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Abstract Nori’s connectivity theorem compares the cohomology of X × B and YB , where YB is any
locally complete quasiprojective family of sufficiently ample complete intersections in X. When X is the
projective space, and we consider hypersurfaces of degree d, it is possible to give an explicit bound for
d, sufficient to conclude that the Connectivity Theorem holds. We show that this bound is optimal, by
constructing for lower d classes on YB not coming from the ambient space. As a byproduct we get the
non-triviality of the higher Chow groups of generic hypersurfaces of degree 2n in Pn+1.
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1. Introduction

Let X be a smooth complex projective variety of dimension n + r, and let L1, . . . , Lr be
ample line bundles on X. For σi ∈ H0(X, Li), i = 1, . . . , r, let

Y :=
⋂
i

V (σi)
j

↪→ X.

Lefschetz’s Theorem on hyperplane sections says that the restriction map

j∗ : Hk(X, Z) → Hk(Y, Z)

is an isomorphism for k < n and injective for k � n. Let B :=
∑

i H0(X, Li). There is
the natural subscheme

YB := UbYb ⊂ X × B, Yb =
⋂
i

V (σi,b)

and if φ : T → B is a continuous map, one can form the Cartesian product

YT := YB ×B T
jT
↪→ X × T.

Lefschetz’s Theorem and Leray’s spectral sequence then imply the following assertion.
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308 C. Voisin

For any continuous map φ : T → B, the restriction map

j∗
T : Hk(X × T, Z) → Hk(YT , Z)

is an isomorphism for k < n and injective for k � n.

The theorem of Nori [13] improves this under the assumptions that the Li are suffi-
ciently ample and that the map φ is a submersion of smooth quasiprojective varieties.
Hence it concerns essentially the cohomology of locally complete families of complete
intersections of sufficiently large degree.

Theorem 1.1 (Nori). If the Li are sufficiently ample, for any submersive morphism
φ : T → B, with T smooth quasiprojective, the restriction map

j∗
T : Hk(X × T, Q) → Hk(YT , Q)

is an isomorphism for k < 2n and injective for k � 2n.

It is possible to give explicit bounds for how ample the Li must be. In particular, in
the case where r = 1 and X = Pn+1, so that we are looking at hypersurfaces Y of degree
d and dimension n in projective space, we have the following theorem.

Theorem 1.2. For d > 2n, and for any submersive morphism

φ : T → B = H0(Pn+1,OPn+1(1)),

with T smooth quasiprojective, the restriction map

j∗
T : Hk(X × T, Q) → Hk(YT , Q)

is an isomorphism for k < 2n and injective for k � 2n.

We will sketch below a proof of this theorem, for morphisms φ with value in B0, the
open set of B parametrizing smooth hypersurfaces. This proof, whose detail can be found
in [19], is the original proof of Nori in the case of hypersurfaces in projective space. Its
main interest is to emphasize the role played by infinitesimal variations of Hodge structure
on the cohomology of the fibres of the families YT → T . Similar computations have been
performed by Nagel [12] in the case of complete intersections.

One of our goals in this paper is to show the optimality of this bound, that is to exhibit
when d = 2n, n � 2, classes in H2n−1(YT , Q) which are not restrictions of classes on
Pn+1 ×T . More importantly, we will construct such classes using the higher Chow groups
CHn(Y, 1)ind for Y a generic hypersurface of degree d = 2n in Pn+1.

We will construct an element z ∈ CHn(Y, 1) for Y generic as above. This construction
can be done in family, giving an element z ∈ CHn(YU , 1), where U is a Zariski open set
of B0. We will show how to associate to this z a class αz ∈ H2n−1(YU , Q). Our main
results are the following theorems.

Theorem 1.3. For any generically finite morphism r : V → U , inducing r : YV → YU

the class r∗αz ∈ H2n−1(YV , Q) does not belong to the image of the restriction map
j∗
V : H2n−1(Pn+1 × V, Q) → H2n−1(YV , Q).
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As a consequence of this, we get the following theorem.

Theorem 1.4. For a general hypersurface of degree d = 2n, n � 2, in Pn+1, the element
z ∈ CHn(Y, 1) constructed above projects to a non-torsion element in CHn(Y, 1)ind.

This theorem generalizes in any dimension results obtained by Collino [4] and C. Oliva
(unpublished) in the case of quartic surfaces.

It also proves for n > 2 the existence of elements of CHn(Y, 1) which are annihilated
by the regulator map. (For n = 2, the regulator map is conjectured to be injective.) Such
elements have also been found on generic jacobians of curves by Collino and Fakhrudin [5].
The elements we construct are in fact in the deepest level of any Bloch–Beilinson type
filtration on higher Chow groups, since the cohomology of an hypersurface of dimension
n is algebraic, excepted in degree n.

Notice that the invariant we use to detect indecomposable higher cycles is the strict
analogue of the class of the spread out cycle, considered by Nori in [13]. Similar but more
complicated invariants have been considered by Saito (see [15], [16].)

The organization of the paper is as follows: in § 2 we recall the definition of Bloch’s
higher Chow groups, and show how to associate a cohomology class to a higher cycle. In
§ 3, we will consider hypersurfaces of degree d = 2n in Pn+1 and describe the construction
of the element z ∈ CHn(Y, 1) we alluded to above. In § 4 we will prove Theorems 1.3
and 1.4.

We now conclude this introduction by sketching the proof of Theorem 1.2.

Proof. The first step of the proof is to reduce the theorem to a comparison statement
in Dolbeault cohomology.

Proposition 1.5. Let U ⊂ V be a closed immersion, where U and V are smooth
quasiprojective complex manifolds, and let n be a given integer. In order to show that
the restriction map

rest : Hk(V, Q) → Hk(U, Q)

is an isomorphism for k < 2n and is injective for k = 2n, it suffices to show that the
restriction map in Dolbeault cohomology

restp,q : Hq(V, Ωp
V ) → Hq(U, Ωp

U )

is an isomorphism for p + q < 2n, q < n and is injective for p + q � 2n, q � n.

If U and V were projective, this would be a direct consequence of the Hodge decompo-
sition and Hodge symmetry, which shows that if restp,q is an isomorphism, restq,p is also
an isomorphism. In general, the proof plays on the fact that the mixed Hodge structure
on the relative cohomology Hk(V, U) (see [6]) has weights greater than or equal to k −1,
and that if the comparison statements in Dolbeault cohomology are satisfied as in the
proposition, then we have

F k−nHk(V, U) = 0.

This vanishing, together with the bound on the weights, implies that Hk(V, U) = 0 for
k � 2n.
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310 C. Voisin

The second step will use a basic fact about the Dolbeault cohomology of the total
space of a family π : X → B and the infinitesimal variation of Hodge structure on the
cohomology of the fibres Xt of the family.

