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Random β-expansions
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Abstract. In this paper, random expansions to non-integer bases β > 1 are studied. For β’s
satisfying β2 = nβ + k (with 1 ≤ k ≤ n) and βn = βn−1 + · · · + β + 1 the ergodic
properties of such expansions are described.

1. Introduction
1.1. Expansions to base β > 1. As is well known, any x ∈ [0, 1) can be developed in a
series expansion to any base β > 1:

x =
∞∑
k=1

ak

βk
= .a1a2 · · · an · · · , (1.1)

where ak ∈ {0, 1, . . . , β − 1} if β ∈ N, and ak ∈ {0, 1, . . . , �β
} otherwise. The two
cases β > 1 integer or non-integer behave very differently. In the first case almost every
x ∈ [0, 1) has a unique series expansion; only rationals p/q of the form m/βn for some
n ≥ 1 and m = 0, 1, . . . , βn − 1 have two different expansions of the form (1.1), one
of them being finite while the other expansion ends in an infinite string of (β − 1)’s.
In the latter case almost every x ∈ [0, 1) has infinitely many expansions of the form (1.1);
see [EJK, JS, DK].

One possible way to obtain an expansion of the form (1.1) is to use the so called greedy
map Tβ : [0, 1) → [0, 1), defined by

Tβ(x) = βx (mod 1),

and the digits ak = ak(x), k ≥ 1, are given by

ak = �βT k−1
r (x)
, k ≥ 1,
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where �ξ
 denotes the largest integer not exceeding ξ . Clearly Tβ is related to the
Bernoulli-shift on β symbols in the case β ∈ N, and the Lebesgue measure λ is
Tβ -invariant. In the case β �∈ N, it was Rényi in [R1] who showed that

([0, 1), µβ, Tβ)

forms an ergodic system, where µβ is a Tβ -invariant probability measure equivalent to λ
with density hβ , with

1 − 1

β
≤ hβ(x) ≤ 1

1 − 1/β
.

Independently, Gel’fond [G] (in 1959) and Parry [P1] (in 1960) showed that

hβ(x) = 1

F(β)

∞∑
n=0

1

βn
1[0,T n(1))(x),

where

F(β) =
∫ 1

0

( ∑
x<T n(1)

1

βn

)
dx

is a normalizing constant. After Parry, the ergodic properties of Tβ were studied by
several authors. For example, it was shown by Hofbauer [Ho] that µβ is the measure
of maximal entropy, and Smorodinsky [Sm] showed that for each non-integer β > 1 the
system ([0, 1), µβ, Tβ) is weak-Bernoulli; see also [DKS]. A deep result by Friedman
and Ornstein [FO] then yields that the natural extension of ([0, 1), µβ, Tβ) is a Bernoulli
automorphism.

The β-expansion of x ∈ [0, 1) is also known as the greedy expansion of x. Since one
can in fact perform the greedy algorithm for any x ∈ [0, �β
/(β − 1)) (see also [DK]), we
will extend the definition of Tβ to all points in [0, �β
/(β − 1)) by

Tβ(x) =
{
βx (mod 1), 0 ≤ x < 1,

βx − �β
, 1 ≤ x < �β
/(β − 1);
see also Figure 1. Notice that for each x ∈ [0, �β
/(β − 1)) there exists a unique integer
n0 = n0(x) such that for all n ≥ n0 one has that T nβ (x) ∈ [0, 1). In view of this we extend
hβ on [0, �β
/(β − 1)) by setting hβ = 0 on [1, �β
/(β − 1)). The interval [0, 1) is the
attractor for the extended map Tβ . Due to this, the system([

0,
�β

β − 1

)
, µβ, Tβ

)
,

is weak-Bernoulli, since the original system on [0, 1) is.
An expansion which is lexicographically the ‘smallest’ expansion of x is the so called

lazy expansion of x. Underlying this lazy expansion is the lazy map Sβ : (0, �β
/(β − 1)]
→ (0, �β
/(β − 1)], defined by

Sβ(x) = βx − d1 for x ∈ �(d),
where

�(0) =
(

0,
�β


β(β − 1)

]
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FIGURE 1. The greedy map Tβ (left), and lazy map Sβ (right). Here β = π .

and

�(d) =
( �β

β − 1

− �β
 − d + 1

β
,

�β

β − 1

− �β
 − d

β

]

=
( �β

β(β − 1)

+ d − 1

β
,

�β

β(β − 1)

+ d

β

]
, d ∈ {1, 2, . . . , �β
};

see also [DK] for more details.
The greedy map Tβ and the lazy map Sβ are strongly related. If one defines the map

ψ : [0, �β
/(β − 1)) → (0, �β
/(β − 1)] by

ψ(x) = �β

β − 1

− x,

then ψ is a measurable bijection, ψTβ = Sβψ and( �β

β − 1

− 1,
�β

β − 1

]

is the attractor for Sβ ; see Figure 1. Due to this, the system((
0,

�β

β − 1

]
, ρβ, Sβ

)

is weak-Bernoulli, where ρβ is a probability measure on [0, �β
/(β − 1)], given by

ρβ(A) = µβ(ψ
−1(A)),

for any Lebesgue set A ⊂ [0, �β
/(β − 1)].

