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We study the coupled surface and grain boundary motion in a bi-crystal in the context of

the ‘quarter loop’ geometry. Two types of normal curve velocities are involved in this model:

motion by mean curvature and motion by surface diffusion. Three curves meet at points where

junction conditions are given. A formulation that describes the coupled normal motion of the

curves and preserves arc length parametrisation up to scaling is proposed. The formulation

is shown to be well-posed in a simple, linear setting. Equations and junction conditions are

approximated by finite difference methods. Numerical convergence to exact travelling wave

solutions is shown. The method is applied to other problems of physical interest.

1 Introduction

Coupled surface and grain boundary motion is an important phenomenon controlling the

grain growth in materials processing and synthesis. A commonly used model to study this

coupled effect is called ‘quarter loop’ geometry introduced by Dunn et al. [11].

In the quarter loop geometry, there are two crystal grains between which there is

an interface called grain boundary as shown in Figure 1. The two grains are of the

same material and differ only in their relative crystalline orientation. The grain boundary

runs parallel to a free surface before it turns up and attaches to upper surfaces at the

groove root. When heated at a specific temperature, the grain boundary migrates to

reduce the surface energy and to heal the orientation mismatch. In the literature, it has

been assumed that the bi-crystal is uniform along the cross-section direction. Thus it is

reasonable for us to consider only two-dimensional (2D) geometry in this paper. A robust,

numerical method is developed in this work that can approximate the dynamics of this

physical situation. The method can also be applied to other mixed order curve network

problems.

This geometry contains two types of motion. One of them is mean curvature mo-

tion for the grain boundary. The other one is surface diffusion for the upper surfaces.

More detail about this model is given in [16]. Motion by mean curvature is a second

order parabolic evolution law in which the normal velocity of an interface is given
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Figure 1. The quarter loop bi-crystal geometry.

by

Vc = Aκ. (1)

Here, Vc denotes the velocity in the normal direction, κ stands for the mean curvature

and A is a physical constant. Surface diffusion is a fourth-order parabolic evolution law,

first proposed by Mullins [21] to model the curvature-driven diffusion on the surface of a

crystal. With surface diffusion, the normal velocity of an interface is proportional to the

surface Laplacian of mean curvature. In two dimensions, the normal velocity is given by

Vd = −Bκss. (2)

Here, s is arc length parametrisation and B is a physical constant. It is shown in an

appendix to this paper that it is possible to take both A and B as one by rescaling time

and space.

Surface diffusion is an intrinsically difficult problem to solve numerically even in two

dimensions [8, 9, 25]. It is stiff due to the fourth order derivatives such that an explicit

time-stepping strategy requires very small time steps. Moreover, owing to the lack of a

maximum principle, a curve may self-intersect during its evolution. To handle problems

with changing topology due to self intersection, level set methods are typically used, and

[25] describes a level set method for curves that move with surface diffusion. However,

it is not possible to handle the curves with mixed velocity type and junction conditions

of the quarter loop problem in a level set method. Therefore, we have turned to a

formulation that involves curve tracking. The formulations in this paper will be proposed

in parametrised form.

Several contributions have been made to the study of numerical methods for curvature-

driven interface motion problems [4, 7, 9, 20, 25, 33]. For an overview we refer to [10].

In [2, 12], the authors presented formulations allowing only normal direction evolu-

tion and therefor redistribution of grid points in the tangential direction was needed to

avoid coalescence. The importance of nontrivial tangential velocity has been emphasised

and utilised in [7, 20]. In [7], the authors developed a parabolic formulation and util-

ised its smoothing property to adjust grid points. Another approach for uniform grid

distribution is proposed by Mikula and Sevcovic in [20]. They explicitly introduced a
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tangential velocity function into the formulation and derived an evolution partial differ-

entiation equation (PDE) to move the points tangentially such that a uniform grid was

maintained. Variational formulations were also developed to describe curvature-driven

motion and solved by finite element method, for example [27–29] and more recently

[3].

The analysis and simulation of the mixed order has been considered in different

contexts. In many cases, linearised or model problems are considered as in [30–32]. In

other cases, steady state or travelling wave solutions are considered [15–19]. Despite

this continued experimental and mathematical interest in the mixed order problem (see

also [11, 13, 21]), numerical methods that describe the general, nonlinear, time-dependent

evolution of this phenomena had not been developed. In this paper, we contribute a robust

numerical method using a finite difference discretisation. The travelling wave solutions for

the mixed order problem in [17] are used to verify numerical convergence in this paper.

