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We consider control policies for perishable inventory systems with random input
whose purpose is to mitigate the effects of unavailability+ In the basic uncontrolled
system, the arrival times of the items to be stored and the ones of the demands for
those items form independent Poisson processes+ The shelf lifetime of every item
is finite and deterministic+ Every demand is for a single item and is satisfied by the
oldest item on the shelf, if available+ The first controlled model excludes the pos-
sibility of unsatisfied demands by introducing a second source of fresh items that
is completely reliable and delivers without delay whenever the system becomes
empty+ In the second model, there is no additional ordering option by outsourcing+
However, to avoid the most adverse effects of unavailability, the demands are clas-
sified into different categories of urgency+An incoming demand is satisfied or not
according to its category and the current state of the system+ For both models, we
determine the steady-state distribution of the virtual outdating process, which is
then used to derive the relevant cost functionals: the steady-state distribution and
expected value of the number of items in the system, the rate of outdatings, as well
as, for model 1, the rate of special orders from the external source and, for model 2,
the rate of unsatisfied demands+

1. INTRODUCTION

We consider a perishable inventory system ~PIS! in which the arrival times of items
to be stored and those of the demands are independent Poisson processes+ The pur-
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pose of this article is to study the effect of certain control policies that prevent
possible serious consequences of periods of emptiness+

When uncontrolled, the PIS in question works as follows+ Fresh stock arrives
at the system according to a Poisson process with rate l+Without loss of generality,
we assume that the lifetime of each item is one time unit+ If an item has not been
consumed by demand before its expiration date, it is discarded+ The demand arrival
times form a Poisson process with rate m+ Demands are satisfied on a first in–first
out ~FIFO! basis ~i+e+, oldest items are issued first!+A demand that arrives when the
system is empty is lost+ This basic model as well as several extensions have been
studied in previous articles ~see, e+g+, @8,16,17,21–24# !, in which also various appli-
cations to real-life systems such as blood banks and food storage places are exhib-
ited+ Examples of perishable products include blood portions, packaged chemicals
and pharmaceuticals, fresh foods, and photographic film+

To assess the efficiency of this PIS, one has to take into account the number of
items on the shelf ~causing holding costs!, the losses due to outdatings of unused
items, and the rate of demands that arrive while the system is empty and thus have
to leave unsatisfied+ There are intuitively obvious trade-offs among these three ran-
dom quantities; for example, an on-average well-filled shelf will usually entail a
large number of outdatings and a small number of unsatisfied demands+ To balance
the cost, various types of intervention in the PIS are possible+ Bang-bang policies in
the case that the demand and the arrival process can be controlled have been studied
in @19,20# + In this article, we focus on avoiding the undesired consequences of
unsatisfied demands under fixed model parameters+

In particular, in blood banks the unavailability of items ~blood portions! when
they are demanded can cause serious, possibly disastrous, consequences+ The first
model we propose excludes the possibility of unsatisfied demands by introducing a
second source of fresh items that is completely reliable and delivers without delay+
This second source is always available in the sense that a batch of items from it arrives
immediately whenever the controller places an order+To rule out unsatisfied demands,
n0 items are ordered whenever the PIS becomes empty+ Thus, after an instantaneous
emptiness, the shelf is refilled with n0 items+We call this model the never-empty PIS+

The selection of n0 ~if there is a choice! depends, of course, on the structure of
the ordering cost+ Suppose that the price of a special order of n0 items is of the form
D � dn0+ Intuitively, a high value of the setup cost D will be an incentive for the
controller to place special orders for a large number of items, but one has also to
take into account that a large order size n0 will have the undesirable consequence of
causing many outdatings, indicating an inefficiently run PIS+ On the other hand, if
D is small compared to d, the price per item in the delivery, n0 will probably be
chosen small; in the extreme case D � 0, there is no point in ordering more than one
item at a time+ Since a change of any of the underlying parameters ~l, µ, n0,D,d !
gives rise to contrary cost effects, no easy monotonicity properties can be expected+
In the case n0 � 1, the key stochastic process in our approach will be seen to be
Markovian; this property is, however, lost for n0 � 1, making the analysis more
complicated ~and more interesting!+

310 S. K. Bar-Lev, D. Perry, and W. Stadje

https://doi.org/10.1017/S0269964805050175 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050175


In our second model, there is no additional ordering option by outsourcing+ To
avoid the most adverse effects of unavailability, the demands are classified into
different categories of urgency+ An incoming demand will then be satisfied or not
according to its category and the current state of the system+ We will analyze a
particular PIS with urgency classification, in which there are two categories of
demands: Those of type 1 will be satisfied whenever the shelf is not empty, whereas
those of type 2 will only be satisfied if there are at least m0 items on the shelf or the
residual lifetime of the oldest one is at most t0 ~with prespecified m0 and t0!+