1.2. Random β-expansions. Let β > 1 be a non-integer. If we superimpose the greedy
map and the corresponding lazy map on [0, �β
/(β − 1)], we get �β
 overlapping regions
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FIGURE 2. The greedy and lazy maps, and their switch regions.

of the form

S� =
[
�

β
,

�β

β(β − 1)

+ �− 1

β

]
, � = 1, . . . , �β
,

which we will refer to as switch regions; see Figure 2. On S�, the greedy map assigns the
digit �, while the lazy map assigns the digit �− 1. Outside these switch regions both maps
are identical, and hence they assign the same digits. We will now define a new random
expansion in base β by randomizing the choice of the map used in the switch regions.
For each switch region we assign a coin, and whenever x belongs to the ith switch region
we flip the ith coin to decide which map will be applied to x, and hence which digit will
be assigned.

To be more precise, we partition the interval [0, �β
/(β−1)] into switch regions S� and
equality regions E�, where

E� =
( �β

β(β − 1)

+ �− 1

β
,
�+ 1

β

)
, � = 1, . . . , �β
 − 1,

E0 =
[

0,
1

β

)
and E�β
 =

( �β

β(β − 1)

+ �β
 − 1

β
,

�β

β − 1

]
;
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see Figure 2. Let

S =
�β
⋃
�=1

S� and E =
�β
⋃
�=0

E�,

and consider ! = {0, 1}N with the product σ -algebra. Let σ : ! → ! be the
left shift, i.e. if ω = (ω1, ω2, . . . ) ∈ !, then σ(ω) = (ω2, ω3, . . . ). Define K :
!× [0, �β
/(β − 1)] → !× [0, �β
/(β − 1)] by

K(ω, x) =



(ω, βx − �), x ∈ E�, � = 0, 1, . . . , �β
,
(σ (ω), βx − �), x ∈ S� and ω1 = 1, � = 1, . . . , �β
,
(σ (ω), βx − �+ 1), x ∈ S� and ω1 = 0, � = 1, . . . , �β
.

(1.2)

The elements of ! represent the coin tosses (‘heads’ = 1 and ‘tails’ = 0) used every time
the orbit hits a switch region. Let

d1 = d1(ω, x) =



�, if x ∈ E�, � = 0, 1, . . . , �β
,

or (ω, x) ∈ {ω1 = 1} × S�, � = 1, 2, . . . , �β
,
�− 1, if (ω, x) ∈ {ω1 = 0} × S�, � = 1, 2, . . . , �β
,

then

K(ω, x) =
{
(ω, βx − d1), if x ∈ E,
(σ(ω), βx − d1), if x ∈ S.

Set dn = dn(ω, x) = d1(K
n−1(ω, x)), and let π : !×[0, �β
/(β−1)] → [0, �β
/(β−1)]

be the canonical projection onto the second coordinate. Then

π(Kn(ω, x)) = βnx − βn−1d1 − · · · − βdn−1 − dn,

and rewriting gives

x = d1

β
+ d2

β2
+ · · · + dn

βn
+ π(Kn(ω, x))

βn
.

Since π(Kn(ω, x)) ∈ [0, �β
/(β − 1)], it follows that∣∣∣∣x −
n∑
i=1

di

βi

∣∣∣∣ = π(Kn(ω, x))

βn
→ 0 as n → ∞.

This shows that for all ω ∈ ! and for all x ∈ [0, �β
/(β − 1)] one has that

x =
∞∑
i=1

di

βi
=

∞∑
i=1

di(ω, x)

βi
.

2. Ergodic properties for certain Pisot bases
In this section we study the dynamical properties of the map K for certain Pisot values
of β, namely, β > 1 satisfying β2 − nβ − k = 0, 1 ≤ k ≤ n, n ≥ 1, and
βn − βn−1 − βn−2 − · · · − β − 1 = 0, n ≥ 2. In both cases we will show that the
dynamics of K is isomorphic to a mixing Markov chain.
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2.1. The case β2 −nβ− k = 0, 1 ≤ k ≤ n, n ≥ 1. The behavior ofK in the case k = 1
is slightly different than the behavior for all other values of k with 2 ≤ k ≤ n. We will
analyse the case k ≥ 2, indicating the adjustments needed in case k = 1. In this case it is
easy to see that �β
 = n, and if we denote by Ī the closure of an interval I , then the image
of any switch region Si under the greedy map is the interval

E
(1)
0 =

[
0,

n

β(β − 1)
− k

β2

]
,

which is a subset of E0 (note that for k = 1 one has that E(1)0 = Ē0). Since

Tβ

(
n

β(β − 1)
− k

β2

)
= n

β(β − 1)
+ n− k

β
,

which is the right endpoint of the switch region Sn−k+1, we find for i = 1, . . . , n, that

T 2
β (Si) = Tβ(E

(1)
0 ) = E0 ∪ S1 ∪ · · · ∪ En−k ∪ Sn−k+1.