Our computations give some evidence that these travelling waves are stable even to large

perturbations. Our method maintains uniform distribution of grid points in arc length

without redistribution by interpolation or using an evolution equation for the tangential

velocity. Instead, we use an algebraic equation to adjust the position of grid points. This

approach does not depend on the type of the motion and therefore the same approach

for both the curvature motion and surface diffusion can be used.

Other authors [3] recently and independently considered a similar numerical approach

to the type of curve networks we consider here. Their method is based on a variational

formulation of the problem and they used a finite element method to approximate it.

Careful consideration of their formulation shows that in the semi-discrete case (time

continuous) their method leads to uniform distribution of grid points in a manner similar

to our approach. However, this exact discrete property is lost in their fully discrete (space

and time) scheme but retained in ours. In addition our method is much easier to implement,

allowing modifications to the junction conditions and normal motion in a straight-forward

way. Neither their method nor ours is particularly amenable to computations in three

dimensions (3D) in the situations of interest where complex topological changes occur.

Great success has been obtained using thresholding methods for curvature-driven networks

in 3D [23]. Some recent work on networks with higher order motion has been done [24].

However, there are difficult unanswered questions on how to implement these techniques

for mixed order problems.

The outline of this paper is as follows. In Section 2, equations are derived for the

motion by mean curvature and the motion by surface diffusion. The PDEs for the normal

motion are augmented by algebraic conditions that the parametrisation be scaled arc

length. Our formulation is thus a partial differential algebraic equation (PDAE) system.

The boundary conditions including the triple junction conditions and approximate far-

field boundary conditions are also discussed. In Section 3, the well-posedness for a linear,

PDAE system that is closely related to the full nonlinear problem is analysed. Both the

problem and our formulation are shown to be well-posed in this setting. In Section 4, we

discuss the numerical details including discretisation and time stepping. A convergence

study to an exact travelling wave solution is given. In Section 5, we use our method on

two more examples of interest: the Sun–Bauer geometry and grain growth in a thin film

array.
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Figure 2. An example when one of the surfaces is not single-valued.

2 The formulation

In this section, we derive a PDAE system to model the coupled motion. It is a new

formulation of the quarter loop problem. Other formulations of the problem are presented

in detail in [16, 17, 19]. For the coupled grain boundary motion, the function y(x) which

represents the exterior surface may not be single-valued as shown in Figure 2. This

phenomena is physically reasonable [15, 18]. For this reason, we use parametrised curves

to describe the interfaces. Here and throughout this paper we use X = (u(·), v(·)) to

represent a parametrised curve with u(·) and v(·) being the coordinates. The arc length

parameter is denoted by s. In the method presented below, σ will denote a parameter that

is scaled arc length, where the scaling can be different for each curve and where σ is in

the fixed interval [0, 1] with σ = 0 the junction and σ = 1 the edge of the computational

domain. The vectors τ and n stand for unit tangential direction and unit normal direction,

respectively. κ stands for curvature.

2.1 Motion by mean curvature

The basic evolution law (1) should be satisfied, i.e.,

Xt · n − κ = 0. (3)

However, this leaves the tangential velocity arbitrary. In [7], the problem was extended

to be parabolic in both components in a convenient way. A discretisation of this model

was applied successfully to curve networks with junctions: the tangential parabolicity

makes the parametrisation more uniform in time. The natural extension of this idea

to surface diffusion (discussed below) would make the tangential components of that

motion fourth order parabolic as considered in [13]. This approach leads to a scheme

with parameters in the tangential parabolicity that need to be chosen carefully to keep a

monotone parametrisation in a numerical approximation. Details of this approach as well

as an approximation in Cartesian formulation can be found in the archival report [22].

Much better numerical performance is achieved using the following approach.

Equation (3) is augmented by a condition that directly imposes uniform grid spacing:

|Xσ|σ = 0. (4)
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Note that

|Xσ|σ = (
√

Xσ · Xσ)σ =
Xσ · Xσσ

|Xσ| .

so (4) can be replaced by

Xσ · Xσσ = 0. (5)

The idea of maintaining equally spaced grid points on a curve has been considered in

several other works [14, 20]. Our problem is simpler than some described in [14] in that

it is not necessary to keep track of material points on the curves. The idea of applying (5)

to enforce an equi-spaced parametrisation appears to be a new idea. In previous work,

particular choices of tangential velocities were used that caused the parametrisation to

move towards an equi-spaced parametrisation.