In general, inventory models for nondurable goods can be classified into two
categories:

1+ In decay and obsolescence models, the quality or utility of the whole inven-
tory decreases over time ~either continuously or by shocks!+Models of this
kind are surveyed in @15,27# + In @1# , the stationary distribution of the inven-
tory level for a decay model under continuous review is derived using level
crossing in a way similar to our approach+ Related problems are discussed
in @26# +

2+ In perishability models, the commodities are discrete; any individual item
has its own finite lifetime while being stored in the inventory+ These models
can be further divided into two classes+
2a+ In the first class, all items are delivered upon request by some deter-

ministic source+ Various replenishment ordering policies are discussed
in the literature: Reference 4 deals with continuous review ~s,S! poli-
cies in the case of zero lead times and no backorders; references 9–12
study ~s,S! policies for models with backorders+ Positive lead times are
considered in @5,13,14# + For periodic review, see @15,29,30# + Other
replenishment policies are studied in @6,7,18,28# +

2b+ The PISs in the second class are based on the assumption that the arrival
times of the items are random and form a renewal process+ In this arti-
cle, we suppose a Poisson arrival stream+ The connection to queuing
and finite dam models, which is also basic for the approach of this arti-
cle, was established in @8#; see also @3# + References 16, 17, and 21–24
deal with various ramifications such as impatient demands, handling of
by-products, nonconstant lifetimes, disasters, variable input and demand
rates, and external valuation of the PIS+ In @2# , a related service system
is investigated+

In Model 1, we try to combine replenishment by random arrivals ~2b! with an
ordering option from an external source ~2a! so as to avoid losses due to unsatisfied
demands+Model 2 pursues the same goal by satisfying less urgent demands only if
the inventory is well filled or the oldest item is close to outdating+ The article is
organized as follows+ Model 1 is analyzed in detail in Section 2+We introduce the
basic so-called virtual outdating time ~VOT! process and derive its steady-state
distribution+ It turns out that all relevant cost functionals can be expressed in terms
of this distribution+ The VOT process is regenerative but not Markovian; so, for its
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steady-state analysis, we have to exploit a certain duality, leading to a Markov pro-
cess for which classical techniques can be used+A similar approach yields the cost
functionals for a modification of Model 1, including lead times+ In Section 3, we
study the model with urgency classification+

2. MODEL 1: THE NEVER-EMPTY PIS

2.1. The Virtual Outdating Process

Demands arrive in the system according to a Poisson process of rate m+ Items enter
the PIS in two kinds: regular single arrivals at Poisson times of rate l ~independent
of the demand process! and special arrivals that are ordered in batches of fixed size
n0 and arrive immediately every time the shelf becomes empty ~either because the last
item on the shelf is taken away by a demand or its lifetime of one time unit expires!+

Let A~t ! be the age of the oldest item ~i+e+ the time it has spent in the system at
time t !+ Note that there are exactly n0 oldest items just after a special order; their
ages then start increasing in parallel and they are taken away successively when
new demands arrive+ The ones that are still in the system after one time unit ~if any!
are then outdated simultaneously+ Let A � $A~t !6 t � 0% + The key process in our
analysis is the VOT process W � $W~t ! : t � 0% defined by W~t !�1 � A~t !+ Clearly,
W~t ! can be interpreted as the time from t until the next outdating if no demands
arrive after t+

The VOT process W is regenerative ~composed of independent and identically
distributed ~i+i+d+! cycles! but non-Markovian+ If n0 �1,W is a Markov process, but
this property does not hold if n0 � 1+ A new cycle starts whenever W reaches its
maximum value 1+ If the system has just been emptied at some time t, then n0 new
items immediately start their shelf life and W~t !� 1+ Let us describe the stochastic
evolution of W during a cycle+ First, W decreases linearly at rate 1 until these n0

items have all been taken away by demands or their common lifetime expires after
one time unit+As the interarrival times of demands are exp~µ!, the first jump of W
occurs after min@E~µ, n0!,1# time units, where E~µ, n0! is an Erlang-distributed
random variable with parameters m and n0+ Before this jump, new items may have
arrived according to a Poisson process of rate l+ Let El be the time until the first
regular item arrival in the cycle+ If El � min@E~µ, n0!,1# , this new regular item
becomes the oldest one and W jumps up by El; otherwise, the system has been
emptied after min@E~µ, n0!,1# time units and a new special batch arrival starts the
next cycle+ In the first case, the cycle goes on and the next jump occurs at the arrival
of the next demand ~after an exp~µ!-distributed time! or when 0 is hit, whichever
comes first, and the position after the jump at that time, say s, is equal to min@W~s!�
El
' ,1# , where El