Similarly, the image of any switch region Si under the lazy map Sβ is the interval

E(1)n =
[

1,
n

β − 1

]
,

which is a subset of En (note that for k = 1 one has that E(1)n = Ēn), and we find for
i = 1, . . . , n, that

S2
β(Si) = Sβ(E

(1)
n ) = Sk ∪ Ek ∪ · · · ∪ Sn ∪ En.

This suggests that in order to find the Markov chain underlying the map K , we need to
subdivide bothE0 andEn into two intervalsE(1)0 andE(2)0 , andE(1)n andE(2)n , respectively,
where

E
(2)
0 = E0 \ E(1)0 and E(2)n = En \ E(1)n ,

(note that in the case k = 1 both E(2)0 and E(2)n are empty sets). Notice that the partition

{
E
(1)
0 , E

(2)
0 , S1, E1, . . . , Sn−1, En−1, E

(2)
n , E(1)n

}
satisfies the following property: the interior of any of the partition elements is mapped to
the interior of a union of partition elements; see Figure 3.

We now assume that on each switch region S� we flip a coin with P(heads) = p�,
� = 1, . . . , n. To incorporate the randomness of the expansions which takes places in the
switch regions S1, S2, . . . , Sn we consider the Markov chain on 2n+ 3 states

e
(1)
0 , e

(2)
0 , s1, e1, s2, . . . , en−1, sn, e

(2)
n , e

(1)
n .

(in the case k = 1 we only need 2n+1 states e0, s1, e1, s2, . . . , en−1, sn, en). ei corresponds
to the case when the orbit under K is in region Ei , i = 2, . . . , n − 1, while e(j)i
corresponds to the case when the orbit is in E(j)i , i = 0, n, and j = 1, 2, and finally
si corresponds to the case when the orbit is in Si . We will show that for k ≥ 2 the map K
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FIGURE 3. Refinement of the regions E0 and En.

given by (1.2) is isomorphic modulo sets of measure zero to the Markov chain with states
e
(1)
0 , e

(2)
0 , s1, e1, s2, . . . , en−1, sn, e

(2)
n , e

(1)
n , and transition probabilities given by

p
e
(1)
0 e

(1)
0

= 1

β
= p

e
(1)
n e

(1)
n
,

p
e
(1)
0 e

(2)
0

= k − 1

β(β − k)
= p

e
(1)
n e

(2)
n
,

p
e
(1)
0 si

= 1

β2
= p

e
(1)
n sn−i+1

, i = 1, 2, . . . , n− k + 1,

p
e
(1)
0 ei

= 2β − 2 − n

β(β − k)
= p

e
(1)
n en−i , i = 1, 2, . . . , n− k,

p
e
(2)
0 ei

= 2β − 2 − n

β(k − 1)
= p

e
(2)
n en−i , i = n− k + 1, . . . , n− 1,

p
e
(2)
0 si

= β − k

β(k − 1)
= p

e
(2)
n sn−i+1

, i = n− k + 2, . . . , n,
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p
e
(2)
0 e

(2)
n

= 1

β
= p

e
(2)
n e

(2)
0
,

p
sie

(1)
0

= pi = 1 − p
sie

(1)
n
, i = 1, . . . , n,

pei sj = β − k

β2(2β − 2 − n)
, i = 1, . . . , n− 1, j = 1, . . . , n,

peiej = 1

β
, i, j = 1, . . . , n− 1,

p
eie

(2)
0

= k − 1

β(2β − 2 − n)
= p

eie
(2)
n
, i = 1, . . . , n− 1.

2 Note that these transition probabilities are obtained using Lebesgue measure and the
dynamics of K .

The case k = 1 follows easily from the case 2 ≤ k ≤ n, by putting e0 = e
(1)
0 , e0 = e

(1)
0 ,

and removing the states e(2)0 and e(2)n (and their corresponding transition probabilities).

To find the stationary distribution π = (π
e
(1)
0
, π

e
(2)
0
, πs1, πe1 , . . . , πsn, πe(2)n

, π
e
(1)
n
) of this

Markov chain one has to distinguish three cases:

(1) k − 1 < n− k + 1;
(2) k − 1 > n− k + 1;
(3) k − 1 = n− k + 1 (in this case n is even).

For instance, for k = 1 one finds that the stationary distribution π = (πe0, πs1, πe1 , . . . ,

πsn, πen) is given by

πe0 = β(p1 + · · · + pn)

(β − 1)(β2 + 1)
,

πsk = 1

β2 + 1
, k = 1, 2, . . . , n,

πek = β − 1

β2 + 1
, k = 1, 2, . . . , n− 1,

πen = (n− (p1 + · · · + pn))β

(β − 1)(β2 + 1)
.

