(·, ·, ·) defined by θ(f, g, h) = (f ∨g)∧h. When applying a lattice
polynomial to a family F we implicitly fix a certain order in F .

Definition. We say that a family F = {fi : 1 ≤ i ≤ r} is lattice δ-stable under T if for
any lattice polynomial θ on r functions and any n ≥ 1 we have∫

|T n(θ(F)) − θ(T nF)| dµ < δ.

PROPOSITION 2.4. For every finite family F of bounded functions and δ > 0 there exists
an integer l ≥ 0 such that T lF is lattice δ-stable.

Proof. For two-element families the assertion coincides with Lemma 2.2. For larger
families (and more complex lattice polynomials) the proof follows by induction: suppose

θ(F ∪ G) = θ1(F) ∨ θ2(G).

First we find m′ such that both T m′F and T m′G are lattice (δ/6)-stable. Then, Lemma 2.2
applied to the functions θ1(T

m′F) and θ2(T
m′G) and δ/3 produces an integer m′′. The sum

m = m′ + m′′ provides δ-stability for the polynomial θ on T m(F ∪ G). Since there are
only finitely many distinct lattice polynomials on r functions, we will be able to find the
desired integer l. �
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2.3. Behavior of special partitions.

LEMMA 2.5. Let F ⊂ F consist of r functions with ranges in [0, 1], satisfying the
condition CZ(δ3). Then for every n and f ∈ F∫

|T n1{x:f (x)≥ξ } − 1{x:T nf (x)≥ξ }| dµ < 4δ

for certain values ξ , not depending on n or f ∈ F , distributed in distances not exceeding
2rδ.

Proof. Cover [0, 1] by at most (1/2δ2) + 1 equal intervals of length 2δ2, which we call
‘pieces’. Obviously, at most r((1/δ) − 1) of them may have a preimage by some f ∈ F of
measure larger than δ. This implies that each interval of length 2rδ contains the center ξ

of a piece, whose preimage by any function f ∈ F has measure at most δ. We can write it
as

µ{x : ξ − δ2 ≤ f (x) < ξ + δ2} ≤ δ.

Notice the following:

f
ξ+δ2

ξ − ξ

δ2 ≤ 1{x:f (x)≥ξ } ≤
f

ξ

ξ−δ2 − (ξ − δ2)

δ2 .

Denote the outer functions by Ff and Gf . Note also that

0 ≤ Gf − Ff ≤ 1{x:ξ−δ2≤f (x)<ξ+δ2}.

Thus,
∫ |Gf − Ff | dµ ≤ δ. Applying T n we get

T nFf ≤ T n(1{x:f (x)≥ξ }) ≤ T nGf ,

and, again, the L1-distances are smaller than δ, because T is an L1(µ)-contraction. On the
other hand, we have

FT nf = (T nf )
ξ+δ2

ξ − ξ

δ2 ≤ 1{x:T nf (x)≥ξ } ≤
(T nf )

ξ

ξ−δ2 − (ξ − δ2)

δ2 = GT nf .

However, we cannot repeat the estimate for the L1-distance. But the property CZ(δ3)

yields that the L1-distance between FT nf and T nFf is less than δ3/δ2 = δ, and similarly
for Gf . This easily implies that the L1-distance between 1{x:T nf (x)≥ξ } and T n(1{x:f (x)≥ξ })
is smaller than 4δ. �

LEMMA 2.6. Let F = {fi : 1 ≤ i ≤ r} consist of functions with ranges in [0, 1], all
having the property CZ(δ3), and let α be a partition of [0, 1] into m pieces A0 = [0, ξ1),
Aj = [ξj , ξj+1) (j = 1, . . . ,m−2) and Am−1 = [ξm−1, 1], where the points ξj all satisfy
the assertion of Lemma 2.5. Then

dist(T n(1∨
i f −1

i (α)
), 1∨

i T nf −1
i (α)

) < 8rmrδ,

for every n ≥ 0.
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Proof. The family 1∨
i f −1

i (α)
consists of functions of the form

1⋂
i {x:fi(x)∈Aji

} = inf
i

1{x:fi(x)∈Aji
},

and their total sum (over 1 ≤ i ≤ r and all sequences (ji) belonging to the set
{0, 1, . . . ,m − 1}r ) is the constant function 1. By (2.2.1), for each n the images must
satisfy

T n(1⋂
i {x:fi(x)∈Aji

}) ≤ inf
i

T n(1{x:fi(x)∈Aji
}), (2.3.1)

and the total sum of the functions on the left must also be 1. Since

1{x:fi(x)∈Aji
} = 1{x:fi(x)≥ξji

} − 1{x:fi(x)≥ξji+1},

by Lemma 2.5 and the choice of the points ξj , the L1-distance between

T n(1{x:fi(x)∈Aji
}) and 1{x:T nfi(x)∈Aji

}

is smaller than 8δ. Thus,∫
|infiT n(1{x:fi(x)∈Aji

}) − inf
i

1{x:T nfi(x)∈Aji
}| dµ < 8rδ. (2.3.2)

Note that the last function can be written as 1⋂
i{x:T nfi(x)∈Aji

}. These functions constitute
the family 1∨

i T nf −1
i (α)

and their sum is 1. Now, combining (2.3.1) and (2.3.2), we see that

T n(1⋂
i {x:fi(x)∈Aji

}) ≤ 1⋂
i {x:T nfi (x)∈Aji

} + g,

where g is some positive function with integral not exceeding 8rδ. Because we are now
comparing two families with the same sum, the largest difference of the form

|1⋂
i{x:T nfi (x)∈Aji

} − T n(1⋂
i {x:fi(x)∈Aji

})|
may have integral at most 8rδ times the cardinality of the family of the functions
1⋂

i{x:T nfi (x)∈Aji
}, which is less than or equal to mr . The proof is now complete. �

2.4. Main proof. We are now in a position to prove Theorem 2.1.

Proof. Consider an entropy definition following steps (1)–(5) and satisfying axioms
(A)–(D). Fix ε > 0 and let F = {fi : 0 ≤ i ≤ r} ∈ F be such that

hµ(T ) < hµ(T ,F) + ε

(see step (5)). Let γ be as specified in the domination Axiom (D) for the cardinality r of
F and ε, and choose m between 1/γ and 2/γ . Pick δ such that the inequality (2.1.4) is
satisfied for mr and ε. Replacing F by T lF (see (2.1.2)) with an appropriate l as specified
in Lemma 2.3, we can assume that every fi ∈ F has property CZ((δ/8rmr)3). The number
δ/4mr majorizes the distances between the points ξ in Lemma 2.5 (with δ replaced by
δ/8rmr ) and, because it is much smaller than γ (in particular, smaller than γ /2), we can
pick m − 1 of them, creating a partition α of [0, 1] into m intervals of lengths smaller
than γ . For each k, the domination axiom applied to T kF yields

Hµ(T kF |1∨
i T kf −1

i (α)
� α) < ε.
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Then, as an application of (2.1.1), we obtain for each n

Hµ

(
Fn

∣∣∣∣ n−1⊔
k=0

(1∨
i T kf −1

i (α)
� α)

)
< nε.