Let k be a fixed integer. Then we have on B the local system of C−vector spaces
Hk

C
:= Rkπ∗C and the associated flat vector bundle Hk := Hk

C
⊗ OB which is endowed

with the flat Gauss–Manin connection ∇. There is the Hodge filtration F pHk ⊂ Hk by
holomorphic subbundles, which induces on each fibre the Hodge filtration

F pHk(Xt) ⊂ Hk(Xt, C) = Hk
t .

The graded pieces Grp
F Hk are usually denoted by Hp,q, p + q = k and are naturally

isomorphic to Rqπ∗Ω
p
X/B .

Griffiths transversality says that

∇F pHk ⊂ F p−1Hk ⊗ ΩB .

It can be used to define a Hodge filtration on the de Rham complex

DR(Hk
C) := 0 → Hk ∇−→ Hk ⊗ ΩB

∇−→ Hk ⊗ Ω2
B · · · .

We define F p DR(Hk
C
) to be the subcomplex

0 → F pHk ∇−→ F p−1Hk ⊗ ΩB
∇−→ F p−2Hk ⊗ Ω2

B · · · .

The graded piece Grp
F DR(Hk

C
) will be denoted by K·

p,q, p + q = k. It takes the form

0 → Hp,q ∇−→ Hp−1,q+1 ⊗ ΩB
∇−→ Hp−2,q+2 ⊗ Ω2

B · · · .

The differential ∇ of this complex is OB-linear and describes the infinitesimal variation
of Hodge structure on the kth cohomology of the fibres (cf. [19]). The degree in this
complex is the degree r of the sheaf of holomorphic forms appearing in each piece.

On the other hand, one can also do the following. We fix an integer l and study the
derived sheaves

Rπ∗Ω
l
X .

The sheaf Ωl
X is endowed with the Leray filtration

LrΩl
X := π∗Ωr

B ∧ Ωl−r
X .

The graded pieces Grr
L Ωl

X are canonically isomorphic to

π∗Ωr
B ⊗ Ωl−r

X/B .

The Leray filtration provides a spectral sequence abutting to Rπ∗Ω
l
X

Er,s
1 ⇒ Rr+sπ∗Ω

l
X ,

Er,s
1 = Rr+sπ∗ Grr

L Ωl
X = Ωr

B ⊗ Rr+sπ∗Ω
l−r
X/B = Ωr

B ⊗ Hl−r,r+s.

The differential d1 : Er,s
1 → Er+1,s

1 provides for fixed l and s a complex which will be
denoted by E·,s

1,l. We have now the basic result in Hodge theory (cf. [19]).
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Theorem 1.6. The complexes (E·,s
1,l, d1) and (K·

l,s,∇) are canonically isomorphic.

We now conclude the proof. Consider the inclusion of smooth quasiprojective varieties
over T :

YT
j−−−−→ X × T

πY

� πX

�
T T

⊂

We want to show that

j∗ : Hq(X × T, Ωp
X×T ) → Hq(YT , Ωp

YT
)

is an isomorphism for p + q < 2n, q < n and is injective for p + q � 2n, q � n. It suffices
by Leray’s spectral sequence to show the same result for the restriction maps

j∗ : RqπX∗Ω
p
X×T → RqπY ∗Ω

p
YT

in the same range. But by compatibility of the Leray filtration with the restriction map
j∗, we have a morphism

j∗ : Er,s
i,p,X×T → Er,s

i,p,YT

of spectral sequences associated to the Leray filtrations on Ωp
X×T and Ωp

YT
abutting

respectively to Rr+sπX∗Ω
p
X×T and Rr+sπY ∗Ω

p
YT

and it suffices to show that it is an
isomorphism on E2 for r + s + p < 2n, r + s < n, and injective for r + s + p � 2n,
r + s � n. But being an isomorphism on E2 means being a quasi-isomorphism on E1.
By the Theorem 1.6, we are then reduced to show that the complexes of infinitesimal
variations of Hodge structure K·

p,q,X and K·
p,q,Y built respectively for the constant family

X × T → T and the family YT → T are quasi-isomorphic in certain degrees.
Let us now assume that X = Pn+1 and YT is a family of hypersurfaces parametrized by

T . The cohomology of an hypersurface in degree less than or equal to 2n splits canonically
as the direct orthogonal sum

H∗(Y, C) = H∗(Y, C)prim ⊕ H∗(Pn+1, C), ∗ � 2n,

where the primitive cohomology H∗(Y, C)prim is non-zero only in degree n.
It follows that in degrees p + q � 2n, the complex K·

p,q,X is a direct summand of
the complex K·

p,q,Y , the other summand being the complex K·
p,q,Y,prim of infinitesimal

variation of Hodge structure on the primitive cohomology.
Hence to show that the two complexes K·

p,q,X and K·
p,q,Y are quasi-isomorphic in

certain degrees, with p + q � 2n, is equivalent to show that the complex K·
p,q,Y,prim is

acyclic in the same range.
The end of the proof is then the computation of the cohomology of the complexes

K·
p,q,Y,prim. It uses the identification of the fibre at F ∈ T of these complexes (or more

precisely of the dual complexes), with Koszul complexes of the jacobian ring of the
hypersurface YF , with respect to the S·TT,F -module structure

TT,F → Hom(R·
F → R·+d

F )
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312 C. Voisin

coming from the differential TT,F → Sd of φ : T → B and the natural module structure
of R·F over S·Sd. This description is due to Griffiths [10] and Carlson and Griffiths [3]
and follows from the description by residues of the Hodge structure on the primitive
cohomology of a hypersurface.

Having identified these cohomology groups to Koszul cohomology groups, the desired
vanishing of the cohomology of the complexes K·

p,q,Y,prim in degree l < n, for q + l < n

and d > 2n, follows from the following result due to Green [8] on the syzygies of projective
space.

Theorem 1.7. Let S = ⊕Sk be the polynomial ring in n + 2 variables. The sequence

Sa ⊗
l+1∧

Sd δ−→ Sa+d ⊗
l∧

Sd δ−→ Sa+2d ⊗
l−1∧

Sd,

where the Koszul differential δ is defined by

δ(P ⊗ A1 ∧ · · · ∧ Ak) =
∑

i

(−1)iPAi ⊗ A1 ∧ · · · Âi · · · ∧ Ak

is exact when a � l.

This concludes the proof of Theorem 1.2. �

2. Higher Chow groups and cohomology

In [2], Bloch defines the higher Chow groups CHk(X, i) for X an irreducible algebraic
variety defined over a field K.

Let ∆i ⊂ Ai+1
K be the affine simplex of dimension i

∆i =
{

(x1, . . . , xi+1),
∑

i

xi = 1
}

.