Notice that if pi = 1 for all i = 1, . . . , n, one gets the Parry measure, and if pi = 0 for all
i = 1, . . . , n, one gets the lazy measure described in §1.1.

We now show that almost any sequence of ei’s and si ’s generated by the above Markov
chain corresponds to a random expansion in base β generated by iterating the map K .
Let Y be the set of all sequences generated by the Markov chain, i.e. with symbols in the
set {e(1)0 , e

(2)
0 , s1, e1, . . . , sn, e

(2)
n , e

(1)
n }, transition matrix P and stationary distribution π .

We denote by F the σ -algebra generated by the cylinders, and let µ be the stationary
measure given by P and π , which is σY -invariant, where σY is the left-shift on Y .

To every y ∈ Y we can associate a point

x ∈
[

0,
n

β − 1

]
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as follows. Define

bi =




0, if yi ∈ {e(1)0 , e
(2)
0 },

n, if yi ∈ {e(1)n , e(2)n },
j, if yi = ej , 1 ≤ j ≤ n− 1,

j, if yi = sj , yi+1 = e
(1)
0 , 1 ≤ j ≤ n,

j − 1, if yi = sj , yi+1 = e
(1)
n , 1 ≤ j ≤ n,

and let

x =
∞∑
i=1

bi

βi
, (2.1)

then

x ∈
[

0,
n

β − 1

]
.

However, to capture the dynamics of K , we define a measurable isomorphism

ϕ : (Y, σY , µ) →
(
!×

[
0,

n

β − 1

]
,K, ρ

)
,

where ρ = µ ◦ ϕ−1, as follows. Let

Y ′ = {y = (y1, y2, . . . ) ∈ Y : yi = s� for finitely many i’s and � = 1, . . . , n}
then µ(Y ′) = 0, and define

ϕ : Y \ Y ′ → !×
[

0,
n

β − 1

]

as follows. To a point y = (y1, y2, . . . ) ∈ Y \ Y ′ we associate a point

(ω, x) ∈ !×
[

0,
n

β − 1

]
.

To do this, we first locate the indices ni = ni(y) where the realization y of the Markov
chain is in state s� for some � ∈ {1, . . . , n}. That is, let n1 < n2 < · · · be the indices such
that yni = s� for some � = 1, . . . , n. Define

ωj =
{

1, if ynj+1 = e
(1)
0 ,

0, if ynj+1 = e
(1)
n ,

then ω = (ω1, ω2, . . . ) ∈ !. Now, set ϕ(y) = (ω, x), where x is as given in (2.1).

Remark 1. In the case k ≥ 2, in Y \ Y ′ the only realization corresponding to i/β is

(si, e
(1)
n , sk, e

(1)
n , sk, . . . );

under ϕ this is mapped to (ω(0), 1/β), with ω(0) = (0, 0, . . . ). Similarly, the only
realization corresponding to [n/β(β − 1)] + [(i − 1)/β] is

(si , e
(1)
0 , sn−k+1, e

(1)
0 , sn−k+1, . . . ),

which is mapped under ϕ to (ω(1), [n/β(β − 1)] + [(i − 1)/β]), where ω(1) = (1, 1, . . . ).
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The following lemma shows that the dynamics of K behaves essentially in the same
way as the Markov chain.

LEMMA 1. Let y ∈ Y \ Y ′ and ϕ(y) = (ω, x). Then:
(i) y1 = e

(j)

i ⇒ x ∈ E(j)i for i = 0, n and j = 1, 2;
(ii) y1 = ei ⇒ x ∈ Ei for i = 1, . . . , n− 1;
(iii) y1 = si , y2 = e

(1)
0 ⇒ x ∈ Si and ω1 = 1 for i = 1, . . . , n; and

(iv) y1 = si , y2 = e
(1)
n ⇒ x ∈ Si and ω1 = 0 for i = 1, . . . , n.

Proof. (i) We study each subcase separately. If y1 = e
(1)
0 , then by construction

b1 = 0. The realization in the Markov chain leading to the largest possible digits is
(e
(1)
0 , sn−k+1, e

(1)
n , e

(1)
n , . . . ), yielding

0 ≤ x ≤ 0

β
+ n− k

β2
+ n

β3
+ n

β4
+ · · ·

≤
(
n

β2
+ n

β3
+ · · ·

)
− k

β2

= n

β(β − 1)
− k

β2
.

Equality on the right-hand side is achieved since

y∗ = (e
(1)
0 , sn−k+1, e

(1)
0 , sn−k+1, . . . ) ∈ Y \ Y ′,

and by (2.1) y∗ corresponds to [n/β(β − 1)] − (k/β2).
If y1 = e

(2)
0 , then the path yielding the largest digits is given by

(e
(2)
0 , e(2)n , ek−1, e

(2)
n , ek−1, . . . ) ∈ Y ′,

implying

x ≤ n

β2
+ k − 1

β3
+ n

β4
+ k − 1

β5
+ · · · .