Since limn(1/n)Hµ(
⊔n

k=1 α) = 0, Axiom (A) and step (4) easily imply

hµ(T ,F) ≤ lim sup
n→∞

1

n
Hµ

( n−1⊔
k=0

1∨
i T kf −1

i (α)

)
+ ε.

Denote the above lim sup expression by hµ(T ,F , α) and notice that it involves joinings
and entropies exclusively of partitions, hence is completely determined by the partitions
Axiom (C). Lemma 2.6 yields

dist(1∨
i T kf −1

i (α)
, T k(1∨

i f −1
i (α)

)) < δ,

which, by (2.1.4), implies

Hµ(1∨
i T kf −1

i (α)
|T k(1∨

i f −1
i (α)

)) < Hµ(1∨
i T kf −1

i (α)
|1∨

i T kf −1
i (α)

) + ε.

By the partitions Axiom (C) the right-hand side is just ε. Using (2.1.1) and step (4) again,
we deduce that

hµ(T ,F , α) ≤ hµ(T , 1∨
i f −1

i (α)
) + ε ≤ hµ(T ) + ε.

We have proved that

hµ(T ,F , α) − ε ≤ hµ(T ) ≤ hµ(T ,F , α) + 2ε.

In this manner hµ(T ) is completely determined by the axioms. �

3. The explicit measure-theoretic definition
3.1. The functional definition. A possible definition of entropy for doubly stochastic
operators emerges from the previous proof by means of hµ(T ,F , α). However, the
technical restrictions on α make this definition rather inconvenient. As shown in
Example 3.2 at the end of the section, dropping these conditions essentially affects the
outcome notion. Instead, we propose a much more natural approach, which can be applied
to literally any mapping T : L → L. (We recall that L is a set of measurable functions
with range in [0, 1].) We follow steps (1)–(5) of the axiomatic definition.
(1◦) We let F be the collection of all finite subsets F of L.
(2◦) F � G is defined as the ordinary union F ∪ G.
(3◦) For a function f let

Af = {(x, t) ∈ X × [0, 1] : t ≤ f (x)}
and denote by Af a partition of X ×[0, 1] consisting of Af and its complement Ac

f .
For a collection F we define

AF =
∨
f ∈F

Af .

We now set
Hµ(F) = Hµ̂(AF ) = −

∑
A∈AF

µ̂(A) log µ̂(A),

where µ̂ is the product of µ with the Lebesgue measure on the unit interval.
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(4◦) hµ(T ,F) = lim supn→∞ 1/nHµ(Fn).
(5◦) hµ(T ) = supF∈F hµ(T ,F).

Remark 3.1.
(i) If F , G ∈ F then AF∪G = AF ∨ AG .
(ii) In the definition of Hµ every family F can be replaced by an increasing family 	(F)

generating A	(F) = AF . This family is obtained by means of lattice polynomials
as described below.
For r denoting the cardinality of F , we introduce a linear order of the set {0, 1}r in
the following way: α = (αi) � β = (βi) if either

∑
i αi ≥ ∑

i βi or the sums are
equal and αi = 1 at the first position i satisfying αi �= βi . Defining

θβ(F) = sup
α�β

inf {fi : αi = 1}

we obtain an increasing finite sequence of functions 	(F) = {
θβ(F)

}
β

, to which
we enclose the constants 0 (as the first element) and 1 (as the last one). With this
notation

Hµ(F) = Hµ(	(F)) = −
∑
g

( ∫
g dµ

)
· log

( ∫
g dµ

)
, (3.1.1)

where g ranges over all differences between pairs of consecutive functions in 	(F).

We remark that the definition of 	(F) depends on the order in F . It is interesting to
note that the functions g form a partition of unity, an object used quite differently by other
authors. Because 	(T (F)) �= T (	(F)), we cannot replace F by 	(F) in the definition
of hµ(T ,F).

The verification that the entropy defined in this section satisfies Axioms (A)–(C) is
immediate. For (D), approximate each function fi ∈ F by a simple function si with
values at the breaking points ξj of the partition α. It easily follows from step (3◦) of our
definition and the formula (2.1.1) that Hµ(F |{si}) is small, while the partition associated
with 1∨

i f −1
i (α)

∪ α, where α is the family of constant functions with the same values ξj ,

is finer than the one induced by {si}.
In addition to the axioms, the following condition, which seems to be natural in view of

the information origins of entropy, is also true:

Hµ(F |F) = 0.

Note that it is satisfied neither for [GLW] entropy (see [KSL, the corollary following
Proposition 1]) nor for the quantum entropy (try the two point space with the measure
{1/2, 1/2}, and the operational partition consisting of functions (1/

√
2, 0) and (1/

√
2, 1)).

The formula (2.1.4) along with the above equality implies that for every ε > 0 there is a
δ > 0 such that

dist(F ,G) < δ �⇒ Hµ(F |G) < ε, (3.1.2)

which, combined with (2.1.1), yields for a L1-contraction T

dist(F ,G) < δ �⇒ |hµ(T ,F) − hµ(T ,G)| < ε. (3.1.3)
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Also, our definition satisfies
hµ(T ,Fφ) = 0 (3.1.4)

for any family Fφ of T -invariant functions.
Unlike in the pointwise case, Hµ need not be T -invariant, even for doubly stochastic

operators. Moreover, it can increase under the action of T , which will be illustrated in a
simple example below. Nevertheless, we are able to obtain an asymptotic invariance of Hµ

(see Lemma 3.1).

Example 3.1. Let T be the doubly stochastic operator on the unit interval (equipped with
the Lebesgue measure) defined by Tf (x) = (1/2)(f (x)+f (1−x)). Take F consisting of
characteristic functions 111[0,1/4] and 111(1/4,1]. Then Hµ(F) = 2 log 2 − (3/4) log 3 < log 2,
while Hµ(TF) = (3/2) log 2. Note that the pathology cannot be removed by the
sometimes useful trick of refining F by some set of constants.