' is exp~l! distributed+ If this latter minimum is 1, a new cycle
starts; otherwise, the next jump occurs after another exp~µ!-distributed time or when
0 is hit, and so on+ All of the random variables mentioned in this description are
independent+

A typical sample path of W for n0 � 4 is depicted in Figure 1+ The following
notation is used:
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A1,A2 � arrival times of demands that are satisfied without jumps

B1,B2 � arrival times of demands that are satisfied with jumps

C1,C2 � cycles

D1,D2 � Poisson item arrival times

O1,O2 � outdating times

S1,S2 � times of special orders

The first cycle shown in Figure 1 starts with the arrival of a special order in an
empty system at time S1+ The first three special items are taken away by demands at
times A1, A2, and A3+ At time B1, the fourth special item leaves+ The regular item
that arrived at time D1 becomes the only item on the shelf; it is outdated at time O1+
A second regular item arrived before, at time D2; this item satisfies a demand at
time S2 and the system becomes empty+ Thus, a new cycle starts with the instanta-
neous arrival of four special items+ Two of them are taken away by demands and the
other two are outdated at time O2 � S3+ Since there were no Poisson item arrivals in
the meantime, a new cycle begins+

A little reflection shows that W has the same distribution as the content process
of a special modified finite dam, which can be defined as follows:

a+ The dam has capacity 1 ~overflows being immediately lost! and releases
water at rate 1+

b+ The dry periods are deleted and the wet ones are glued together+
c+ The inputs are exp~l! distributed+

Figure 1. A typical sample path of the VOT process in Model 1 with n0 � 4+
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d+ Whenever the dam is completely filled, the time until the next input is Erlang
distributed with parameters m and n0, truncated at 1, whereas the sub-
sequent interarrival times between inputs are exp~µ! distributed+

The long-run cost of operating a never-empty PIS of the above type will depend
on the following characteristics:

i+ the number of items in the system in steady state ~causing holding costs!;
ii+ the rate l* of outdatings;

iii+ the rate µ* of special orders+

For a long-run average cost analysis and optimization, one can, for example, try to
minimize a linear combination

C � aE~K !� bl* � cµ*, (2.1)

where a, b, and c are positive constants and K is a random variable indicating the
number of items in the system in steady state+ Decision variables can be the arrival
rates l and m within certain ranges ~if they are controllable! and the batch size n0 of
the special orders+ For example, if the ordering cost per batch is of the form D �
n0 d, where D is some setup cost and d is the extra cost per unit, then the long-run
average contribution of special orders to the total cost will be ~D � n0 d !µ*+ The
three components E~K !, l*, and µ* of C depend on l, m, and n0 in a complicated
way+ The following monotonicity properties seem obvious: l* is increasing in l
and n0 and decreasing in m; µ* is decreasing in l and n0 and increasing in m+ The
dependence of E~K ! on l, m, and n0 is not clear+ For example, a larger value of l
gives rise to more random item arrivals but decreases the number of special orders,
so the overall change of E~K ! is hard to predict+ One may conjecture that if n0 � 1,
the expected inventory level, as a function of l, first decreases and then increases:
When l� 0, there are only special orders, which increase the inventory level from
zero to n0 every time they are placed+As l increases starting from zero, the number
of special orders will get smaller+ For moderately large values of l, the reduction in
inventory due to the decrease of their frequency is likely to outweigh the increase
due to random arrivals+ However, as l gets large, the more and more frequent ran-
dom arrivals will probably outweigh the decrease of K due to fewer special orders+

As a scenario in which l and m can be controlled, consider a blood bank receiv-
ing donations from and serving hospitals in certain neighboring areas+ Suppose that
the arrival times of donations and demands from different neighborhoods are inde-
pendent+ Then by selecting or excluding certain regions, the total rates of arrivals of
items and demands are at least partially controllable+

We will derive the steady-state density fW of the VOT process W and then express
the rates l* and µ* and the distribution of K in terms of fW +As W is not Markovian,
it seems difficult to determine fW directly+ Our approach is to construct a certain
dual process that turns out to be Markovian, so that its steady-state distribution can
be obtained by well-known methods ~mainly level crossing techniques and PASTA!+
The basic arguments of this approach have been expounded in @25# +
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2.2. The Dual Process and the Steady-State Density