Since
n

β2 + k − 1

β3 = 1

β
− 1

β3 ,

it follows that

x ≤
(

1

β
− 1

β3

)
+

(
1

β3 − 1

β5

)
+ · · · = 1

β
.

However, equality is never attained by an element from Y \ Y ′ starting with e
(2)
0 .

The ‘smallest digits path’ is given by

(e
(2)
0 , en−k+1, e

(2)
0 , en−k+1, e

(2)
0 , . . . ) ∈ Y ′.

Using
1

β�
= n

β�+1
+ k

β�+2
,

https://doi.org/10.1017/S0143385702001141 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001141


Random β-expansions 471

we get

x ≥ n− k + 1

β2
+ n− k + 1

β4
+ n− k + 1

β6
+ · · ·

= n

β2
− k

β2
+ n

β3
− k

β3
+ n

β4
− k

β4
+ · · ·

= n

β2
+ n

β3
+ n

β4
+ · · · − k

β2
= n

β(β − 1)
− k

β2
.

Again, no point in Y \ Y ′ starting with e(2)0 corresponds to [n/β(β − 1)] − (k/β2). Thus

x ∈ E(2)0 =
(

n

β(β − 1)
− k

β2
,

1

β

)
.

If y1 = e
(1)
n , then b1 = n, and the path with the largest digits is (e(1)n , e

(1)
n , . . . ) ∈ Y ′,

corresponding to 1. The path with the smallest digits is

(e(1)n , sk, e
(1)
0 , e

(1)
0 , e

(1)
0 , . . . ) ∈ Y ′,

which corresponds to n/(β − 1). We remark that the point 1 corresponds to an element
y ∈ Y \ Y ′, starting with e(1)n , namely (e(1)n , sk, e

(1)
n , sk, . . . ). Thus x ∈ E(1)n .

If y1 = e
(2)
n , then b1 = n. The only paths yielding the largest digits and the smallest

digits are, respectively,

(e(2)n , ek−1, e
(2)
n , ek−1, . . . ) and (e(2)n , e

(2)
0 , en−k+1, e

(1)
0 , en−k+1, . . . ),

which belong to Y ′. The corresponding points are 1 and [(n− 1)/β] + [n/β(β − 1)], and
it follows that x ∈ E(2)n .

(ii) Let y1 = ei for i = 1, . . . , n− 1. Then by construction b1 = i, and the path giving
the largest digits is

(ei , e
(2)
n , ek−1, e

(2)
n , ek−1, . . . ) ∈ Y ′,

corresponding to (i + 1)/β. The path in Y leading to the smallest digits is

(ei, e
(2)
0 , en−k+1, e

(2)
0 , en−k+1, e

(2)
0 , . . . ) ∈ Y ′,

corresponding to [n/β(β−1)]+[(i−1)/β]. No point in Y \Y ′ starting with ei corresponds
to either of these end points. Therefore x ∈ Ei .

(iii) Let y1 = si and y2 = e
(1)
0 , where i = 1, . . . , n. Then b1 = i, and the path yielding

the largest digits is
(si , e

(1)
0 , sn−k+1, e

(1)
n , e

(1)
n , e

(1)
n , . . . ) ∈ Y ′,

corresponding to [n/β(β − 1)] + [(i − 1)/β]. The path leading to the smallest digits is

(si , e
(1)
0 , e

(1)
0 , e

(1)
0 , e

(1)
0 , . . . ) ∈ Y ′,

corresponding to i/β. Note that the point i/β does not correspond to an element in Y \ Y ′,
starting with si , e

(1)
0 , while [n/β(β − 1)] + [(i − 1)/β] corresponds to

(si, e
(1)
0 , sn−k+1, e

(1)
0 , sn−k+1, . . . ) ∈ Y \ Y ′.

https://doi.org/10.1017/S0143385702001141 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001141


472 K. Dajami and C. Kraaikamp

Thus
i

β
< x ≤ n

β(β − 1)
+ i − 1

β
.

Hence, x ∈ Si , and definition of ϕ we have ω1 = 1.
(iv) Finally, let y1 = si and y2 = e

(1)
n , where i = 1, . . . , n. Then b1 = i − 1, and the

path yielding the largest digits is

(si, e
(1)
n , e

(1)
n , . . . ) ∈ Y ′,

which corresponds to [n/β(β − 1)] + [(i − 1)/β]. The path leading to the smallest digits
is

(si, e
(1)
n , sk, e

(1)
0 , e

(1)
0 , . . . ) ∈ Y ′,

corresponding to i/β. Similar to (iii), the point [n/β(β − 1)] + [(i − 1)/β] does not
correspond to a point in Y \ Y ′ starting with si , e

(1)
n , while the point i/β corresponds to

(si , e
(1)
n , sk, e

(1)
n , sk, . . . ) ∈ Y \ Y ′.

This shows that
i

β
≤ x <

n

β(β − 1)
+ i − 1

β
,

hence x ∈ Si , and by the definition of ϕ we have ω1 = 0. ✷

Remark 2. (1) It follows from the above lemma that if

x =
∞∑
i=1

bi/β
i

is as defined by the Markov chain, and if we look at the random expansion of x under K ,
then b1 = d1(ω, x).