For any j ∈ {1, . . . , i + 1}, there is the obvious face map lj : ∆i−1 ↪→ ∆i, which is the
inclusion of the hyperplane xj = 0. Define Zk(X ×∆i)pr to be the subgroup of the group
of codimension k cycles, generated by subvarieties meeting properly all the X×∆σ where
∆σ is any face (of any codimension) of ∆i. Then we have a differential

d : Zk(X × ∆i)pr → Zk(X × ∆i−1)pr

dZ =
i+1∑
1

(−1)j l∗j Z,

where l∗j Z is the cycle associated to the subscheme of codimension k

Z
⋂

lj(∆i−1) ⊂ lj(∆i−1)
l−1
j∼= ∆i−1,

for Z ⊂ X × ∆i irreducible of codimension k.
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Bloch defines CHk(X, i) to be the homology group Hi(Zk(X × ∆∗), d).
It is immediate to see that CHk(X, 0) = CHk(X). Indeed X × ∆0 = X and the bound-

aries are generated by applying d to codimension k − 1 subvarieties W of X × ∆1. By
normalizing, we get normal varieties W̃ together with a generically finite proper map
n : W → X, and a meromorphic function φ on W̃ which is non-zero on any component
of W̃ : then the boundary dW is equal to n∗(W̃1 − W̃0), where W̃α := φ−1(α), α ∈ P1.
But, changing φ to ψ = φ/(1 − φ), W̃1 − W̃0 becomes the divisor of ψ so that these
cycles n∗(W̃1 − W̃0) generate in fact the subgroup of codimension k cycles rationally
equivalent to 0 on X.

We shall be interested in the group CHk(X, 1). Arguing as before, we see that it has the
following description: up to cycles coming from Zk(X), which are easily seen to be bound-
aries, elements of Zk(X × ∆1)pr can be seen as combinations Z =

∑
i mi(Zi, ni, φi),

where Zi is normal of dimension equal to dimX+1−k, ni : Zi → X, is a generically finite
proper map, and φi is a meromorphic function on Zi. Changing φi to ψi = φi/(1 − φi),
the condition that dZ = 0 is translated into the condition∑

i

mini∗ div ψ = 0

as a cycle of codimension k on X.
The boundaries are generated by ‘tame symbols’: let W be a normal variety of dimen-

sion equal to dimX + 2 − k, n : W → X, be a generically finite to one proper map, and
let φ1, φ2 be two meromorphic functions on W . Then the tame symbol (cf. [1])

T (φ1, φ2) ∈ ⊕
codim D=1

D⊂W

K(D)∗

is defined as ∑
D

(−1)νD(φ1)νD(φ2) φ
νD(φ2)
1

φ2
νD(φ1)

|D
.

If φ1 and φ2 have no common divisor, this is simply

φ1| div φ2
+

(
1
φ2

)
|div φ1

,

where, on the negative part of div φ2, the restriction of φ1 is defined to be 1/φ1.
One checks easily that modulo cycles coming from Zk(X), the boundary d(Zk(X×∆2))

is exactly generated by the (T (φ1, φ2), n), for W, n, φ1, φ2 as above. Here for T (φ1, φ2) =∑
iφi, φi ∈ K(Di)∗, we define (T (φ1, φ2), n) to be

∑
i(Di, n|Di

, φi), where in the last
sum, only those i for which n|Di

remains generically finite appear.

Remark 2.1. One checks easily that in the quotient group CHn(X, 1), a cycle

Z =
∑

i

mi(Zi, ni, ψi),
∑

i

mini∗ div φi = 0,
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has the same image as
∑

i(Zi, ni, ψ
mi
i ). It has also the same image as

∑
i

(Z ′
i, n

′
i, Nm(ψmi

i )),

where Z ′
i is the normalization of the image of Zi in X under ni, Nm(ψmi

i ) is the trace
of ψmi

i under the map ni : Zi → Z ′
i, and n′

i : Z ′
i → X is the induced map.

For these reasons, the relations (T (φ1, φ2), n) = 0 in CHk(X, 1) above imply as well
the relations n∗T (φ1, φ2) :=

∑
i(n(Di), Nmφi) = 0 in CHk(X, 1).

This description of the group CHk(X, 1) shows that there is a natural map

CHk−1(X) ⊗ K∗ → CHk(X, 1).

Indeed, if Z is a cycle of codimension k − 1 on X and α is a non-zero constant, we see α

as a nowhere zero function α|Z on Z. (If Z =
∑

i niZi, this function takes the value αni

on Zi.) This function has obviously an empty divisor, which gives a representative for
an element of CHk(X, 1). If furthermore Z is rationally equivalent to zero, so that there
exist normal varieties Wi

ni−→ X together with rational functions φi on them, such that
Z =

∑
i ni∗ div φi, we have

α|Z =
∑

i

ni∗T (α, φi).

Hence by the remark above α|Z goes to 0 in CHk(X, 1) and the above constructed map

Zk−1(X) ⊗ K∗ → CHk(X, 1)

factors through CHk−1(X) ⊗ K∗. Notice that, more generally, we have a map

CHk−1(X) ⊗ H0(X, O∗
X) → CHk(X, 1), (2.1)

which is defined exactly in the same way, replacing constants by nowhere vanishing
functions, and induces the previous one on

CHk−1(X) ⊗ K∗ ⊂ CHk−1(X) ⊗ H0(X, O∗
X).

Definition 2.2. The elements of the image of the map CHk−1(X) ⊗ K∗ → CHk(X, 1)
are called decomposable. The quotient

CHk(X, 1)ind := CHk(X, 1)/ Im CHk−1(X) ⊗ K∗

is called the indecomposable part of the group CHk(X, 1).

Let now X be a smooth complex quasiprojective variety of dimension n and let
Z =

∑
i(Zi, ni, φi),

∑
i ni∗ div φi = 0 represent an element z ∈ CHk(X, 1). We show

how to associate a class αz ∈ H2k−1(X, Z)/torsion to z. For each i, the proper map
ni : Zi → X, with dimZi = dimX + 1 − k together with the meromorphic function φi
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provides a current Di acting on differentiable forms of degree 2n − 2k + 1 with compact
support, given by

Di(η) =
1

2iπ

∫
Zi

n∗
i η ∧ dφi

φi
.

(Indeed, the form n∗
i η has compact support, and forms with logarithmic poles are known

to be integrable on analytic spaces.)
Lelong’s formula (cf. [19]) says now that the boundary δDi of Di in the sense of

distributions, is given by

δDi(η) =
∫

div φi

n∗
i η.

Denoting DZ =
∑

i Di, it follows that the condition
∑

i ni∗ div φi = 0 translates into the
equation

δDZ = 0.

The current DZ being closed has a cohomology class [DZ ] ∈ H2k−1(X, C). We now have
the following proposition.