LEMMA 3.1. Let T be doubly stochastic. For every ε > 0 there exists N ∈ N such that
for every k

|Hµ(T k+NF) − Hµ(T NF)| < ε.

Proof. The assertion follows immediately from the lattice-based definition (3.1.1) of Hµ,
asymptotic lattice stability of Proposition 2.4 and the continuity axiom (2.1.3). �

3.2. The existence of the limit. This section is devoted to proving the existence of the
limit in the entropy construction step (4◦), which is one of the advantages of our definition
over the others. The key problem is the lack of subadditivity of the sequence Hµ(Fn).
By Axiom (A), we do have

Hµ(Fn+m) ≤ Hµ(Fn) + Hµ(T nFm),

but we cannot drop T n. The asymptotic T -invariance of Lemma 3.1 is insufficient.
Increasing the number of functions in order to obtain Fm, we lose control over N and ε.

A suitable strengthening is provided in Lemma 3.2. The main tool is the theorem on the
integral representation of certain stochastic operators proved by A. Iwanik in [I]. It asserts
that if T is an operator on the set of bounded measurable functions of a standard Borel
space and T is induced by a transition probability then

Tf (x) =
∫

�

f (ϕω(x)) dλ(ω),

where (�, λ) denotes the unit interval with the Lebesgue measure and (ω, x) �→ ϕω(x) is
a jointly measurable map from � × X into X. On the product space � × X consider the
action of the map (ω, x) �→ (ω, ϕω(x)) and the associated pointwise generated operator �

on bounded measurable functions of � × X. Denoting by f the function (ω, x) �→ f (x)

we have

Tf (x) =
∫

�f (ω, x) dλ(ω). (3.2.1)

Though � needs not preserve the product measure, using Fubini’s theorem we do have∫∫
�f dλ dµ =

∫
Tf dµ =

∫
f dµ. (3.2.2)
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Since every iterate of T is also induced by a transition probability, we may denote by �k

the pointwise generated operator corresponding to T k . Note that, in general, �k is not
equal to the iterate �k. (In fact, using a cocycle construction one can modify � so that the
equality �k = �k holds. Then, � becomes a dilation of T in the sense of [FN], where T

is viewed as a contraction on L2(µ). We skip the details.)

LEMMA 3.2. Let T be a doubly stochastic operator on L∞(µ). For every ε > 0 there
exists N ∈ N such that for every k, m ∈ N, we have

|Hµ(T k+NFm) − Hµ(T NFm)| < mε.

Proof. We first prove the lemma under the additional assumption that X is standard
Borel and T is as required in Iwanik’s theorem. Let ν denote the product measure λ × µ.
We start by showing the following.

For f ∈ L and sufficiently large l the functions T k+lf and �kT lf

are close in the norm of L1(ν) for every k ≥ 1.
(3.2.3)

Fix a positive integer M and δ > 0. Since �k is pointwise generated, for every
bounded g we have ∫

|�kg| dν =
∫

�k|g| dν
(3.2.2)=

∫
|g| dµ,

which, combined again with (3.2.2), yields∫
(�kg)+ dν =

∫
g+ dµ. (3.2.4)

Since (T lf )+ = T lf ∨T l0, by (2.2.2) one can find a positive integer N such that for every
l ≥ N and k ≥ 1

0 <

∫
(T lf )+ dµ −

∫
(T k+lf )+ dµ < δ.

Hence, substituting g = T lf in (3.2.4) we obtain

0 ≤
∫

(�kT lf )+ dν −
∫

(T k+lf )+ dµ < δ. (3.2.5)

To prove (3.2.3) it is enough to estimate the measure of the set of all points (ω, x) for
which |�kT lf − T k+lf | ≥ 2/M . Denote

B(f ) =
{
(ω, x) : �kT lf (ω, x) >

1

M
, T k+lf (x) ≤ 0

}
.
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In order to find the measure of B(f ) we proceed as follows.

1

M
· ν(B(f )) ≤

∫
B(f )

�kT lf dν

≤
∫
{(ω,x):T k+lf (x)≤0}

(�kT lf )+ dν

=
∫

(�kT lf )+ dν −
∫
{(ω,x):T k+lf (x)>0}

(�kT lf )+ dν

≤
∫

(�kT lf )+ dν −
∫
{(ω,x):T k+lf (x)>0}

�kT lf dν

(3.2.1)=
∫

(�kT lf )+ dν −
∫
{(ω,x):T k+lf (x)>0}

T k+lf dµ

(3.2.5)
< δ.

Thus, ν(B(f )) < Mδ. Clearly, we can improve N so that the above calculation remains
valid for all functions of the form f − (i/M), where i = 0, . . . ,M − 1. This yields the
estimate

ν

({
(ω, x) : �kT lf (ω, x) − T k+lf (x) >

2

M

})
≤

M−1∑
i=0

ν(B(f − (i/M))) < M2δ.

Taking (−f ) instead of f we also get

ν

({
(ω, x) : �kT lf (ω, x) − T k+lf (x) < − 2

M

})
< M2δ,

and hence ∫
|�kT lf − T k+lf | dµ <

2

M
+ 2M2δ.

Because M and δ are arbitrary, (3.2.3) is proved.
To complete the proof in the case of Iwanik’s theorem’s validity, fix ε > 0 and choose N

so large that for all r functions f ∈ F , every k ≥ 1 and l ≥ N , the functions T k+lf and
�kT lf are close enough (in L1(ν)) to ensure, according to (3.1.2), that both

Hν(T k+lf
∣∣�kT lf ) <

ε

r
and Hν(�kT lf |T k+lf ) <

ε

r
. (3.2.6)

Pick m ≥ 1. Denoting by T NFm the collection of functions T lf , where f ∈ F ,
l = N, . . . , N + m − 1, we can write

Hµ(T k+NFm) = Hν(T k+NFm)

≤ Hν(�kT NFm) + Hν(T k+NFm|�kT NFm).

By Remark 3.1(ii),

Hν(�kT NFm) = Hν(	(�kT NFm)) = Hν(�k	(T NFm))

(3.2.2)= Hµ(	(T NFm)) = Hµ(T NFm),
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and thus

Hµ(T k+NFm) ≤ Hµ(T NFm) +
N+m−1∑

l=N

∑
f∈F

Hν(T k+lf |�kT lf )

(3.2.6)
< Hµ(T NFm) + mε.