We now construct the sample paths of the dual process V � $V~t !6 t � 0% from those
of A by the following steps:

1+ Replace any jump of A by a linear decreasing piece of trajectory with
slope �1 on an interval whose length is equal to the jump size+

2+ Replace the increasing pieces of A between its jumps by positive jumps
whose sizes are equal to the lengths of the linear segments+

Thus, the process V results from a certain “reversal” of jumps and linear segments
of the sample paths+ In Figure 2, it is shown how the sample path of W displayed in
Figure 1 is transformed first into the corresponding path of A and then to that of V+

V can be interpreted as the content level process of a special regenerative Mar-
kovian finite dam of the M0G01 type having the following features:

i+ The underlying dam of V has capacity 1 ~so that the jumps due to inflows
will be truncated at level 1! and V decreases at rate 1 ~between positive
jumps!+

Figure 2. A typical sample path of the VOT process and its transformation to the
corresponding path of A and to that of V+
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ii+ Instantenuous inflows arrive according to a Poisson process with rate l+
The jump sizes are exp~µ! distributed+

iii+ Every dry period of V is replaced by an Erlang-distributed jump with param-
eters m and n0, which is truncated at 1+

Thus, the dry periods are deleted, whereas the wet periods, forming the cycles of V,
are glued together and start with special jumps+ The cycle lengths have the same
law as the times between truncated overshoots of W ~or the times between hittings
of 0 of A!+ In Theorem 1, we relate the steady-state laws of V and W+

Theorem 1: Let fW and fV be the steady-state densities of W and V, respectively.
Then for all x � @0,1# ,

fV ~x! � fW ~1 � x!

� l�
0

x

e�µ~x�v! fV ~v! dv� fV ~0! (
j�0

n0�1 e�µx~µx! j

j!
+ (2.2)

Hence, fV is given by

fV ~x! � ce ~l�µ!x�1 � (
i�0

n0�2

~µ0l! i�1�1 � e�lx (
k�0

i ~lx!k

k! ��, (2.3)

where the empty sum is defined to be 0 and

c � ��
0

1

e ~l�µ!x�1 � (
i�0

n0�2

~µ0l! i�1�1 � e�lx (
k�0

i ~lx!k

k! �� dx��1

+

Proof: By level crossing theory ~LCT!, the steady-state densities fW~x! and fV~x!
are given by the long-run average rates of W and V, respectively, of downcrossing
level x ~see, e+g+, @25# !+ Let 0 � T1 � T2 � {{{ be the times of jumps of A and let 0 �
t0 � t1 � t2 � {{{ be the times of jumps of V+ By construction, A~Tn�!� V~tn�1�!
and A~Tn�!� V~tn�!, and if Tn is a time at which A hits 0, then Tn � tn+ Thus, the
long-run average downcrossing rates at any level x are the same for A and V, so that
their steady-state densities coincide+ Since W~t !� 1 � A~t ! for all t, we obtain the
first equation in ~2+2!+ To prove that the right-hand side of ~2+2! is equal to fV~x!, we
note that there are two types of arrival determining the jumps of V+ The first are
Poisson arrivals of rate l+ For them, the conditional rate of upcrossings of level x
given V � v is le�µ~x�v! , since their jump sizes are exp~µ! distributed+ By decon-
ditioning on V � v and using PASTA, we immediately recognize the first term on
the right-hand side of ~2+2! as the upcrossing rate at x due to the Poisson arrivals+
Jumps of the second type occur whenever V downcrosses level 0�+ By LCT, fV~0!
is the long-run average rate of downcrossings of level 0+ Any jump following a
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hit of 0 is the first jump in some cycle of V, and an upcrossing of level x takes place
if this jump is greater than x, an event that has probability (j�0

n0�1 e�µx~µx! j0j!
because the first jump of the cycle is Erl~µ, n0!+

To solve the integral equation ~2+2!, let

g~x! � e µx fV ~x!, b~x!� (
j�0

n0�1

~µx! j0j!

and take derivatives+We obtain

g '~x! � lg~x!� g~0!b '~x!,

whose general solution is

g~x! � g~0!elx��
0

x

e�lub '~u! du � C�,
where C is some constant+ For fV , this yields

fV ~x! � e ~l�µ!x fV ~0!��
0

x

e�lub '~u! du � C�+ (2.4)

Setting x � 0 shows that C � 1+ Moreover,

�
0

x

e�lub '~u! du � (
i�0

n0�2 µi�1

i!
�

0

x

uie�lu du+ (2.5)