(2) In the case k = 1, the statement of Lemma 1 only contains three cases; two cases
are (iii) and (iv) from Lemma 1, while one case can be formulated as

y1 = e� ⇒ x ∈ E� for � = 0, 1, . . . , n.

The proofs for the case k = 1 are similar to those for the case 2 ≤ k ≤ n as described
above.

LEMMA 2. For y ∈ Y \ Y ′,
ϕ ◦ σY (y) = K ◦ ϕ(y).

Proof. Let y = (Yi)
∞
i=1 ∈ Y \ Y ′, and suppose that ϕ(y) = (ω, x) and ϕ(σY (y)) =

(ω∗, x∗), where

x =
∞∑
i=1

bi

βi
and x∗ =

∞∑
i=1

b∗
i

βi
.

By the definition of ϕ we see that b∗
i = bi+1 and d1(ω, x) = b1, and therefore

x∗ =
∞∑
i=1

bi+1

βi
= βx − d1.
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We now show that

ω∗ =



ω, if y1 = e�, � = 1, . . . , n− 1,

or y1 = e
(j)
i , i = 0, n, j = 1, 2,

σ (ω), if y1 = s�, � = 1, . . . , n.

To this end, let us first assume that y1 = e� for some � ∈ {1, . . . , n − 1} or y1 = e
(j)
i for

i = 0, n, j = 1, 2. Then, the successive times

n1(σY (y)) < n2(σY (y)) < · · ·
that the realization σY (y) of the Markov chain is in state sk are given by ni(σY (y)) =
ni(y)− 1. Hence,

(σY (y))ni (σY (y)) = (y)ni(σY (y))+1 = yni(y),

which implies that ω∗
i = ωi for all i, i.e. ω∗ = ω.

Next, assume that y1 = sk for some k ∈ {1, . . . , n}. In this case ni(σY (y)) =
ni+1(Y )− 1, and it follows that

(σY (y))ni(σY (y)) = (y)ni (σY (y))+1 = (y)ni+1(y),

which implies that ω∗ = ωi+1 for all i, i.e. ω∗ = σ(ω). Thus we find that (ω∗, x∗) =
K(ω, x) and ϕ(σY (y)) = K(ϕ(y)). ✷

Remark 3. It follows from Lemma 2 that ϕ ◦ σnY = σnY ◦ ϕ for all n ≥ 0, and since
b1 = d1(ω, x) we find that

bn = dn(ω, x) = d1(K
n−1(ω, x)) for all n ∈ N.

Let Z = ϕ(Y \ Y ′). From the above, one has that

Z = {(ω, x) : Kn(ω, x) ∈ !× S infinitely often}.
On !×[0, n/(β− 1)] we consider the completion C of the σ -algebra σ(

∨∞
n=0 Pn), where

P0 = {!× Ei : i = 1, 2, . . . , n− 1} ∪ {!×E
(j)

i : i = 0, 1, j = 1, 2}
∪ {{ω1 = i} × S� : i = 0, 1, � = 1, . . . , n}

and Pn = P0 ∨K−1P0 ∨ · · · ∨Kn−1P0. It is easy to check that the inverse image under ϕ
of an element in Pn is a cylinder inX. Thus ϕ is (F , C)-measurable. In fact, if we consider
the σ -algebra A on !× [0, n/(β − 1)] which is the product of the σ -algebra on! and the
Borel σ -algebra on [0, n/(β − 1)], then the inverse image of any cylinder in A that is not
an element of C is the empty set, hence ϕ is also (F ,A)-measurable. Define a measure ρ
on ! × [0, n/(β − 1)] by ρ = µ ◦ ϕ−1. Then ρ is K-invariant and ρ(Z) = 1. Further,
ϕ is a factor map by the above. We now show that ϕ is in fact an isomorphism.

THEOREM 1. The map

ϕ : (Y,F , µ, σY ) →
(
!×

[
0,

n

β − 1

]
, C, ρ,K

)
is a measurable isomorphism.
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Proof. Since ϕ is a factor map, it is enough to show that ϕ : Y \ Y ′ → Z is invertible.
To this end, let ψ : Z → Y \ Y ′ be given by ψ(ω, x) = y = (yi), where

yi =



e�, if π(Ki−1(ω, x)) ∈ E�, for some � = 1, . . . , n− 1,

e
(j)
i , if π(Ki−1(ω, x)) ∈ E(j)i , for some i = 0, n, j = 1, 2,

s�, if π(Ki−1(ω, x)) ∈ S�, for some � = 1, . . . , n.