Proposition 2.3.

(i) The class [DZ ] is integral, that is in the image of the natural map

H2k−1(X, Z) → H2k−1(X, C).

(ii) The class [DZ ] belongs to F kH2k−1(X), where F is the Hodge filtration of the
mixed Hodge structure on H2k−1(X, C) (cf. [19, I]).

(iii) The class [DZ ] is trivial if z = 0 in CHk(X, 1).

Proof. (i) We note that for each i the integrable form

1
2iπ

dφi

φi

on Zi, or on a desingularization Z̃i of Zi defines an integral class γi in H1(Z̃i −div φi, Z).
The natural composed map ñi : Z̃i → X induces a proper map

ñi : Z̃i − ñ−1
i (ñi(div φi)) → X − ñi(div φi).

The Gysin map gives then a class

ñi∗γi ∈ H2k−1(X − ñi(div φi), Z).

Hence we get a class ∑
i

ñi∗γi ∈ H2k−1(X − ∪iñi(div φi), Z).
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It follows from the definition of [DZ ] that the image of this class in the homology group
H2k−1(X − ∪iñi(div φi), C) is equal to the image by restriction of the class [DZ ] ∈
H2k−1(X, C). Since the restriction map

H2k−1(X, C) → H2k−1(X − ∪iñi(div φi), C)

is injective for dimension reasons, it follows that [DZ ] is rational. Since the cokernel of
the restriction map above in integral cohomology has no torsion, it is in fact integral.

(ii) This follows from the definition of the Hodge filtration on H2k−1(X) (cf. [19, I]),
the fact that the currents Di are of Hodge type (k, k − 1), that is annihilate forms of
degree (p, q), (p, q) �= (n−k, n−k+1), and that furthermore, they also have ‘logarithmic
growth at infinity’, with respect to any compactification of X with a divisor with normal
crossings at infinity.

(iii) Since the boundaries are generated by tame symbols, it suffices to show that if W is
normal of dimension n − k + 2, n : W → X is a generically finite to one proper morphism,
φ1, φ2 are two meromorphic functions on W , which we assume without common divisor
for simplicity, with boundary Z = (div φ1, n| div φ1 , φ2| div φ1

) − (div φ2, n| div φ2 , φ1| div φ2
),

the current DZ associated to Z is of class 0. But it follows again from Lelong’s formula
that it is the boundary of the current

η 
→
(

1
2iπ

)2 ∫
W

n∗η ∧ dφ1

φ1
∧ dφ2

φ2
.

�

The proposition allows us to define the integral class associated to the cycle z ∈
CHk(X, 1) to be

αz := [DZ ] ∈ H2k−1(X, Z)/torsion

for any representative Z of z.

Remark 2.4. With a little more work we could have defined αz to be in H2k−1(X, Z).

Remark 2.5. The invariant αz is in fact part of the image of z under the regulator map
ρ, but it is usually not considered. The regulator map will associate to z an element of
the Deligne cohomology group H2k−1

D (X, Z(k)). The Deligne complex

Z(k) = 0 → Z → OX → ΩX → · · · → Ωk−1
X → 0

admits the obvious map o to the complex Z supported in degree 0. Hence there is an
induced map

o : H2k−1
D (X, Z(k)) → H2k−1(X, Z).

One can show that
αz = o(ρ(z)).

The reason why αz is usually not considered, is the fact that when X is projective, the
map o is identically 0, so that in fact αz = 0. Indeed for a smooth projective variety

F kH2k−1(X)
⋂

H2k−1(X, Z) = 0,
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as shown by the Hodge decomposition and the Hodge symmetry. On the other hand,

Im o = {u ∈ H2k−1(X, Z), uC ∈ F kH2k−1(X)}.

In the sequel, we will use the invariant αz for the non-projective smooth variety YU ,
where U is an open set of H0(Pn+1,OPn+1(d)) and YU is the universal hypersurface
parametrized by U . In the case we will be considering, the invariant αz will be the only
interesting invariant of our cycle z. It is the exact analogue of the class of a cycle Z in
a family of varieties Y, which is used in [13], and happens to control in some cases the
more refined invariants of the cycles Zt in the fibres Yt.

3. Hypersurfaces of degree 2n in P n+1

Let Y ⊂ Pn+1 be a generic hypersurface of degree d = 2n, n � 2. We want to construct an
element z ∈ CHn(Y, 1). Following § 2, it will be represented by a sum Z =

∑
i(Ci, ni, φi)

such that
∑

i ni∗ div φi = 0 in Zn(Y ), where Ci are smooth curves, ni : Ci → Y are
morphisms, and φi are non-zero meromorphic functions on Ci.

In order to construct such Z, we start with the following easy facts concerning the
geometry of such hypersurfaces.

Lemma 3.1. Y being generic, the set

CY :=
{

y ∈ Y | ∃ line∆ ⊂ Pn+1, ∆
⋂

Y = dy or ∆ ⊂ Y

}

is a smooth non-empty projective curve.

Proof. Let π : P → Pn+1 be the projective bundle parametrizing pairs (y, ∆) where ∆

is a line and y ∈ ∆. We have dimP = 2n + 1. There is a vector bundle E ′
d on P , whose

fibre at (y, ∆) is equal to H0(OP1(d))/H0(OP1(d)(−dy)). We have rkE ′
d = d = 2n.

For each equation σ ∈ H0(OPn+1(d)), there is an associated section σ̃ of E ′
d given by

σ̃(y, ∆) = σ|∆ mod H0(OP1(d)(−dy)).

If Y is defined by σ, and DY ⊂ P is the zero set of σ̃, it is clear that the image of DY

under π is equal to CY . The proof follows then from the following lemma.

Lemma 3.2.

(i) π : DY → Pn+1 is an isomorphism on its image CY for generic Y .

(ii) DY is a smooth non-empty projective curve for generic Y .

Proof. (ii) follows from the fact that the bundle E ′
d is generated by the sections σ̃. Hence

the variety
D := {(σ, (x, ∆)) ∈ H0(OPn+1(d)) × P | σ̃(x, ∆) = 0}

is smooth of codimension 2n in H0(OPn+1(d)) × P . By Sard’s Theorem, it follows that
the generic fibre pr−1

1 (σ) = DY , Y = V (σ) is smooth of dimension 1, projective since pr1
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is proper. The fact that it is non-empty is shown by exhibiting one point in D where pr1
is of maximal rank.

(i) is proved by a dimension count. We introduce the variety

P ′ = P ×Pn+1 P − diagonal

parametrizing a point together with two distinct lines through it, and we consider inside
H0(OPn+1(d)) × P ′ the variety

D′ := {(σ, x, ∆1, ∆2) | σ̃(x, ∆1) = 0, σ̃(x, ∆2) = 0}.