The functions ai~x!� *0
x uie�lu du appearing in ~2+5! satisfy the recursion

ai ~x! � l
�1 @iai�1~x!� x ie�lx # , i � 1,

a0~x! � l
�1~1 � e�lx !

and are thus given in closed form by

ai ~x! � l
�i�1i!�1 � e�lx (

k�0

i ~lx!k

k! �+ (2.6)

Inserting ~2+6! in ~2+5! and the resulting expression in ~2+4! yields ~2+3!+ Finally,
fV~0! can be computed from the normalizing condition *0

1 fV ~x! dx �1+ The proof is
complete+ �

2.3. Outdatings, Special Orders, and the Number of Items in the System

It turns out that the relevant functionals can all be computed from the steady-state
density of the key process W+ Let us first determine the rates of outdatings and of
special orders+
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Lemma 1: The rate µ* of special orders is given by

µ* � µ�
0

1

e�lv fV ~v! dv� fV ~1!e�l+

Proof: The rate of special orders is the rate of truncated overshoots of level 1 by
W+ By conditioning on W and then deconditioning, it is seen that the rate of upcross-
ings of level 1 by W is µ*0

1 e�l~1�w! fW ~w! dw � fW~0!e�l + By Theorem 1, fW~w!�
fV~1 � w!+ �

Lemma 2: The rate l* of outdatings is given by

l* � l� µ � n0 µ*+

Proof: Since the Poisson arrivals and the arrivals of special orders have rates l
and µ*, respectively, and every special order is for n0 items, the long-run average
input of items is l � n0 µ*+ This equals the output rate, which is the sum of the
demand rate m plus the outdating rate l*+ �

Let K be the number of items in the system in steady state+ The third important
functional is the expected value E~K !+We now derive the generating function of K+
Define the event

B � $The oldest item present comes from a special order%+

To determine P~B!, consider the time interval I between two consecutive special
orders+ This interval can be split into the part during which items from the special
order launched at the beginning of I are still present and the ensuing part during
which only regular items are present ~this second part may have length 0!+ The
expected length of the first part of I is E~min@E~µ, n0!,1# !, whereas the expected
length of I is, of course, 10µ*+ The sequence of these split intervals clearly forms an
alternating renewal process+ Thus, it follows from the renewal theorem that

P~B! � µ*E~min@E~µ, n0 !,1# !+

Hence,

E~z K ! � E~z K 6B!µ*E~min@E~µ, n0 !,1# !

� E~z K 6Bc !~1 � µ*E~min@E~µ, n0 !,1# !!, 6z 6� 1+

Given Bc , all of the items in the system are of the Poisson arrival type+ Since the
event $K � k% means that k �1 Poisson arrivals entered during the age of the oldest
item and fW~1 � v!� fV~v!, we get

E~z K 6Bc ! � (
k�1

`

z k�
0

1 e�lv~lv!k�1

~k � 1!!
fW ~1 � v! dv

� zE~e�l~1�z!Veq !, (2.7)
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where Veq is a random variable having the steady-state distribution of V ~i+e+, its
density is fV !+

Given B, there may be several oldest items, all coming from some special order;
all other items present, if any, are of the Poisson arrival type+ The event $K � k%
then means that for some i � $1, + + + , n0 � 1% , exactly i out of n0 oldest items have
been taken away by i demands and there have been k � ~n0 � i ! Poisson item
arrivals after the last special order+ Note that in this situation, n0 � i �1 oldest items
are still on the shelf and k � n0 � i Poisson arrivals arrived during the age of the
oldest items+ Let Eµ, i and Eµ be two independent random variables that have the
Erl~µ, i ! and the exp~µ! distribution, respectively+ Then we obtain

E~z K 6B! � (
k�1

`

z k (
i�0

min@n0�1, k# �
0

1

fW ~1 � v!P~Eµ, i � v � Emu, i � Eµ !

�
e�lv~lv!k�~n0�i !

~k � ~n0 � i !!!
dv

� (
k�1

`

z k (
i�0

min@n0�1, k# �
0

1

fV ~v!��
0

`

P~v� x � Eµ, i � v!µe�µx dx�
�

e�lv~lv!k�n0�i

~k � n0 � i !!
dv+

We have proved the following result+

Lemma 3: The number K of items in the system in steady state has the generating
function

E~z K ! � µ*E~min@E~µ, n0 !,1# !zE~e�l~1�z!Veq !

� ~1 � µ*E~min@E~µ, n0 !,1# !!