We have

Xs = τ

n = τ⊥

Xss = κn.

Thus, κ in (3) above can be replaced by the expression

κ =
Xσσ

|Xσ|3 · X⊥
σ (6)

involving σ derivatives.

2.2 Motion by surface diffusion

In a similar way we derive the PDAEs for the motion by surface diffusion,

Xt · n + κss = 0

(7)Xσ · Xσσ = 0.

Using the fact that σ will be scaled arc length, this leads us to the expression

κss =
κσσ

|Xσ|2 (8)

to be used in (7), where κ is computed from (6).

2.3 The system

We use superscripts to denote the three curves, 1 for the grain boundary, 2 for the upper

left surface and 3 for the upper right surface as shown in Figure 3. The full PDAE system

for the coupled motion is

X1
t · n − κ= 0

Xi
t · n + κss = 0 i = 2, 3

Xi
σ · Xi

σσ = 0 i = 1, 2, 3

⎫⎬
⎭ . (9)

https://doi.org/10.1017/S0956792508007390 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792508007390


316 Z. Pan and B. Wetton

Figure 3. Sketch of the grain boundary groove showing the curve numbering.

This is an index-1 PDAE system. Usually an index-1 DAE can be handled without any

numerical difficulties [1], and that is our experience with discretisations of this system.

2.4 Boundary conditions

The grain boundary and the two upper surfaces meet together at one end (σ = 0) which is

referred as triple junction. The other end of the three curves tends to infinity in the quarter

loop geometry. For numerical reasons, we compute this problem in a bounded domain.

This domain is chosen large enough such that it can simulate the motion accurately at

least for a short time. This restriction is reasonable since the curves are asymptotically flat

for the parts far away from the triple junction. Computations presented later in this paper

are constrained in a finite but ‘large enough’ domain and the curves are parametrised

with σ ∈ [0, 1]. At σ = 1 the three curves meet the artificial domain boundary separately.

2.4.1 Triple junction conditions at σ = 0

We first discuss the boundary conditions at the triple junction, see Figure 3. The three

curves should have common coordinates at σ = 0, i.e.,

X1(0, t) = X2(0, t) = X3(0, t). (10)

A balance of surface tensions (Young’s law) gives two angle conditions:

X1
σ

|X1
σ| · Xi

σ

|Xi
σ| = cos θ = cos

(
π

2
+ arcsin

m

2

)
i = 2, 3, (11)

where θ denotes the angle between the grain boundary and the exterior surfaces and

m = γgrain/γexterior is a constant measuring the relative surface tensions γ between them.

The continuity of the surface chemical potentials implies that

κ2 = −κ3 (12)
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and the balance of mass flux implies that

κ2
s = κ3

s , (13)

where the expression for κs is obtained by taking the derivative of the expression of

κ directly. We must be careful about condition (12) which specifies that the two upper

surfaces have the same convexity. Since σ has opposite directions for the two curves, the

odd derivatives will have opposite signs when computed by parametric form. Thus we

should put a minus sign for (12) and keep the same sign for (13).

2.4.2 Boundary conditions at σ = 1

At the other ends of the curves we put several artificial conditions such that they do not

move during evolution and stay ‘flat’. The following conditions are imposed at σ = 1,

Xi
t(1, t) = 0 for i = 1, 2, 3

Xi
σσ(1, t) = 0 for i = 2, 3.

3 Well-posedness for the PDAE system

In this section, we analyse the well-posedness of a linear model of the system proposed

above. We linearise around fixed straight line solutions and get a system that has the

same highest order behaviour as the original problem near the junction. The analysis here

gives results that match those that more complicated nonlinear analysis gives, where such

analysis exists [6, 13]. Therefore, we believe the results of the analysis should apply to

the full nonlinear problem. In [6], three curves moving with curvature motion meeting

at a junction are analysed. In [13], three curves undergoing surface diffusion meeting

at a junction are analysed. There is a gap in the theory for the quarter loop problem,

which is of mixed order, for which the underlying theoretical estimates for the equal order

problems in [26] are not available. The analysis below corresponds to the first step in

such estimates.