One shows by the same argument as above that D′ is smooth of dimension strictly less
than the dimension of H0(OPn+1(d)). It follows that D′ does not dominate H0(OPn+1(d))
by the first projection. Since clearly the fibre D′

Y = pr−1
1 (σ), Y = V (σ) is equal to

DY ×Pn+1 DY − diagonal, it follows that for generic Y , the map π : DY → Pn+1 is one
to one on its image.

One shows by a similar argument that the map π : DY → Pn+1 has injective differen-
tial, for generic Y . This concludes the proof of Lemma 3.2 and hence of Lemma 3.1. �

We shall also use the following fact in the next section.

Lemma 3.3.

(i) The generic hypersurface Y does not contain a line.

(ii) Let B∆ ⊂ B := H0(OPn+1(d)) be the set of equations σ defining a hypersurface
containing a line. Then B∆ ⊂ B is a hypersurface, and for generic σ ∈ B∆, the
hypersurface Y defined by σ contains only one line.

Remark 3.4. The last fact is obviously false if n = 1, as is the Theorem 1.4.

Proof. Let G = Grass(1, n) be the Grassmannian of lines in Pn+1. Let Ed be the vector
bundle of rank d+1 = 2n+1 on G with fibre H0(O∆(d)) at ∆ ∈ G. Any σ ∈ H0(OPn+1(d))
defines by evaluation a section σ̃ of Ed on G. Since the sections σ̃ generate Ed, it follows
that the variety D′′ ⊂ B × G

D′′ = {(σ, ∆) | σ̃(∆) = 0}

is smooth of codimension 2n + 1. Since dimG = 2n it follows that D′′ cannot dominate
B by the first projection. This proves (i).

To prove (ii) we note that the above shows that dimD′′ = dimB − 1, so it suffices to
show that for n � 2 the subvariety D′′′ of B×G×G made of triples (σ, ∆1, ∆2), ∆1 �= ∆2,
such that σ̃(∆1) = σ̃(∆2) = 0, has dimension strictly less than dimB − 1, since we have

D′′′ = D′′ ×B D′′.

This fact is proved by similar arguments as before. �
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We now construct the announced Z. Let H be a hyperplane in Pn+1 in general position.
Let H∩CY = {x1, . . . , xN}, N = d0CY . We also fix a line ∆ and put h := ∆∩Y ∈ Z0(Y ).

For each i = 1, . . . , N , let ∆i be the line osculating Y at xi. We choose in Pn+1 a family
(∆t)t∈P1 of lines parametrized by P1, such that ∆0 = ∆i and ∆∞ = ∆. Let φi : Si → P1

be the ruled surface so obtained, and ni : Si → Pn+1 be the natural morphism. Let Ci

be the normalization of n−1
i (Y ). Then by restriction, we have

ni : Ci → Y, φi : Ci → P1

such that

ni∗(div φi) = dxi − h. (3.1)

Next we do the following. First of all, we choose a pencil of hypersurfaces (Yt)t∈P1 such
that Y0 = Y , and Y∞ is smooth and the variety CY∞ is a curve meeting properly Y . We
assume furthermore that the equations Ft defining Yt satisfy(

dFt

dt

)
|t=0

= Xd mod F0, (3.2)

where X is a defining equation for the hyperplane H. Let then S0 be the surface ∪tCYt ,
or more precisely the irreducible component of it dominating P1. We have the natural
morphisms

n0 : S0 → Pn+1

and

φ0 : S0 → P1.

Let C0 be the normalization of the union of the irreducible components of n−1
0 (Y ) dom-

inating P1. Then we have by restriction the two morphisms

n0 : C0 → Y, φ0 : C0 → P1.

By construction n0∗(φ
−1
0 (∞)) = CY∞ ∩ Y . We now have the following lemma.

Lemma 3.5. n0∗(φ
−1
0 (0)) is the cycle d

∑i=N
i=1 xi.

Proof. Let t be a local coordinate on P1 near 0 such that Ft is proportional to F0 +tXd,
which exists by equation (3.2). Since each curve CYt is contained in the hypersurface Yt,
we conclude that the section n∗

0F0 + tn∗
0X

d of n∗
0 ∗ O(d) is identically 0 on S0 near the

central fibre. Since the curve n−1
0 (Y ) is defined by the equation n∗

0F0, it is as well defined
near the central fibre CY by the equation tn∗

0X
d. Hence it is defined by the equation

n∗
0X

d away from the fibre CY which is defined by t = 0. Since CY is a component of
n−1

0 (Y ) which does not dominate P1, the curve C0 is, near t = 0, the normalization of
the curve defined by n∗

0X
d, which proves the lemma. �
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From this lemma we conclude that

n0∗(div φ0) = dH
⋂

CY − CY∞

⋂
Y ∈ Z0(Y ). (3.3)

To finish we now choose in Pn+1 a ‘deformation of the curve CY∞ to N∆’ parametrized
by P1. In other words, we have a surface

S′
0

n′
0−→ Pn+1

together with a morphism

S′
0

φ′
0−→ P1

such that
n′

0∗(div φ′
0) = CY∞ − N∆.

Again, let C ′
0 be the normalization of the union of the components of n′

0
−1(Y ) dominating

P1. Then we have the morphisms

n′
0 : C ′

0 → Y, φ′
0 : C ′

0 → P1

such that

n′
0∗(div φ′

0) = CY∞

⋂
Y − Nh ∈ Z0(Y ). (3.4)

We combine now the three relations: let

Z =
∑

i

(Ci, ni, φi) − (C0, n0, φ0) − (C ′
0, n

′
0, φ

′
0).

Summing up the equations (3.1), (3.3) and (3.4), we get

i=N∑
i=1

ni∗(div φi) − n0∗(div φ0) − n′
0∗(div φ′

0) = 0 ∈ Z0(Y ).

This gives the desired cycle.

Remark 3.6. It is easy to see that the class of the cycle Z in CHn(Y, 1) depends on the
choices made only up to the image of the composed map

CHn−1(Pn+1) ⊗ C∗ → CHn−1(Y ) ⊗ C∗ → CHn(Y, 1),

where the last map was defined in § 2. Indeed, all the rational equivalence relations we
have exhibited in Y come from rational equivalence relations in Pn+1. Hence a change of
choice would modify our cycle Z by the restriction of a cycle in Pn+1 (given by a sum of
surfaces together with rational functions of them such that the sum of their divisors is
equal to 0). So the remark follows from the easy-to-prove fact that

CHn(Pn+1, 1) = CHn−1(Pn+1) ⊗ C∗.
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4. Proof of Theorems 1.3 and 1.4

Let B = H0(OPn+1(d)), and B0 ⊂ B be the open set parametrizing smooth hypersurfaces.
The construction of z ∈ CHn(Y, 1) described in the previous section can be done in family,
over a Zariski open set U of B0. Let CB0 → B0 be the family of varieties CY introduced
in the previous section. The intersection CB0 ∩ H × B0 is a codimension n subvariety of
YB0 , which is étale over a Zariski open set U of B0. By definition of the curves CY , there
is a codimension n subvariety ∆1 of Pn+1 × U , whose fibre over σ is the union over i of
the lines ∆i osculating Yσ at xi ∈ H ∩ CYσ

. Hence as codimension n cycles in YU , we
have

∆1

⋂
YU = dCB0

⋂
(H × B0).