� � (
k�1

n0�1

z k(
i�0

k �
0

1

fV ~v!��
0

`��
~v�x!�

v

e�µy
µi y i�1

~i � 1!!
dy�µe�µx dx�

�
e�lv~lv!k�n0�i

~k � n0 � i !!
dv� (

k�n0

`

z k (
i�0

n0�1 �
0

1

fV ~v!

� ��
0

`��
~v�x!�

v

e�µy
µi y i�1

~i � 1!!
dy�µe�µx dx� e�lv~lv!k�n0�i

~k � n0 � i !!
dv�+

(2.8)
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By Lemmas 1–3, the long-run average cost function aE~K !� bl*� cµ* intro-
duced in ~2+1! can now be completely expressed in terms of the steady-state density
fV , which, in turn, has been computed in Theorem 1+

2.4. A Model Variant with General Lead Times

Suppose now that as soon as the system becomes empty, the controller places a
special order of n0 items for which it takes a random lead time to arrive+ However,
due to their high cost, such special orders are canceled immediately if a regular
item arrives at the system before the specially ordered one+ For example, if D � n0 d
is the price of a special order, at least the setup cost D can be saved by this cancel-
lation+ In this variation of Model 1, there are times when the shelf is empty and
demands have to leave unsatisfied+

Let G be the common distribution function of the lead times and let G*~a!�
*0
` e�ax dG~x! be its Laplace transform+ Let GW � $ GW~t !6 t � 0% be the VOT process

of the modified PIS+ Unlike W, the process GW is not limited to being less than or
equal to 1+ When GW hits zero, it jumps to 1 � L, where L is a generic random
variable independent of the past and has distribution function G; then GW decreases
linearly at slope �1 until it hits 1 ~i+e+, the ordered items enter the system! or a
regular item arrives+ In this latter case, GW immediately jumps down to 1; the special
order is canceled+ Inside ~0,1# , GW evolves like the VOT process W above+

It is assumed here that the lifetime of an item starts when it arrives at the inven-
tory system+ Thus, we do not take into account reductions of the lifetimes of items
before their arrival at the PIS due to transportation+

It is not difficult to see that GW is a Markov process if n0 � 1 ~i+e+, if every
special order is for one item!+ In this case, the steady-state density can be derived by
level crossing+ If n0 � 1, neither GW nor its dual constructed as in Section 2+2 are
Markovian, so our approach is not applicable+ In the following, we assume that
n0 � 1+

Lemma 4: Let Y be the length of a time interval of emptiness and let h~a! be the
Laplace transform of Y. Then

P~Y � x!� e�lx @1 � G~x!# , x � 0,

and

h~a! �
l� aG *~l� a!

l� a
+

Proof: Clearly, Y � min~El,V !, where El ; exp~l!, V has distribution function
G, and El and V are independent+ Thus,
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P~Y � x!� P~El � x!P~V � x!� e�lx @1 � G~x!#

and

1 � h~a!

a
��

0

`

e�ax
P~Y � x! dx ��

0

`

e�axe�lx @1 � G~x!# dx

��
0

` 1 � e�~a�l!u

a� l
dG~u!�

1 � G *~l� a!

a� l
+ �

Now,we derive a Pollaczeck–Khintchine-type equation for the steady-state den-
sity Df of GW+

Theorem 2: The density Df satisfies

Df ~x! � �µ�
0

x

e�l~x�w! Df ~w! dw � Df ~0!e�lx, 0 � x � 1

e�lx @1 � G~x � 1!#� Df ~0!� µ�
0

1

elw Df ~w! dw�, x � 1,

(2.9)

and is thus given by

Df ~x! � � Df ~0!e ~µ�l!x, 0 � x � 1

Df ~0!e µ�lx~1 � G~x � 1!!, x � 1,
(2.10)

where

Df ~0! � � e µ�l � 1

µ � l
�

e µ�l @1 � G *~l!#

l
��1

+ (2.11)

Proof: In this model, there is no need for duality+ The value of the density Df at x is
equal to the long-run average number of downcrossings of level x by GW+ Thus, it is
sufficient to show that the right-hand side of ~2+9! gives the long-run average num-
ber of upcrossings of x+ First, let 0 � x � 1+ Then there are two upcrossing possi-
bilities: ~i! jumps at moments of Poisson demand arrivals and ~ii! jumps at outdating
times+ For upcrossings of type ~i!, note that the arrival rate of these jumps is m, and
when jumping upwards from level w � ~0, x!, the probability to upcross x is e�l~x�w!+
In case ~ii!, the VOT has to reach level 0 and then to jump above x ~which happens
with probability e�lx!+ This leads to the two terms on the right-hand side of ~2+9!
for x � @0,1# +