3.1 Linearisation of the system

To linearise the system we consider a perturbation expansion around the tangential

direction at the triple junction for each curve, i.e.,

X1 = d1σ + εX̄1 + O(ε2)

X2 = d2σ + εX̄2 + O(ε2)

X3 = d3σ + εX̄3 + O(ε2),

where di = (di1, di2) are constant vectors standing for the unit tangential direction. Sub-

stituting the above forms into (9), keeping only the leading order terms and dropping the
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bar superscript results in the linear system:

X1
t · d⊥

1 = X1
σσ · d⊥

1

Xi
t · d⊥

i = −Xi
σσσσ · d⊥

i i = 2, 3

di · Xi
σσ = 0 i = 1, 2, 3

⎫⎬
⎭ . (14)

The linearisation of the triple junction conditions is given below:

Common point at σ = 0:

X1 = X2 = X3 (15)

Angle conditions:

d1 · Xi
σ + di · X1

σ − (d1 · di)
(
d1 · X1

σ + di · Xi
σ

)
= 0 i = 2, 3 (16)

Continuity of surface chemical potential:

X2
σσ · d⊥

2 = −X3
σσ · d⊥

3 (17)

Balance of mass flux:

X2
σσσ · d⊥

2 = X3
σσσ · d⊥

3 . (18)

Without changing the well-posedness of the problem we specify one of the tangential

directions, say d1 = (0,−1)T . Further we assume

θ ∈
(π

2
, π

)
(19)

so that di,1, di,2 � 0 for i = 2, 3. The linearised system (14) has solution in the form

u1 = A11e
−

√
sσ

v1 = B11

u2 = A21e
λ1σ + B21e

λ2σ + C21

v2 = −k2

(
A22e

λ1σ + B22e
λ2σ

)
+ 1

k2
C21

u3 = A31e
λ1σ + B31e

λ2σ + C31

v3 = −k3

(
A32e

λ1σ + B32e
λ2σ

)
+ 1

k3
C31

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (20)

The variables above stand for their Laplace transforms and s temporarily stands for the

Laplace transform variable. The term ki = di1/di2 is a constant and

λ1 =

(
−

√
2

2
+

√
2

2
i

)
4

√
s,

λ2 =

(
−

√
2

2
−

√
2

2
i

)
4

√
s.
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In the expressions above, we consider Re(s) > 0 and the roots of s are chosen such that

| arg(
√
s)| < π

2
,

∣∣ arg
(
s1/4

)∣∣ < π

4
(21)

When these solutions are applied to the boundary conditions (15)–(18), an 8 × 8 matrix

M is obtained. The determinant of M can be computed directly:

|M| =
s7/4

(
4
√

2 sin(2θ) − 16s1/4 sin θ
)

cos4 θ
. (22)

The problem will be well-posed with at most algebraic growth in time provided that this

determinant is nonzero for any s with Re(s) > 0. Under the conditions in (19), we see that

(22) can only be zero when s1/4 is negative real, violating (21). In summary, the problem is

well-posed as long as all angles at the junction are less than π. The marginal case θ = π/2,

excluded above, can also be shown to be well-posed.

4 Numerical discretisation

In this section, we present the discretisation of the PDAE system (9) and junction

conditions (10)–(13). The basic approach is to use a staggered grid in σ and we shall

denote the approximations by capital letters with subscripts, i.e., Xj(t) ≈ X((j−1/2)h, t) =

(u((j − 1/2)h, t), v((j − 1/2)h, t)) where h is the grid spacing and N = 1/h is the number of

interior grid points for σ ∈ [0, 1].

Let Dk denotes the second order centred approximation of the kth derivative, i.e.,

D1Xj = (Xj+1 − Xj−1)/2h

D2Xj = (Xj+1 + Xj−1 − 2Xj)/h
2

and let D+ and F denote forward differencing and forward averaging, respectively,

D+Xj = (Xj+1 − Xj)/h,

FXj = (Xj+1 + Xj)/2.

Using these standard differences, κ in (6) and then the surface diffusion term κss in

(8) can be computed. Note that the ghost values X1
0 , X

2
0 , X

3
0 , κ

2
0 and κ3

0 are needed to

complete the stencils of these discrete equations, see Figure 4. These eight values can be

related to interior values using the eight junction conditions (10)–(13) as shown below.