Also,

Hµ(T NFm) = Hν(�kT NFm)

≤ Hν(T k+NFm) + Hν(�kT NFm|T k+NFm)

< Hµ(T k+NFm) + mε

and the assertion is proved.
Now, let T be an arbitrary doubly stochastic operator on L∞(µ) on any probability

space. Note that the above argument involves only countably many functions obtained
from the members of F via the iterates of T and also via some lattice polynomials. Denote
by L the complex subalgebra of L∞(µ) generated by these functions. It is known that L is
isometrically isomorphic to the algebra of (complex) continuous functions on a certain
compact Hausdorff space X , and the isomorphism τ preserves the involution; thus it
sends real-valued functions to real-valued functions. Moreover, it can be shown that τ

preserves also the lattice operations, hence the image of every positive element of L∞(µ)

is a positive function. The measure µ, being a linear functional on L∞(µ), passes to
a linear functional on the space of continuous functions, represented by a certain Borel
probability measure on X , which implies that the integrals of functions corresponding
via the isomorphism are equal. By [Z, Corollary 10.10], in our case the space X is metric
(hence standard Borel), because the algebraL has a denumerable set of generators. Clearly,
the operator T = τT τ−1 defined on the real subalgebra of all real continuous functions
C(X ) is Markov; thus it is induced by a Feller transition probability. Hence, the assertion
(for T ) follows from the first part of the proof. By Remark 3.1(ii), and since τ is a
lattice isomorphism, the entropies of T NFm and T k+NFm are equal to the entropies of
the corresponding families in C(X ), which completes the proof. �

The following result is a substitute, valid for doubly stochastic operators, for the
subadditivity property. We call it quasi-subadditivity.

PROPOSITION 3.3. Let T be a doubly stochastic operator. For every ε > 0 there exists
N ∈ N and a constant c such that for every k ∈ N and m ≥ N we have

Hµ(Fk+m) ≤ Hµ(Fk) + Hµ(Fm) + c + mε.

Proof. Fix ε > 0 and choose N according to Lemma 3.2. If k > 0, m > N , then, using
the fact that Hµ(F) ≤ r log 2, where r is the cardinality of F , we obtain

Hµ(Fk+m) ≤ Hµ(Fk) + Hµ(T kFN) + Hµ(T k+NFm−N)

≤ Hµ(Fk) + Nr log 2 + Hµ(T NFm−N) + (m − N)ε

≤ Hµ(Fk) + Hµ(Fm) + Nr log 2 + mε. �
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THEOREM 3.4. If T is a doubly stochastic operator then the upper limit in (4◦) is in fact
a limit.

Proof. Given the quasi-subadditivity of Proposition 3.3 the proof becomes a slightly
modified copy of the classical lemma concerning the convergence of an/n for a subadditive
sequence an (see [DGS, Proposition (10.7)] or [W, Theorem 4.9]). �

The above limit need not coincide with the corresponding infimum, as it holds in the
pointwise case. Full subadditivity, required for such coincidence, is obtained if we modify
the definition of entropy by including an additional step in the construction. We propose
two possible such modifications.

Definition 3.1. H ′
µ(F) = limk→∞ Hµ(T kF) (existence of this limit is guaranteed by

Lemma 3.1); H ′′
µ(F) = supk∈NHµ(T kF).

LEMMA 3.5. The sequences H ′
µ(Fn) and H ′′

µ(Fn) are subadditive.

Proof. Clearly,
H ′

µ(T mF) = lim
k→∞ Hµ(T m+kF) = H ′

µ(F).

Thus,
H ′

µ(Fm+n) ≤ H ′
µ(Fm) + H ′

µ(T mFn) = H ′
µ(Fm) + H ′

µ(Fn).

The proof for H ′′
µ(Fn) is almost identical. Note only that H ′′

µ(T mF) is smaller than or
equal to H ′′

µ(F). �

Denote by h′
µ(T ,F) and h′′

µ(T ,F) the quantities obtained by substituting Hµ in
step (4◦) of the construction of entropy by H ′

µ or H ′′
µ respectively (according to the above

lemma, the relevant limits exists).

PROPOSITION 3.6. For a doubly stochastic operator T we have

hµ(T ,F) = h′
µ(T ,F) = h′′

µ(T ,F).

Proof. Clearly, hµ(T ,F) ≤ h′′
µ(T ,F) and h′

µ(T ,F) ≤ h′′
µ(T ,F).

We show that h′
µ(T ) dominates h′′

µ(T ). Fix a positive integer n. For the family Fn and
ε = 1 choose N according to Lemma 3.1. Take m larger than n + N and let p satisfy
(p − 1)n ≤ m ≤ pn. Then, find k such that the difference between Hµ(T kFm) and
H ′′

µ(Fm) is smaller than 1. Let K be the maximum of N and k.

H ′′
µ(Fm) ≤ Hµ(T kFm) + 1

≤ Hµ(FN) + Hµ

( p−1⋃
i=0

T K+inFn

)
+ 1

≤ Hµ(FN) + pHµ(T NFn) + p + 1.

Dividing the extreme sides of this inequality by m and letting m tend to infinity we obtain

h′′
µ(T ,F) ≤ 1

n
Hµ(T NFn) + 1

n
.

Now, taking the limit over N and afterwards over n leads to h′′
µ(T ,F) ≤ h′

µ(T ,F).
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In order to prove that hµ(T ,F) ≥ h′
µ(T ,F), by Lemma 3.2, given ε > 0 we can find N

such that for arbitrary positive integers l, m we have

Hµ(T l+NFm) ≤ Hµ(T NFm) + mε.

Letting l → ∞ we obtain

Hµ
′(Fm) ≤ Hµ(T NFm) + mε,

hence hµ
′(T ,F) ≤ hµ(T , T NF) + ε

(2.1.2)= hµ(T ,F) + ε for arbitrary ε > 0. �

Unfortunately, the new quantities H ′
µ and H ′′

µ fail the partitions axiom; the domination
axiom is difficult to verify and most likely it also fails.

3.3. Basic properties of entropy. Below, we extend some properties of hµ, known
from the classical theory of dynamical systems. We begin with rephrasing the standard
(pointwise) definitions.

Definition 3.2. Let T1 and T2 be doubly stochastic operators acting on L∞(X1, µ1) and
L∞(X2, µ2), respectively.
(i) T1 is a factor of T2 if there is a measure-preserving surjection π : X2 → X1

satisfying, for every f ∈ L∞(X1, µ1), the condition (T1f ) ◦ π = T2(f ◦ π).
(ii) T1 and T2 are isomorphic if the map π defined above is invertible and the inverse is

also measure-preserving.