Since K on Z has the same allowed transitions as the Markov chain on Y \ Y ′, we see that
y ∈ Y \ Y ′. We show that ϕ(y) = (ω, x), and hence ψ = ϕ−1. To this end, notice that
if n1 < n2 < · · · are the indices for which yni = s� for some � ∈ {1, . . . , n}, then by
construction π(Kni−1(ω, x)) ∈ S� and hence

π(Kni (ω, x)) ∈
{
E
(1)
0 , if ωi = 1,

E
(1)
n , if ωi = 0,

i.e.

yni+1 =
{
e
(1)
0 , if ωi = 1,

e
(1)
n , if ωi = 0.

Suppose that ϕ(y) = (ω∗, x∗), then

ω∗ =
{

1, if yni+1 = e
(1)
0 ,

0, if yni+1 = e
(1)
n ,

and we see that ω = ω∗. If bi denotes the ith digit as defined in (2.1), then by Remark 3
bi = di(ω

∗, x∗), and by construction

bi =



j, if π(Ki−1(ω, x)) ∈ Ej , j = 0, 1, . . . , n,

or π(Ki−1(ω, x)) ∈ Sj , and ωi = 1, j = 1, . . . , n,

j − 1, if π(Ki−1(ω, x)) ∈ Sj and ωi = 0, j = 1, . . . , n.

from which bi = di(ω, x) = di(ω
∗, x∗), and we see that

x∗ =
∞∑
i=1

bi

βi
=

∞∑
i=1

di(ω, x)

βi
= x.

Hence ϕ(y) = (ω, x) and thus ψ = ϕ−1. This proves that ϕ is invertible. ✷

Remark 4. In the case k = 1 the above proof needs some small adjustments. Let
ϑ(0) = (0, 1, 0, 1, . . . ), and ϑ(1) = (1, 0, 1, 0, . . . ). Note that for i = 1, . . . , n one has
that

y(i) := (si, en, s1, en, s1, . . . ) ∈ Y \ Y ′ and ϕ(y(i)) =
(
ϑ(0),

i

β

)
.

However,

ψ

(
ϑ(0),

i

β

)
= (si , sn, s1, sn, s1, . . . ) /∈ Y.
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FIGURE 4. The greedy and lazy maps and their switch region S, in the case βn = βn−1 + · · · + β + 1 (here
n = 5).

Similarly,

z(i) := (si, e0, s1, e0, s1, . . . ) ∈ Y \ Y ′ and ϕ(z(i)) =
(
ϑ(1),

n

β(β − 1)
+ i − 1

β

)
,

while

ψ

(
ϑ(1),

n

β(β − 1)
+ i − 1

β

)
= (si, s1, sn, s1, sn, . . . ) /∈ Y.

Hence, for the proof that ϕ is invertible we need to remove from Y \ Y ′ all points whose
orbit under σY eventually equals y(i) or z(i) for some i = 1, . . . , n, and their corresponding
images under ϕ in Z (this is a set of µ measure 0).

If one calculates the entropy of the Markov chain Y (and hence the entropy of K) one
finds that for k = 1

hρ(K) = logβ −
n∑
i=1

pi logpi + (1 − pi) log(1 − pi)

1 + β2
.

2.2. The case βn = βn−1 +· · ·+β+1, n ≥ 2. (See Figure 4.) First notice that the case
n = 2, which is the case when β equals the ‘golden mean’, has already been dealt with in
the previous section. Therefore, throughout this section we will assume that n ≥ 3. It is
easily checked that one has �β
 = 1. In this case we have one switch region

S =
[

1

β
,

1

β(β − 1)

]
,
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which is mapped under the greedy map Tβ to the interval [0, 1/(βn(β − 1))], which is a
subinterval of [0, 1/β). Further, for i = 0, 1, . . . , n one has that

T iβ

([
0,

1

βn(β − 1)

])
=

[
0,

1

βn−i (β − 1)

]
.

Notice that

T nβ

(
1

β(β − 1)

)
= 1

β(β − 1)
.

Let

L1 =
[

0,
1

βn(β − 1)

)
, Ln =

[
1

β2(β − 1)
,

1

β

)
,

Li =
[

1

βn−i+2(β − 1)
,

1

βn−i+1(β − 1)

)
, for i = 2, . . . , n− 1,

and

R1 =
(

1,
1

β − 1

]
, Rn =

(
1

β(β − 1)
,

1

β
+ 1

β2

]
,

Ri =
(

1

β
+ · · · + 1

βn−i+1
,

1

β
+ · · · + 1

βn−i+2

]
, for i = 2, . . . , n− 1,

then, under the greedy map Tβ we have

Tβ(S) = L̄1, Tβ(L1) = L1 ∪ L2, Tβ(Li) = Li+1, i = 2, . . . , n− 2,

Tβ(L̄n−1) = Ln ∪ S, Tβ(Ln) = R2 ∪ · · · ∪ Rn,
and under the lazy map Sβ we have

Sβ(S) = R̄1, Sβ(R1) = R1 ∪ R2, Sβ(Ri) = Ri+1, i = 2, . . . , n− 2,

Sβ(Rn−1) = Rn ∪ S, Sβ(Rn) = L2 ∪ · · · ∪ Ln.
Motivated by this, we will study the following Markov chain in order to study the