The discretisation at the junction is somewhat subtle. Instead of using two ghost points

for each fourth order surface diffusion problem we use only one ghost point (Xi(0)) plus

another ghost value (κi0) indicating the curvature at the ghost point. Other approaches

[22] may require additional tangential conditions at the triple junction.

4.1 Junction conditions

Condition (10) is approximated by

FX1
0 = FX2

0 = FX3
0 . (23)
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Figure 4. Sketch of the ghost values at the triple junction.

The angle conditions (11) are approximated by

D+X
1
0∣∣D+X
1
0

∣∣ · D+X
i
0∣∣D+X
i
0

∣∣ = cos θ i = 2, 3.

Conditions (12) and (13) are approximated by

Fκ2
0 = −Fκ3

0

D+κ
2
0∣∣D+X
2
0

∣∣ =
D+κ

3
0∣∣D+X
3
0

∣∣ .
The discretisation of the artificial conditions at σ = 1 is straightforward.

4.2 Time stepping

In order to avoid the excessively small time steps due to the stiffness of the surface

diffusion term, we use implicit time stepping. For simplicity we use backward Euler

method. It is found computationally that spatial errors dominate temporal errors. Since

the three curves are strongly coupled by the junction, we solve for interior and ghost

points simultaneously. The nonlinear system is solved by Newton’s method.

4.3 Numerical results

We compare the numerical results to an exact travelling wave solution [17]. An example is

shown in Figure 5. Notice the uniformity of the grid points enforced by our formulation.

A numerical convergence study is shown in Table 1. The convergence rates shown in

Table 1 are close to 2 as expected.

Without difficulty we can apply this scheme to the case when the surface curve is not a

single-valued function as shown in Figure 6.

Another example is shown in Figure 7. Here, a large perturbation to a travelling wave

solution is given. The travelling wave structure redevelops after some time. This and other

runs conducted with similar behaviour indicate the 2D stability of these travelling wave

solutions.
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Figure 5. Comparison of the numerical solution to the exact travelling wave, zoomed in near

triple junction. Dotted line: numerical solution; solid line: travelling wave solution; time step size:

∆t = 0.01.

Table 1. Estimated errors and convergence rates for PDAE formulation with m = 0.5.

Errors are evaluated at t = 0.02

dt ∆s L2 norm Rate L∞ norm Rate

0.2 2.7837e-04 1.8996e-03

dt = 0.01∆s2 0.1 7.2717e-05 1.9366 5.4444e-04 1.8029

0.05 1.8732e-05 1.9568 1.4732e-04 1.8858

5 More examples

In this section, we consider two more examples, the Sun–Bauer geometry [19, 31, 32]

and the grain growth in a thin film array [5, 30]. Both examples preserve the complexity

of the the coupled motion but are considered in different contexts in which travelling

wave solutions are not available. Previous studies considered linearised or approximate

problems. Our method is able to accurately compute the full nonlinear problem.

In the Sun–Bauer geometry, an initially straight grain boundary attaches to the exterior

surface with an inclination angle β as shown in Figure 8. After annealing, the grain

boundary migrates to the right with inclination angle α at the groove root. The same

junction conditions as in the quarter loop geometry are applied. In [19, 31, 32], the

authors studied the mobility of grain boundary under different inclination angle β. They

assumed, the grain boundary migrates at a constant speed which is measured in an

experiment and then iterates linearised surface diffusion and grain boundary motions

alternately. They considered the asymptotic behaviour of the grain boundary when β is
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Figure 6. Plot of the results for scheme with m = 1.96 which has non-single-valued upper surface.

Dotted line: numerical result; solid line: travelling wave solution.

Figure 7. Results for initial data that is a perturbation of a travelling wave.

small and drew the conclusion that the coupled motion can be separated into two time

regimes. In Regime I, the grain boundary turns vertically at the groove root. In Regime II,

the turning relaxes following two different paths depending on the value of γ/β where

γ = 2arcsin(m
2
) is the supplementary dihedral angle between the exterior surfaces. If

β < γ/6, the grain boundary root moves continuously away from the initial position,

but the grain boundary tries to remain straight. For β > γ/6, the grain boundary bends

towards the free surface to be inclined with angle γ/6 at the groove root.