PROPOSITION 3.7. Let T1, T2 be doubly stochastic operators acting on L∞(µ1) and
L∞(µ2), respectively.
(i) If T1 is a factor of T2 then hµ1(T1) ≤ hµ2(T2).
(ii) If T1 and T2 are isomorphic then their entropies are equal.

Proof. Let π : X2 → X1 be a factor map. Let F ⊂ L∞(µ1) be a finite set of functions
with ranges in [0, 1] and denote

πF = {f ◦ π : f ∈ F} .

Clearly, hµ1(T1,F) = hµ2(T2, πF); thus, (i) is now a consequence of the construction
step (5◦), and (ii) follows immediately. �

PROPOSITION 3.8. If T is an operator on a set L of functions with range in [0, 1], then
for every k ∈ N we have

hµ(T k) = khµ(T ).

Proof. Because of Remark 3.1(i), the proof is obtained from the proof of the
analogous classical property by making only minor modifications (see e.g. [DGS,
Proposition (10.12)(c)] or [W, Theorem 4.13]). �

The following result concerns the nature of chaotic behavior recognized by our entropy.
It establishes yet another natural property of our notion: the entropy vanishes for some sort
of trivial dynamics.
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PROPOSITION 3.9. Let T be an operator on a set L of functions with range in [0, 1], such
that for every f ∈ L the sequence T nf converges in L1-norm to an invariant function φf .
Then hµ(T ) = 0.

Proof. For every F and ε > 0 there exists a family Fφ consisting of invariant functions,
such that dist(T NF ,Fφ) is small for some N . Then use (2.1.2), (3.1.3) and (3.1.4). �

We recall that some inconvenient technical assumptions regarding the choice of the
partition α of the unit interval discouraged us from using hµ(T ,F , α) (see the proof of
Theorem 2.1) as the explicit definition of entropy. We now provide the example, referred
to at the beginning of this section, illustrating that skipping those assumptions may lead to
an incorrect definition.

Example 3.2. Let (X,�,µ) be the set of one-sided 0–1 sequences X = {0, 1}N with the
product σ -algebra and with the uniform product measure µ = {1/2, 1/2}N. Define the
doubly stochastic operator T by

Tf (x) = 1

2

(
f (σx) +

∫
X

f (x) dµ

)
,

where σ denotes the shift (xn) �→ (xn+1) on X. Let F contain only one function, namely
f (x) = x0, and let α = {[0, 1/2], (1/2, 1]}. Notice that f is the indicator of the cylinder
set

C = {x ∈ X : x0 = 1} .

Then

T nf (x) = 1

2
+ 1

2n

(
111σ−n(C)(x) − 1

2

)

=


1

2
− 1

2n+1 if xn = 0,

1

2
+ 1

2n+1
if xn = 1,

converges in L1-norm to the constant function 1/2. It follows from Proposition 3.9 that
hµ(T ) = 0. But Hµ

(⊔n−1
k=0 1T kf −1(α)

)
is the entropy of a partition consisting of cylinder

sets of length n hence, hµ(T ,F , α) is equal to log 2.

It is interesting to observe that the discussed operator entropy extends the Kolmogorov–
Sinai notion in an essential way: in addition to pointwise-type dynamics, it also captures
some pure ‘operator dynamics’. In the example below an operator has positive entropy
without admitting non-trivial pointwise generated factors at all.

Example 3.3. Let (X,�,µ) be the same as in the previous example. Let ν be the geometric
distribution on natural numbers N given by ν(k) = 2−k . The element (x, k) of the product
space X×N can be visualized as the 0–1-valued sequence (x1, x2, . . . , x

∗
k , xk+1, . . . ) with

a marker (star) over position k.
For each finite block B = (b1, b2, . . . , bk) ∈ {0, 1}k define the map σB : X → X by

(σBx)n =
{

bn for n ≤ k,

xn+1 for n > k.
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Next, we define the operator T on L∞(µ × ν) as follows:

Tf (x, k) = f (σx, k − 1) if k > 1,

Tf (x, 1) =
∞∑

k=1

2−k
∑

B∈{0,1}k
2−kf (σBx, k).

The corresponding transition probability P((x, k), ·) can be described as the shift map (also
shifting the position of the marker) on points with marker further to the right, while points
with the marker over the first position are shifted and then the initial block of length k

(chosen according to the geometric distribution) is replaced by a random block of length k.
A marker is added over the last position of the replaced block. Our first claim is that T is
doubly stochastic with respect to the product measure µ × ν. To see this, consider the
characteristic function f = 111C of a cylinder of the form

C = C(y1, y2, . . . , y
∗
k , yk+1, . . . yn) = {(x, k) : xi = yi, i = 1, . . . , n}.

Clearly, the integral of f is 2−(k+n). All points in both cylinders C(x0, y1, y2, . . . , y
∗
k ,

yk+1, . . . , yn) (x0 ∈ {0, 1}) are sent deterministically into C. So, Tf = 1 on these two
cylinders. The integral of this part is 2−(k+1) ·2 ·2−(n+1) = 2−(k+n+1) (the marker appears
at the position k + 1). Also, each point in any cylinder C(x∗

0 , x1, . . . , xk, yk+1, . . . , yn)

(with any choice of x0, . . . , xk) contributes with probability 2−2k to C (via the map σB ,
where B = (y1, y2, . . . , yk)), so f at such points is 2−2k. The integral of this part is
2−2k · 2k+1 · 2−1 · 2−(n+1) = 2−(k+n+1). The sum of both parts equals the initial integral,
so T is doubly stochastic with respect to µ × ν.

Now, suppose T has a pointwise generated factor. This factor corresponds to a sub-σ -
algebra �′ with the property P((x, k),A) = 0 or 1 for each A ∈ �′ and almost every x.
Consider a pair of cofinal points (x, k), (x ′, k′), i.e. such that xn = x ′

n for n larger than
some k′′. We can assume k′′ > k and k′′ > k′. Consider also a point (x ′′, k′′) which
coincides with both x and x ′ above the index k′′. Both points (x ′′, k′′) and (x, k) are
accessible with positive transition probabilities from the point (0x, 1) = 0∗x (which has
0∗ at the first position and then looks like x shifted to the right). This means (unless 0∗x
falls in some zero-measure set) that the factor identifies (x ′′, k′′) with (x, k). Similarly,
it identifies (x ′′, k′′) with (x ′, k′), and hence (x, k) with (x ′, k′). We have shown that
the factor identifies (almost surely) cofinal points regardless to positioning of the marker.
This implies that �′ is (up to measure µ) contained in the tail σ -algebra of {0, 1}Z.
By the Kolmogorov 0–1 law, such a σ -algebra is trivial with respect to the measure µ.
So, T admits no non-trivial pointwise (measure-theoretic) factors.