Shrinking U if necessary, we can choose now a family n1 : Σ1 → Pn+1 × U of surfaces in
Pn+1 parametrized by U , together with a meromorphic function φ1 such that n1∗ div φ1 =
∆1 −N∆×U . Intersecting it with YU , we get n1 : Z1 → YU and a meromorphic function
φ1 on Z1 such that

n1∗ div φ1 = dCU

⋂
(H × U) − Nh,

as a codimension n cycle in YU , where h = ∆ × U ∩ YU . On the other hand, shrinking U

if necessary, we can obviously do in family the construction of the curves n0 : C0 → Y ,
n′

0 : C ′
0 → Y together with the meromorphic functions φ0, φ′

0 on them. Hence we get a
cycle

Z = (Z1, n1, φ1) − (Z0, n0, φ0) − (Z ′
0, n

′
0, φ

′
0),

n1∗ div φ1 − n0∗ div φ0 − n0
′
∗ div φ′

0 = 0,

with class z ∈ CHn(YU , 1).
By remark 3.6, this element depends on the choices made only up to the image of

CHn−1(Pn+1) ⊗ O∗
U → CHn(YU , 1).

Let αz ∈ H2n−1(YU , Z) modulo torsion be the associated cohomology class. Our first
goal is to prove the following theorem.

Theorem 4.1. For any generically finite dominating morphism V
r−→ U with V smooth

quasiprojective, inducing r : YV → YU , the class r∗αz ∈ H2n−1(YV , Q) does not belong
to the image of the restriction map

j∗
V : H2n−1(Pn+1 × V, Q) → H2n−1(YV , Q).

The proof will split in two steps. Recall from Lemma 3.3 the hypersurface B∆ ⊂ B0

parametrizing smooth hypersurfaces containing a line. We will consider only the (smooth
and dense since n � 2) open set B∆,0 parametrizing hypersurfaces Yσ containing exactly
one line lσ.

Let
Y∆,0 → B∆,0
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be the family of hypersurfaces parametrized by B∆,0. Y∆,0 is a smooth hypersurface in
YB0 . There is the family of lines

L = ∪σlσ ⊂ Y∆,0

which is a codimension n − 1 smooth subvariety. Let

[L] ∈ H2n−2(Y∆,0, Z)

be its cohomology class.
We shall show the following propositions.

Proposition 4.2. The residue

ResY∆,0(αz) ∈ H2n−2(Y∆,0, Z)/torsion

is equal to [L].

Proposition 4.3. For any generically finite cover r : V ′ → B∆,0, inducing r : YV ′ →
Y∆,0, the class r∗[L] ∈ H2n−2(YV ′ , Q) does not belong to the image of the restriction
map

j∗
V ′ : H2n−2(Pn+1 × V ′, Q) → H2n−2(YV ′ , Q).

These two propositions imply Theorem 4.1. Indeed, let r : V → U be a generically
finite morphism, with V smooth quasiprojective. We can extend it to a proper morphism

r : V̄ → B0,

with V̄ smooth quasiprojective. Since r is proper, there exists an irreducible hypersurface
V ′ ⊂ V̄ such that r(V ′) = B∆, so that r : V ′ → B∆ is a generically finite dominating
morphism. Let V ′′ be the smooth part of r−1(B∆0), and let l be the ramification index
of r along V ′′. We shall also denote by r′ : YV ′′ → YB∆,0 the induced morphism. Then
we have

ResYV ′′ r∗αz = lr′∗ ResYB∆,0
αz ∈ H2n−2(YV ′′ , Z)/torsion. (4.1)

By Proposition 4.2, equation (4.1) gives

ResYV ′′ r∗αz = lr′∗[L] ∈ H2n−2(YV ′′ , Q). (4.2)

By Proposition 4.3, the right-hand side does not belong to the image of the restriction
map

j∗
V ′′ : H2n−2(Pn+1 × V ′′, Q) →∈ H2n−2(YV ′′ , Q).

This implies that r∗αz ∈ H2n−1(YV , Q) does not belong to the image of the restriction
map

j∗
V : H2n−1(Pn+1 × V, Q) → H2n−1(YV , Q).

Indeed, if r∗αz = j∗
V (γ), we have also

ResYV ′′ r∗αz = j∗
V ′′(ResPn+1×V ′′ γ).

�
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It remains to prove the propositions.

Proof of Proposition 4.2. We start with the following observation: let π : Z → B′ be
a family of reduced curves, with smooth total space, where B′ is a Zariski open set of B

containing a non-empty open set of B∆,0. Let φ be a meromorphic function on Z. Let
div φ = Rh + Rv be the decomposition of div φ into horizontal and vertical part, where,
horizontal means dominating B′ and vertical means supported over a hypersurface. Since
we are interested in the generic point of B∆,0 we may up to shrinking B′ assume that
Rv is supported over B∆,0. Let S := Rv ∩ Rh ⊂ Z∆,0. Let now B′′ := B′ − B∆,0. The
1-form

1
2iπ

dφ

φ

defines a cohomology class α in H1(ZB′′ − Rh, Z)/torsion. We can compute its residue
along the smooth part of Z∆,0 − S, which gives a class

Res α ∈ H0(Z∆,0 − S − Sing Z∆,0, Z).

Now this group is naturally isomorphic to the free abelian group generated by the com-
ponents of Z∆,0 and we have by Cauchy’s formula, the following fact.

Under this isomorphism, Res α identifies to Rv, which is also an element of the free
group generated by the components of Z∆,0.

Recall now our cycle in YU

Z = (Z1, n1, φ1) − (Z0, n0, φ0) − (Z ′
0, n

′
0, φ

′
0),

n1∗ div φ1 − n0∗ div φ0 − n0
′
∗ div φ′

0 = 0.

}
(4.3)

Coming back to its definition, it is immediate to see that we can extend over B0 along
a Zariski open set of B∆,0 the families of curves Z0, Z ′

0, Z1, together with the proper
morphisms n0, n′

0, n1 and the meromorphic functions φ0, φ′
0, φ1, loosing however the

equality (4.3). Let K ⊂ YU be the union of the algebraic sets ni(div φi). Then the
restriction to YU − K of the class αz is the sum of the classes ni∗αi, where

ni∗ : H1(Zi − (ni)−1(K), Q) → H2n−1(YU , Q)

is the Gysin morphism, and αi is the restriction to Zi − (ni)−1(K) of the class of the
1-form

1
2iπ

dφi

φi
.