Now let x � 1+ For a jump upcrossing x the following has to happen:

a+ The VOT is at some level w � @0,1# and an item leaves because it is out-
dated or a demand takes it away+
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b+ The system becomes empty ~i+e+, no item has arrived during the last 1 � w
time units! and there is no regular ~Poisson! item arrival during the next
x � 1 time units ~which, together, has probability e�l~x�w! !+

c+ A special order is launched and will arrive after V time units ~where V has
distribution G! unless it is canceled due to a regular arrival earlier+

d+ We have V � x � 1 ~which has probability 1 � G~x � 1!!+

These arguments immediately lead to the right-hand side of ~2+9! for any x � 1+ The
solution of ~2+9! is straightforward, yielding ~2+10! and ~2+11!+ �

In this model, the rate µ* of unsatisfied demands is given by

µ* � µ� Df ~0!�
1

`

e µ�lx~1 � G~x � 1!! dx�� Df ~0!
µ

l
e µ�l @1 � G *~l!# +

For the rate of launching special orders, we obtain

µ�
0

1

e�l~1�w! Df ~w! dw � Df ~0!e�l � Df ~0!e µ�l,

and for that of cancelling special orders,

Df ~0!@e µ�l � e�l # @1 � G *~l!# +

3. MODEL 2: DIFFERENT CATEGORIES OF URGENCY

In this section, we assume that there is no possibility of additional ordering+ The
incoming demands are classified into different categories of urgency+ For simplic-
ity, assume that there are two such categories whose demand arrival times form
independent Poisson processes of intensities µ1 and µ2, respectively+ One possible
policy is then to satisfy high-urgency ~type 1! demands whenever possible ~i+e+, if
the PIS is not empty! and demands of the less urgent type 2 only if there are at least,
say, m0 � 1 items on the shelf+ However, it has the undesirable effect of not taking
the lifetime of the oldest item into account+ For example, under this policy, the
oldest item will not be used for a less urgent demand even if its residual lifetime is
very short, so its outdating is imminent+ To avoid this drawback, we propose to
consider the following policy+ Fix g � ~0,1! and an integer m0 � 1+ A demand of
type 1 is satisfied if and only if the PIS is not empty; a demand of type 2 is satisfied
if and only if there are at least m0 items in the system or the shelf age of the oldest
item is at least 1 � g+Any demand ~type 1 or 2! that is not immediately satisfied is
lost+ Let RW � $ RW~t !6 t � 0% be the VOT process of this PIS in steady state+We now
derive its steady-state density Nf using level crossing+
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Theorem 3: We have

Nf ~x! � ~µ1 � µ2 !�
0

x

e�l~x�w! Nf ~w! dw � Nf ~0!e�lx, 0 � x � g, (3.1)

Nf ~x! � µ1�
0

x

e�l~x�w! Nf ~w! dw � µ2�
0

g

e�l~x�w! Nf ~w! dw

� µ2�
g

x�e�l~x�w! � e�l~1�w! (
i�0

m0�2
~l~1 � x!! i

i! � Nf ~w! dw

� Nf ~0!e�lx, g � x � 1, (3.2)

Nf ~x! � µ1�
0

1

e�l~x�w! Nf ~w! dw � µ2�
0

g

e�l~x�w! Nf ~w! dw � Nf ~0!e�lx, x � 1+

(3.3)

Proof: Again, we have to show that the right-hand sides of ~3+1!–~3+3! are the
long-run average upcrossing rates of x, this time distinguishing three different cases+

Case 1: 0 � x � g+ Given that RW~t !� g, a jump of RW occurs in the infinitesimal
interval @t, t � dt # with probability ~µ1 � µ2!dt, since every incoming demand is
satisfied+ In order to lead to an upcrossing of level x ~� g!, the jump size has to
exceed x � RW~t !+ By PASTA, the latter probability is equal to *0

x e�l~x�w! Nf ~w! dw+
Since Nf ~0! is the long-run average rate of reaching level 0, the product Nf ~0!e�lx is
the rate of upcrossings of x by RW after hittings of 0+