Finally, we will show that hµ(T ) ≥ log 2. Consider the 0–1-valued function
fi(x, k) = xi . We will show that

T nfi(x, k) = α 1
2 + (1 − α)xi+n,

with α ≤ 2−(i−1). This is obvious if n < k (then α = 0), because such T n is deterministic
on (x, k). Now consider n = k. This is the first time the point (x, k) is actually spread.
Notice that with respect to Pn((x, k), ·) the position of the marker has the geometric
distribution ν. In the next step n + 1, with probability 1/2 the markers will be shifted
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(creating half of the same geometric distribution) and with probability 1/2—spread again
(with the same geometric distribution). As a result, the distribution of the marker’s position
with respect to Pn+1((x, k), ·) remains the same. This applies to all further steps. We have
proved that for n ≥ k the position of the marker has the geometric distribution with respect
to Pn((x, k), ·). Now, the points in the support of Pn((x, k), ·) whose markers fall below
coordinate i have xi+n at i, because this position has never been altered (only shifted).
This happens with probability

i−1∑
j=1

2−j = 1 − 2−(i−1),

contributing a factor (1 − 2−(i−1))xi+n to T nfi(x, k). Otherwise, the value at position i is
0 or 1 with equal chances, contributing the factor 2−(i−1)/2. We have proved the required
formula for n ≥ k with α equal to 2−(i−1).

From what we have derived it is seen that the images of fi behave almost as the
functions fi+n, except that instead of oscillating with amplitude 1 they oscillate with (non-
constant) amplitude not smaller than 1 − 2−(i−1). For large i, however, such functions
generate entropy arbitrarily close to log 2.

4. Topological entropy of a Markov operator
Let CI (X) be the set of all continuous functions f : X → [0, 1]. Throughout this section
X is a compact Hausdorff space and T denotes a Markov operator acting on C(X). Our first
definition of topological entropy for T uses the notion of measure-theoretic entropy of a
stochastic operator introduced in the preceding section. The covers Uε

F are obtained by
‘thickening’ the sets in AF . The second definition uses continuity of functions in F to
transport open covers from the unit interval to X. In the third one we make use of a certain
pseudometric on X induced by a finite collection of functions. This leads us to a definition
similar to Bowen’s definition of entropy.

For a continuous function f let us define

Uε
<f = {(x, t) ∈ X × [0, 1] : t < f (x) + ε},

Uε
>f = {(x, t) ∈ X × [0, 1] : t > f (x) − ε},
Uε

f = {Uε
<f ,Uε

>f }.
Given a finite collection F ⊂ CI (X) we obtain a finite open cover of X × [0, 1] by the
formula

Uε
F =

∨
f∈F

Uε
f .

If V is a finite open cover of the unit interval then we let

F−1(V) =
∨
f ∈F

f −1(V).

We leave the easy proof of the following lemma to the reader.

LEMMA 4.1. Let F , G be finite subsets of CI (X), V a finite open cover of the unit interval
and ε a positive number. Then:
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(i) Uε
F∪G = Uε

F ∨ Uε
G;

(ii) (F ∪ G)−1(V) = F−1(V) ∨ G−1(V);
(iii) if Tf = f ◦ S, where S : X → X is a continuous transformation, then

Uε
Fn =

n−1∨
i=0

(S × Id)−i
(
Uε
F

)
and

(Fn)−1(V) =
n−1∨
i=0

S−i (F−1(V)).

Recall that for any open cover U the symbol N(U) denotes the minimal cardinality of a
subcover chosen from U .

Definition. Let F ⊂ CI (X) be a finite collection of functions and let ε be a positive
number. We define:
(i) H1(F , ε) = log N(Uε

F );
(ii) h1(T ,F , ε) = lim supn→∞(1/n)H1(Fn, ε);
(iii) h1(T ) = supF supε h1(T ,F , ε).

Definition. Let V be a cover of [0, 1].
(i) H2(F ,V) = log N(F−1(V));
(ii) h2(T ,F ,V) = lim supn→∞(1/n)H2(Fn,V);
(iii) h2(T ) = supF supV h2(T ,F ,V).

Given F we define a pseudometric on X by

dF (x, y) = sup
f ∈F

|f (x) − f (y)|.

We say that a subset of X is (dF , ε)-separated if it is ε-separated in the pseudometric dF .
Since the space X is compact, there exists a finite (dF , ε)-separated subset of maximal
cardinality in X. We denote the number of elements of this subset by s(dF , ε).

Definition. For F and ε define:
(i) H3(F , ε) = log s(dF , ε);
(ii) h3(T ,F , ε) = lim supn→∞(1/n)H3(Fn, ε);
(iii) h3(T ) = supF supε h3(T ,F , ε).

THEOREM 4.2. For every Markov operator T we have

h1(T ) = h2(T ) = h3(T ).

Proof. We begin by showing that h1(T ) ≤ h2(T ). Choose ε > 0 and let V be a finite open
cover of the unit interval consisting of sets having diameters not greater than ε. We claim
that the cover defined by the formula

Wn = {U × V : U ∈ (Fn)
−1

(V), V ∈ V}
is inscribed in Uε

Fn . Indeed, for each U × V ∈ Wn we let

F ′ = {f ∈ Fn : (∀x∈U)f (x) ≥ inf V }.
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It is not hard to verify that

U × V ⊂
⋂

f ∈F ′
Uε

<f ∩
⋂

f ∈Fn\F ′
Uε

>f ∈ Uε
Fn .

Thus,
N(Uε

Fn ) ≤ N(Wn) ≤ N((Fn)
−1

(V)) · N(V)

and, since N(V) is independent of n,

h1(T ,F , ε) ≤ h2(T ,F ,V).

The desired inequality follows by taking appropriate suprema.
Now, we prove that h2(T ) ≤ h3(T ). Let V be a finite open cover of the unit interval.