(Here i = 0, 0′, 1.)
It follows from this that the restriction to the open set

Y∆,0 − K̄
⋂

Y∆,0 − ∪ini(Sing Zi∆,0)

of the class Res αz is equal to ∑
i

mi∗ ResZi∆,0 αi,
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where mi is the restriction of ni to Zi∆,0 − n−1
i (K ∪i ni(Sing Zi∆,0)). Applying the fact

explained above to each αi, we conclude that the restriction to

Y∆,0 − K̄
⋂

Y∆,0 − ∪ini(Sing Zi∆,0)

of ResY∆,0 αz is equal to the restriction to the same open set of the cohomology class of
the algebraic cycle ∑

i

ni∗((div φi)vert),

where again the subscript ‘vert’ means the part supported over Zi,∆,0. Since by dimension
reasons the restriction map

H2n−2(Y∆,0, Q) → H2n−2
(

Y∆,0 − K̄
⋂

Y∆,0 − ∪ini(Sing Zi∆,0), Q
)

is injective, it suffices now, to conclude the proof of Proposition 4.2, to prove that∑
i

ni∗((div φi)vert) = L.

But it suffices for that to recall the constructions of the (Zi, φi). It is immediate to see
that Z0 and Z ′

0 do not have a vertical component in the divisor of the function φ0, φ′
0,

since this divisor is finite over any generic point of B∆,0.
However, there is a vertical part of the divisor of φ1 which is exactly equal to L.

Indeed recall that Z1 is the intersection with YB′ of a surface in Pn+1 × B′ admitting a
meromorphic function φ1 such that

div φ1 = ∆1 − N∆ × B′. (4.4)

Here the fibre at each point F ∈ U of ∆1 is the union over i of the osculating lines
meeting YF at the intersection CYF

∩ H. Now, over B∆,0, the universal line L becomes
one reduced component of the family of curves CB∆,0 and the intersection L ∩ H × B∆,0

is a section σ 
→ xσ of L → B∆,0. For each point σ ∈ B∆,0, the osculating line ∆xσ is
equal to lσ hence is contained in Yσ. It follows that we have the inclusion L ⊂ ∆1 ∩ YB′ ,
which identifies L to an irreducible component of ∆1 ∩ Y∆,0. On the other hand, for any
σ ∈ B∆,0 the other osculating lines ∆i at the points xi �= xσ meet Yσ exactly along dxi.
Hence, intersecting equation (4.4) with Y∆,0, we find that div φ1 on Z1 has for unique
vertical component L. �

Proof of Proposition 4.3. Notice that it suffices to prove the result when the morphism
r : V → B∆,0 is the inclusion of a Zariski open set. Indeed, given any generically finite
morphism r : V → B∆,0 with V smooth, there exist Zariski open sets B∆,0,0 ⊂ B∆,0,
V0 ⊂ V such that the restriction r0 of r to V0 is a proper finite morphism of degree m

from V0 to B∆,0,0. We denote also by r0 : YV0 → YB∆,0,0 the induced morphism. Now
suppose there exists γ ∈ H2n−2(Pn+1 × V, Q) such that

j∗
V γ = r∗[L] ∈ H2n−2(YV , Q).
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Then we have as well, with γ′ = γ|Pn+1×V0

j∗
V0

γ′ = r∗
0 [L0] ∈ H2n−2(YV0 , Q),

where L0 ⊂ YB∆,0,0 is the universal line over B∆,0,0. But we can apply r0∗ to this equality:
if γ0 := r0∗γ

′ ∈ H2n−2(Pn+1 × B∆,0,0, Q), this gives

j∗
B∆,0,0

γ0 = m[L0] ∈ H2n−2(YB∆,0,0 , Q).

Hence it suffices to prove the result for the open set B∆,0,0 ⊂ B∆,0.
Now let V ⊂ B∆,0 be Zariski open and assume there exists γ ∈ H2n−2(Pn+1 × V, Q)

with

j∗
V γ = [LV ] ∈ H2n−2(YV , Q). (4.5)

We fix a hyperplane
Pn ⊂ Pn+1

and we choose X ⊂ Pn a smooth hypersurface of degree d, and a point O ∈ Pn+1 − Pn.
For any x ∈ X, the set Ex of equations σ ∈ H0(Pn+1,O(d)) vanishing on X and on the
line ∆x = 〈O, x〉 is a vector space of fixed dimension, so that we have a vector bundle E
on X with fibre Ex over x. Any meromorphic section ν of E provides a rational map

φ : X ��� B∆

which to x associates the equation ν(x), which vanishes on the line ∆x and on X.
Choosing ν generically, it is clear that we can arrange that Imφ meets V . Hence there

is a non-empty Zariski open set X0 of X on which φ is defined and takes value in V .
Consider the family YX0 obtained as the Cartesian product

YX0 −−−−→ YV� �
X0

φ−−−−→ V

There is a natural inclusion
i : X × X0 ⊂ YX0 ,

since each equation φ(x) vanishes on X. In fact, since the hypersurfaces defined by the
φ(x) are smooth, they cannot contain Pn hence they cut exactly X on Pn. Hence we have
in fact

X × X0 = (Pn × X0)
⋂

YX0 , (4.6)

where the intersection is inside Pn+1 × X0.
We take now the pullback under φ of equation (4.5): denoting

γX0 := (Id × φ)∗γ ∈ H2n−2(Pn+1 × X0, Q),
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we find that
j∗
X0

γX0 = [LX0 ] ∈ H2n−2(YX0 , Q).

We restrict now this equality to X × X0 ⊂ YX0 . Using the equality (4.6), and denoting
by γ′

X0
∈ H2n−2(Pn × X0, Q) the restriction of γX0 to Pn × X0, we find

rest γ′
X0

=
[
LX0

⋂
(X × X0)

]
∈ H2n−2(X × X0, Q), (4.7)

where the restriction on the left refers to the inclusion X × X0 ⊂ Pn × X0 and the (cycle
theoretic) intersection on the right refers to the inclusion X × X0 ⊂ YX0 .