Figures 9 and 10 show the numerical results solved from our coupled nonlinear

formulation with different inclination angle β. The simulations start with a straight line

attached to a horizontal surface. The relative surface tension is m = 0.5 and therefore

γ/6 = 0.083. Figure 9 shows the results with β = 0.05 and Figure 10 uses β = 0.9. The

grain boundary turns almost perpendicular (α is small) at the beginning and then follows

two different paths as described in [19, 31, 32]. For β = 0.05 < γ/6, inclination angle α
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Figure 8. The Sun–Bauer geometry.

Figure 9. Sun–Bauer geometry simulation with β < γ/6. Top: the groove and grain boundary

profile; middle: groove velocity versus time; bottom: inclination angle versus time.

keeps being small. For β = 0.9 > γ/6, α begins to increase and approaches to a value

(roughly 0.078) that is smaller than but roughly comparable to the value γ/6 in the linear,

approximate theory [19, 31, 32]. The velocity of groove root is also shown as a function

of time. It is not constant but the acceleration is small especially after some time of

evolution. Our accurate nonlinear simulations of the full model show that the predictions

of the earlier work are approximately valid.

The second example is about the grain growth in a thin film array. In [30], it is predicted

that film breakup occurs when grain sizes are larger than the film thickness. They simulated

the case when breakup occurs using an approximate linear system, assuming the surface

and the boundary deviate slightly from their inclinations. We employed our formulation

to compute the evolution of a periodic array in a 2D film where breakup occurs. The

computation starts with grain boundaries perpendicular to exterior surface. The qualitative

behaviour in our simulation shown in Figure 11 is similar to the results in [30]. However,

there are certain geometric anomalies in the earlier work (angles at triple junctions are

not matched accurately) from approximations made in their model that are computed

correctly by our approach.
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Figure 10. Sun–Bauer geometry simulation with β > γ/6. Top: the groove and grain boundary

profile; middle: groove velocity versus time; bottom: inclination angle versus time.

Figure 11. The evolution of film morphology during breakup.

6 Conclusion

In this work, we proposed a new formulation to describe coupled surface and grain

boundary motion. This formulation is well-posed (shown in a reduced, linear setting) and

easy to implement numerically with finite differences. The numerical method is shown

to converge to an exact solution with expected accuracy. It was applied to several cases

of physical interest, giving more accurate solutions than previous studies. An attractive

feature of the scheme is that grid points on each curve are equi-spaced. This maintains

uniform resolution and allows for convenient global regridding when necessary. This could

be necessary as curves in a network expand or shrink.
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This scheme can also be used to efficiently simulate the motion of a curve that involves

only mean curvature motion or surface diffusion as shown in [22]. It is more accurate

than the scheme proposed in [7] for curvature motion networks. It is the scheme with the

best overall performance of several finite difference approaches to this problem [22].

An avenue that has received no attention in the literature is the behaviour of this

problem in 3D. In future work, the authors intend to pursue basic questions such as

the stability of the travelling waves found in [17] to 2D and then 3D perturbations.

Some evidence of the stability of travelling waves to 2D perturbations is given by the

computations in this work.
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Appendix. Scaling the motion laws

The original curvature motion and surface diffusion are given as

Xt · n=Aκ

Yt · n= −Bκss

}
. (24)

We show here that both A and B can be made unity by rescaling time and space.

We scale time by

t̃ = Tt.

The spatial variable X,Y are scaled

X̃ = RX, Ỹ = RY .

We can easily verify that

s̃ = Rs,

where s̃ is the arc length in the new system. It also follows that

X̃s̃ = Xs, Ỹs̃ = Ys, κ̃ =
1

R
κ, κ̃s̃s̃ =

1

R3
κss.

Now equation (24) becomes

X̃t̃ · n= AR2

T
κ̃

Ỹt̃ · n= −BR4

T
κ̃s̃s̃

}
. (25)

Here we use the same notation n since the normal direction does not change. If we choose

R =

√
A

B
, T =

A2

B
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then equation (25) becomes

X̃t̃ · n = κ̃

Ỹt̃ · n = −κ̃s̃s̃.

This completes the normalisation of coefficients A and B. Note that in [17], the authors

retain the ratio A/B in their equations. They use the remaining degree of freedom to

normalise the distance between the grain boundary and the upper surface far from the

junction in their travelling wave solutions.
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