Denote its Lebesgue number by δ and let E be a maximal (dFn, δ/2)-separated set in X.
It follows from the maximality of E that the collection {Bδ/2(x) : x ∈ E} of balls in the
pseudometric dFn constitutes a finite open cover of X. For every f ∈ Fn and x ∈ E the
interval (f (x) − δ/2, f (x) + δ/2) is contained in some element Vf (x) of V . Hence,

Bδ/2(x) =
⋂

f∈Fn

f −1
(

f (x) − δ

2
, f (x) + δ

2

)
⊂

⋂
f∈Fn

f −1(Vf (x)) ∈ (Fn)
−1

(V)

and
N((Fn)

−1
(V)) ≤ card{Bδ/2 : x ∈ E} = s(dFn, δ/2),

which implies h2(T ) ≤ h3(T ).
We end the proof by showing that h3(T ) ≤ h1(T ). Let D ⊂ X be a (dF , ε)-separated

set of maximal cardinality. Put γ = ε/6 and define

F̃ =
{

1

2
f + iγ : f ∈ F , i ∈ Z, 0 ≤ i ≤ 1

2γ

}
.

We will show that the coverUγ

F̃ separates points of D×{1/2} in the sense that each element
of the cover contains at most one point from D × {1/2}. Consider two elements x, y of D.
We can choose a function f ∈ F satisfying |f (x) − f (y)| ≥ ε and, since both x and y

play the same role in the formula, we may assume that f (x) + ε ≤ f (y). There exists an
integer i such that f̃ = f/2 + iγ belongs to F̃ and

γ ≤ 1
2 − f̃ (x) ≤ 2γ.

Then

f̃ (y) − 1

2
= 1

2
f (y) + iγ − 1

2

≥ 1

2
f (x) + ε

2
+ iγ − 1

2

= f̃ (x) − 1

2
+ ε

2
≥ γ,
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which implies that (y, 1/2) belongs to U
γ

<f̃
and not to U

γ

>f̃
, while, on the contrary, (x, 1/2)

belongs to U
γ

>f̃
and not to U

γ

<f̃
. Since every element of Uγ

F̃ is contained either in U
γ

<f̃
or

in U
γ

>f̃
, this proves that the cover separates points of D×{1/2}. Moreover, every subcover

of Uγ

F̃ has the same property, so that

s(dF , ε) ≤ N(Uγ

F̃ ).

Recall that T , as a Markov operator, is linear and preserves constants. This implies that
F̃n = (F̃)n, so we can replace F with Fn, obtaining

s(dFn, ε) ≤ N(Uγ

(F̃)n
).

The proof is ended by taking upper limits and suprema. �

In the following we will use the symbol htop to denote the common value of h1,
h2 and h3. According to the next result, the coincidence with the classical notation is
reasonable.

THEOREM 4.3. If Tf = f ◦S is an operator generated by a continuous map S : X → X,
then htop(T ) is equal to the classical topological entropy of S.

Proof. It is an obvious corollary from Lemma 4.1(iii) that h2(T ) is less than or equal to
the classical topological entropy of S.

For the opposite inequality we will exploit the definition of h1. Let W be a finite open
cover of X. Choose a minimal subcover {W1, . . . ,Wr } ⊂ W . Using the Tietze–Urysohn
theorem (see [E, Theorem 2.1.8]) one can construct a partition of unity F = {f1, . . . , fr }
consisting of continuous functions on X and such that if x ∈ Wi

c then fi(x) = 0
(i = 1, . . . , r). Consequently, if x ∈ ⋂

j �=i (Wj
c), i.e. x is covered exclusively by Wi ,

then fi(x) = 1. Fix 0 < ε < 1/2r. Every member of Uε
Fn is of the form⋂

g∈Fn

Ug =
n−1⋂
k=0

⋂
g∈T kF

Ug,

where Ug ∈ Uε
g . We will prove that each subcover U ′ chosen from Uε

Fn determines a
subcover of Wn of the same or smaller cardinality. Suppose that an element of U ′ satisfies
the following condition:

(∀k<n)(∃gk∈T kF ) Ugk = Uε
<gk

. (4.0.1)

Denote by W̃k the element of T −kW such that gk equals 1 on the set covered exclusively
by W̃k and vanishes on W̃c

k . The set
⋂n−1

k=0 W̃k belongs to Wn. Pick any x ∈ X. The point
(x, 1/2r) does not belong to

⋂
g∈T kF Uε

>g for any k = 0, . . . , n − 1, since one can

always find gk ∈ T kF such that gk(x) is greater than or equal to 1/r . Thus, if an
element U of U ′ contains (x, 1/2r), it satisfies the condition (4.0.1) and determines some
set

⋂n−1
k=0 W̃k ∈ Wn. This set contains x, because gk(x) is positive (at least 1/r) for

k = 0, . . . , n− 1. Since x was arbitrary, sets of the form
⋂n−1

k=0 W̃k constitute a cover of X,
and hence

N(Wn) ≤ N(Uε
Fn ). �

The following result is analogous to Proposition 3.9.
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PROPOSITION 4.4. If for every continuous f there exists an invariant function φf such
that

lim
n→∞ sup

x∈X

|T nf (x) − φf (x)| = 0

then htop(T ) = 0.

Proof. For a given collection F of continuous functions let

�(F) = {
φf : f ∈ F

}
.

Notice that for every ε and every finite collection F of continuous functions there exists N

such that for every f ∈ F

sup
x∈X

|T nf (x) − φf (x)| <
ε

3
for all n ≥ N.

Then, for every x, y ∈ X, we have

|T nf (x) − T nf (y)| ≤ |T nf (x) − φf (x)| + |φf (x) − φf (y)|
+ |φf (y) − T nf (y)|

<
2ε

3
+ |φf (x) − φf (y)|,

implying that
s(dFn, ε) ≤ s(dFN∪�(F), ε/3) for all n ≥ N,

where the right-hand side does not depend on n. �

We can define a topological factor of a Markov operator in the same way as
was done in the measure-theoretic Definition 3.2, replacing only the term ‘measure-
preserving’ by ‘continuous’. Two operators are isomorphic if the relevant factor map is a
homeomorphism. We will say that a compact set Y is invariant under T if PT (x, Y c) = 0
for every x ∈ Y (PT is a transition probability corresponding to T ). Using the
formula (1.0.1) we can define a Markov operator on C(Y ), which may be treated as a
restriction of T (since Y is closed, every f ∈ C(Y ) extends to a continuous function
on X). The proofs of the following statements concerning topological entropy are standard
and will be omitted.

PROPOSITION 4.5.
(i) The entropy of a factor of a Markov operator T is smaller than or equal to the

entropy T .
(ii) Two isomorphic Markov operators have equal entropies.
(iii) If Y is a compact invariant subset of X then the entropy of the Markov operator T

restricted to C(Y ) is smaller than or equal to the entropy of T on C(X).
(iv) For every k ∈ N, htop(T

k) = khtop(T ).