Now we note that for each x ∈ X0, the line ∆x meets X ⊂ Yx exactly at x and transver-
sally, and it follows that we have the scheme theoretic and cycle theoretic equality

LX0

⋂
(X × X0) = ∆X

⋂
(X × X0),

where ∆X ⊂ X × X is the diagonal of X. Hence we conclude that

rest γ′
X0

= [∆X ]|X×X0 ∈ H2n−2(X × X0). (4.8)

We use now the fact that n � 2. The variety X is then of dimension n − 1 � 1 and since
d = 2n, it has non-zero holomorphic forms β ∈ H0(Ωn−1

X ) ⊂ Hn−1(X, C). If j : X ↪→ Pn

is the inclusion, we deduce from equation (4.8) the equality

pr2∗(pr1
∗β ∪ [∆X ]|X×X0) = pr2∗(pr1

∗j∗β ∪ γ′
X0

) ∈ Hn−1(X0, C),

where in the left-hand side the pri are the projections of X × X0 on its factors, while on
the left-hand side the pri are the projections of Pn × X0 on its factors.

Since j∗β = 0 in Hn+1(Pn, C), the right-hand side vanishes. On the other hand, the
left-hand side is equal to β|X0 . Hence we conclude that β|X0 = 0 in Hn−1(X0, C). But
the class of a non-zero holomorphic form of degree greater than 0 does not vanish on any
non-empty Zariski open set, which is a contradiction. �

We conclude with the following theorem.

Theorem 4.4. For general t ∈ U , the induced cycle zt ∈ CHn(Yt, 1) projects to a
non-torsion element in CHn(Yt, 1)ind.

Proof. We shall show the following proposition.

Proposition 4.5. Let X → U be a smooth family of complex projective varieties and
let Z be a cycle representing a element z ∈ CHn(X , 1). Then if for a general t ∈ U a
multiple mtzt, mt ∈ Z∗ of the induced cycle zt ∈ CHn(Xt, 1) is decomposable, there
exists a generically finite dominating morphism r : T → U , inducing r : XT → XU , and
an integer m �= 0 such that mr∗z belongs to the image of the map (2.1)

CHn−1(XT ) ⊗ H0(T, O∗
T ) → CHn(XT , 1).
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Assuming the proposition, we conclude the proof of the theorem as follows. Suppose a
multiple of our cycle zt is decomposable for general t ∈ U . Applying our proposition, we
find a generically finite map

r : T → U,

which we may assume to be étale, with T smooth quasiprojective, and a non-zero integer
m such that

mr∗z ∈ CHn(YT , 1)

is decomposable, that is lies in the image of the map

CHn−1(XT ) ⊗ H0(T, O∗
T ) → CHn(XT , 1).

This means that r∗z can be represented by a cycle of the form∑
(Wi, ni, φi)

with ni : Wi → YT proper, Wi normal and φi an invertible function on Wi which comes
from T , i.e. φi = π∗

i ψi, πi := π ◦ ni.
Recall now the definition of the cohomology class mr∗αz = αmr∗z. Given a represen-

tative
∑

(Wi, ni, φi) of mr∗z ∈ CHn(YT , 1), mr∗αz will be the cohomology class of the
current

η 
→
∑

i

1
2iπ

∫
Wi

n∗
i η ∧ dφi

φi
.

But clearly if φi = π∗
i ψi, ψi ∈ H0(O∗

T ), this class is equal to

∑
i

[ni∗Wi] ∪ π∗ 1
2iπ

[
dψi

ψi

]
,

where [ni∗Wi] ∈ H2n−2(YT , Z) is the cohomology class of the closed analytic space
ni(Wi) (counted with multiplicity) and

1
2iπ

[
dψi

ψi

]
∈ H1(T, Z) mod torsion

is the cohomology class of the closed form

1
2iπ

dψi

ψi
.

Hence, under our assumptions, the class r∗αz belongs to the image of the natural map

H2n−2(YT , Q) ⊗ H1(T, Q) → H2n−1(YT , Q). (4.9)

On the other hand, the proof sketched in the introduction of the explicit connectivity
theorem for hypersurfaces also gives the following theorem.
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Theorem 4.6. For d � 2n, and for any submersive morphism

T → B = H0(Pn+1,OPn+1(d)),

the restriction map
H2n−2(Pn+1 × T, Q) → H2n−2(YT , Q)

is an isomorphism.

Now we have the following commutative diagram

H2n−2(Pn+1 × T, Q) ⊗ H1(T, Q) −−−−→ H2n−1(Pn+1 × T, Q)� �rest

H2n−2(YT , Q) ⊗ H1(T, Q)
(4.9)−−−−→ H2n−1(YT , Q)

where the first vertical map is surjective. Hence if r∗αz belongs to the image of the
map (4.9), it also belongs to the image of the restriction map rest. But this contradicts
Theorem 4.1. �

Proof of Proposition 4.5. There are countably many quasiprojective varieties Ti
ri−→ T

parametrizing decomposable cycles in the fibres Xy of our family, since such a cycle is
given by a combination of subvarieties together with a constant function on them. Each
Ti carries a universal cycle Ti with class ti ∈ CHn(XTi , 1). By construction ti belongs to
the image of the map

CHn−1(XTi) ⊗ O∗
Ti

→ CHn(XTi
, 1).

For each i, and for each integer m, we consider now the subset Ti,m ⊂ Ti,

Ti,m = {t ∈ Ti, ti,t = mzπi(t) in CHn(Xπi(t), 1)}.

Since the cycles which are trivial in the group CHn(Xt, 1) are described by the tame
symbols, which themselves are parametrized by countably many quasiprojective varieties,
it is clear that the Ti,m are countable unions of locally closed algebraic subsets Ti,m,j

of Ti. Furthermore, for each i, m, j, the cycles ti|XTi,m,j
and π∗

i mz|XTi,m,j
coincide in

CHn(XTi,m,j
, 1).

The subset ∪i,m,jπi(Ti,m,j) is by construction equal to the subset of T consisting of
those points t for which a multiple mzt is decomposable. On the other hand, it is a
countable union of algebraic subsets of T . Since our field is uncountable, we conclude
that either for general t, no multiple of zt is decomposable, or at least one of the maps

πi : Ti,m,j → T

is dominating. Replacing Ti,m,j by its smooth part, and eventually by some algebraic
subset T̃ of it where πi remains dominating but becomes generically finite, and denoting

t̃ = ti|XTi,m,j
∈ CHn(XT̃ , 1),
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we have then found a generically finite dominating map πi : T̃ → T , such that

π∗
i mz = t̃ ∈ CHn(XT̃ , 1).

On the other hand, we know that

t̃ ∈ Im CHn−1(XT̃ , 1) ⊗ O∗
T̃

→ CHn(XT̃ , 1),

since this is the case for the cycle ti on XTi
. �
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Math. Annln 299 (1994), 77–103.
19. C. Voisin, Hodge theory and complex algebraic geometry, vols I and II, Cambridge Studies

in Advanced Mathematics, to appear (Cambridge University Press).

https://doi.org/10.1017/S1474748002000087 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000087


https://doi.org/10.1017/S1474748002000087 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000087