Case 2: g � x � 1+ The arrival rate of demands of the first category is µ1 and such
a demand arrival causes an upcrossing of x with probability *0

x e�l~x�w! Nf ~w! dw+
Now, assume that at time t, a demand of type 2 is arriving+ There are two subcases+
If RW~t !� g, the demand is satisfied and an upcrossing of x occurs with probability
e�l~x�w! + However, if g� GW~t !� w � x, the demand is satisfied if and only if there
are at least m0 items on the shelf just prior to time t+ Moreover, to upcross level x,
the process RW has to jump from below x to @x,1!; this means that there have been
no item arrivals in the time interval ~t � ~1 � w!, t � ~1 � x!! and at least m0 � 1
arrivals in @t � ~1 � x!, t !, and the intersection of these two events has probability
e�l~x�w!~1 � (i�0

m0�2 e�l~1�x! @l~1 � x!# i0i!!+ As earlier, the term Nf ~0!e�lx is the
long-run average rate of upcrossings of level 0 following hittings of 0 by RW+

Case 3: x � 1+ Jumps upcrossing x can start from any level w � ~0,1! of RW for
type 1 demands, any level w � ~0,g# for type 2 demands, and, of course, from
level 0 ~when the system becomes empty and there have been no item arrivals for
more than x time units!+ �
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To solve ~3+1!–~3+3!, define G~x!� *0
x elw Nf ~w! dw+ This function satisfies

G '~x! � ~µ1 � µ2 !G~x!� Nf ~0!, 0 � x � g, (3.4)

G '~x! � ~µ1 � µ2 !G~x!� Nf ~0!

� µ2 el~x�1! (
i�0

m0�2
~l~1 � x!! i

i!
@G~x!� G~g!# , g � x � 1, (3.5)

G '~x! � µ1 G~1!� µ2 G~g!� Nf ~0!, x � 1+ (3.6)

It follows from ~3+4! that

G~x! � Nf ~0!
e ~µ1�µ2 !x � 1

µ1 � µ2

, 0 � x � g+

In particular,

G~g! � Nf ~0!
e ~µ1�µ2 !g � 1

µ1 � µ2

+

On @g,1# , we solve ~3+5! and find that

G~x! � exp ��
g

x

~µ1 � µ2 � µ2 h~u!! du�
� �G~g!��

g

x

~ Nf ~0!� µ2 G~g!h~v!!

� exp ���
g

v

~µ1 � µ2 � µ2 h~u!! du� dv�, g� x � 1,

where

h~x! � e�l~1�x! (
i�0

m0�2
~l~1 � x!! i

i!
+

On @1,`!, we have, by ~3+6!,

G~x! � G~1!� ~µ1 G~1!� µ2 G~g!� Nf ~0!!x, x � 1+

The density Nf is then obtained by Nf ~x!� e�lxG '~x!+ The constant Nf ~0! can be cal-
culated from the normalizing condition *0

` Nf ~x! dx � 1+
Now, consider the cost functionals+ Clearly, Nf ~0! is the outdating rate+ The num-

ber of items in the system is n � 1 if and only if the number of arrivals during the
sojourn time of the oldest item is n �1+ Thus, the generating function of the number
K of items in steady state is
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E~z K ! ��
1

`

Nf ~w! dw �(
k�1

`

z k�
0

1 e�l~1�w! @l~1 � w!# k�1

~k � 1!!
Nf ~w! dw

��
1

`

Nf ~w! dw � z�
0

1

e�l~1�z!u Nf ~u! du, 6z 6� 1+

Finally, the rate of unsatisfied demands is

µ1�
1

`

Nf ~w! dw � µ2�
g

`

Nf ~w! dw+

4. POSSIBLE EXTENSIONS

In many applications ~e+g+, to blood banks!, it seems realistic that the PIS is filled
by random arrivals as well as by scheduled orders+ Our Model 1 is a first attempt to
bridge the gap between the two kinds of model dealing exclusively with only one
type of replenishment+The control policy analyzed in this article is restrictive because
special orders are only placed when the system gets empty and because it assumes
that the external source never runs out of stock+An extension to policies ordering as
soon as some critical low level is reached and to the situation when it may happen
that special orders are not delivered would be of much interest+

A second shortcoming is, of course, the neglecting of lead times for the special
orders+ The modification considered in Subsection 2+4 tries to deal with this point+
However, it is based on the cancellation of special orders once a new random arrival
takes place+Without this assumption, the VOT process is no longer Markovian and
duality also does not seem to work+ The derivation of its steady-state distribution is
an open problem even for exponential lead times+

Model 2 can be generalized by introducing more than two different categories
of urgency+ The approach of Theorem 3 again leads to a solvable system of differ-
ential equations for the steady-state density+

The closed-form results derived in this article can form the basis of a sensitiv-
ity analysis and an optimization of the cost functionals with respect to the system
parametyers l, µ, and n0+ Due to the complexity of the explicit formulas, this will
require a considerable numerical effort+
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