We now discuss two quite different attempts to define topological entropy for Markov
operators using directly the topological entropy of an associated pointwise generated
action. There are at least two such natural actions of continuous transformations: the
shift on the space of trajectories, and the adjoint operator on the space M(X) of all Radon
probability measures. The examples below show that the entropy of neither one suits our
expectations.
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Example. Let X be a finite space consisting of n elements. Denote by p the probability
measure uniformly distributed on X and let T be given by the formula

Tf (x) =
∫

X

f dp = 1

n

∑
y∈X

f (y),

i.e. T sends each function to a constant. Clearly, we expect the entropy of such a trivial
(when observed on functions) action to be zero. Indeed, our Proposition 4.4 yields
htop(T ) = 0. However, the corresponding action on trajectories is the full shift over the
alphabet consisting of n symbols, and its topological entropy equals log n.

Example. Consider the one-sided full shift (X, T ) over the alphabet {0, 1}. Let (an)n∈N
be any sequence chosen from the unit interval. For every natural n define a measure
Pan = {an, 1−an} on {0, 1} and let µ(an) = ∏

Pan be the product measure on X. It is easy
to verify that

T ∗µ(an) = µ(an+1).

Since (an)n∈N was an arbitrary sequence from the unit interval, the system (M(X), T ∗)
contains a subsystem isomorphic to the full shift over the infinite alphabet [0, 1] having
infinite entropy. Thus, the topological entropy of T ∗ does not satisfy the main demand
concerning equality with classical entropy in the pointwise case.

In fact, from the results obtained by E. Glasner and B. Weiss in [GW] it follows that if
T is an ergodic map of positive entropy then the entropy of T ∗ is infinite (earlier the same
authors proved that zero entropy is preserved). A natural question arises if the entropy of
an arbitrary Markov operator T is equal to the entropy of the adjoint map T ∗ restricted to
the smallest compact invariant subset containing all Dirac measures.

5. Relation between measure-theoretic and topological entropy
THEOREM 5.1. Let X be a compact Hausdorff space and T a Markov operator acting on
C(X). For every invariant Radon probability measure µ on X

hµ(T ) ≤ htop(T ).

Proof. We will refer to hµ as defined in §3. By (3.1.3), for calculations of measure-
theoretic entropy it suffices to consider families F of continuous functions. Let F be a
subset of CI (X) of cardinality r . Choose a positive number ε, such that 2rε log(2rε) <

1/2r . For every A ∈ AF , we denote by F≥A the set of all functions in F , for which
f (x) ≥ t whenever (x, t) ∈ A. Analogously, F<A is the set of all functions from F , such
that f (x) < t if (x, t) ∈ A. It is easy to see that the union of F<A and F≥A is the whole
of F . We define a new partition Bε

F of X × [0, 1] consisting of compact sets:

BA = Bε
A,F = {(x, t) : (∀f∈F≥A

)t ≤ f (x) − ε}
∩ {(x, t) : (∀f ∈F<A

) t ≥ f (x) + ε},
where A belongs to AF , and the open set

B̃ = B̃ε
F =

⋂
A∈AF

BA
c = {(x, t) : (∃f ∈F )|f (x) − t| < ε}.
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Notice that A ∩ BA′ = BA if and only if A = A′. Otherwise, the intersection A ∩ BA′ is
empty. Thus,

Hµ̂(AF |Bε
F ) = Hµ̂(AF ∨ Bε

F ) − Hµ̂(Bε
F )

= −
∑

A∈AF

µ̂(A ∩ B̃) log(µ̂(A ∩ B̃))

(recall that µ̂ is the product of µ with the Lebesgue measure). Since µ̂(B̃) < 2rε and AF
has at most 2r elements, we get

Hµ̂(AF |Bε
F ) < 1. (5.0.1)

Similarly, for every natural number k

Hµ̂(AT kF |Bε
T kF ) < 1, (5.0.2)

because ε was chosen according only to the cardinality of F . We will abbreviate∨n−1
k=0 Bε

T kF by Bn (note that this is not equal to Bε
Fn). Using the estimates (5.0.1) and

(5.0.2) we derive

Hµ̂(AFn |Bn) ≤
n−1∑
k=0

Hµ̂(AT kF |Bε
T kF ) < n.

Hence,
Hµ̂(AFn) < Hµ̂(Bn) + n.

Since the entropy of a partition is always less than or equal to the logarithm of its cardinality
we need to estimate the number of sets in Bn.

Let U ′ be a minimal subcover chosen from Uε
Fn . Obviously,

cardBn ≤
∑
U∈U ′

card {B ∈ Bn : B ∩ U �= ∅}.

Every U ∈ Uε
Fn has the form

⋂n−1
k=0 Uk , where Uk ∈ Uε

T kF . For each Uk there exists

A ∈ AT kF such that Uk is contained in the union of Bε
A,T kF and B̃ε

T kF . This implies that

card
{
B ∈ Bn : B ∩ U �= ∅} ≤ 2n,

and hence
cardBn ≤ 2n · N(Uε

Fn ).

Thus, finally, we have

Hµ̂(AFn) < log N(Uε
Fn ) + n log 2 + n,

implying
hµ(T ) ≤ htop(T ) + log 2 + 1.

Repeating the argument for T k , replacing T and using Propositions 3.8 and 4.5(iv) we
complete the proof by writing

hµ(T ) = 1

k
hµ(T k) ≤ 1

k
(htop(T

k) + log 2 + 1) ≤ htop(T ) + log 2 + 1

k

for arbitrary k. �

https://doi.org/10.1017/S014338570400032X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570400032X


Measure-theoretic and topological entropy of operators 481

Remark 5.2. The problems with proving the converse inequality arise from the lack of full
subadditivity of the sequence Hµ(Fn). In the classical proofs the invariant measure µ

achieving large entropy is usually constructed as an accumulation point of measures µn

attaining large values for Hµn(Fn) for increasing n. Subadditivity guarantees that
measures with large indices m > n maintain large values of Hµm(Fn). Then, continuity
(or upper semicontinuity) of Hµ(Fn) is used to yield large values for the entire sequence
at µ. In our situation the index N , above which the sequence Hµn(Fk) becomes
‘nearly subadditive’, depends on µn and may be much larger than n. The alternative
functions H ′

µ(Fn) and H ′′
µ(Fn) are subadditive in n, but, in turn, they need not be upper

semicontinuous on measures.
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