dynamics of the map K . Consider the Markov chain with state space

{�1, �2, . . . , �n, s, rn, rn−1, . . . , r1}
and transition probabilities

p�1�1 = 1

β
= pr1r1 = p�nrn = prn�n, p�1�2 = β − 1

β
= pr1r2,

p�i�i+1 = 1 = priri+1, i = 2, . . . , n− 2,

p�n−1�n = β2 − β − 1

β − 1
= prn−1rn, p�n−1s = 2β − β2

β − 1
= prn−1s

and

p�nri = β − 1

βn−i+1(β2 − β − 1)
= prn�i , i = 2, . . . , n− 1.
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The stationary distribution π = (π�1, . . . , π�n, πs, πrn, . . . , πr1) is given by

πs = β − 1

βn+1 − n
,

π�1 = pβ

βn+1 − n
,

πr1 = (1 − p)β

βn+1 − n
,

π�n = (β2 − β − 1)(p + βn − 1)

β(βn+1 − n)
,

πrn = (β2 − β − 1)(βn − p)

β(βn+1 − n)
,

π�i = pβi−1(βn−i+1 − 1)+ βn(βi−1 − 1)

βn(βn+1 − n)
, i = 2, . . . , n− 1,

and

πri = βi−1(βn − 1)− pβi−1(βn−i+1 − 1)

βn(βn+1 − n)
, i = 2, . . . , n− 1.

If p = 1
2 , then one gets π�i = πri , i = 1, 2, . . . , n, as expected.

Let Y be the set of all sequences generated by the above Markov chain, σY be the left
shift on Y , and let µ be the invariant measure generated by P and π . As in the previous
case, for each y ∈ Y we associate a point

x ∈
[

0,
1

β − 1

]

as follows. Define

bi =




0, if yi = �i for some i = 1, . . . , n

or yi = s and yi+1 = r1,

1, if yi = ri for some i = 1, . . . , n

or yi = s and yi+1 = �1,

and set

x =
∞∑
i=1

bi

βi
, (2.2)

so we have that

x ∈
[

0,
1

β − 1

]
.

To show that the random expansion underK can be symbolically described by the above
Markov chain, we consider a map

ϕ : Y → !×
[

0,
1

β − 1

]

defined almost everywhere as follows. Let

Y ′ = {y = (y1, y2, . . . ) ∈ Y : yi = s for finitely many i’s}.
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For y = (yi)
∞
i=1 ∈ Y \ Y ′, denote by n1 < n2 < · · · the indices for which yni = s. Setting

ωi =
{

1, if yni+1 = �1,

0, if yni+1 = r1,

then ω = (ω1, ω2, . . . ) ∈ !. Now define ϕ(y) for each y ∈ Y by ϕ(y) = (ω, x), with
x given by (2.2). Let C and ρ be defined as in the case β2 = nβ + k. Then we have the
following theorem.

THEOREM 2. The map

ϕ : (Y,F , µ, σY ) →
(
!×

[
0,

1

β − 1

]
, C, ρ,K

)

is a measurable isomorphism.

The proof that

ϕ : (Y, µ, σY ) →
(
!×

[
0,

1

β − 1

]
, ρ,K

)

is a measurable isomorphism, with ρ = µ ◦ ϕ−1, is similar to the case β2 = nβ + 1.
In this case, ψ is not the inverse of ϕ at the points (ω(1), 1/β(β− 1)) and (ω(0), 1/β), with
ω(i) = (i, i, . . . ), i = 0, 1. To see this, observe that the sequence

α = (s, �1, �2, . . . , �n−1, s, �1, . . . , �n−1, s, . . . )

belongs to Y \ Y ′ with

ϕ(α) =
(
ω(1),

1

β(β − 1)

)
,

while

ψ

(
ω(1),

1

β(β − 1)

)
= (s, �2, �3, . . . , �n, s, �2, . . . , �n, s, . . . ) /∈ Y.

Similarly,

β = (s, r1, r2, . . . , rn−1, s, r1, . . . , rn−1, s, . . . ) ∈ Y \ Y ′,

with

ϕ(β) =
(
ω(0),

1

β

)
,

while

ψ

(
ω(0),

1

β

)
= (s, r2, r3, . . . , rn, s, r2, . . . , rn, s, . . . ) /∈ Y.

So apart from Y ′ we need to remove from Y all points whose orbit under σY eventually
equals α or β, and their corresponding images in Z.
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2.3. Final remarks. The approach of the previous sections also works for many β > 1
for which the expansion of 1 in base β is either finite or eventually periodic. For example,
if β = 1

2 (3 + √
5) = 2.6183 . . . , one has that the greedy expansion of 1 in base β is given

by

1 = 2

β
+ 1

β2 + 1

β3 + 1

β4 + · · · + 1

βn
+ · · · .

Setting g = 1
2 (−1 + √

5) = 0.6183 . . . , G = g + 1 and hence† β = G2 = G + 1, one
finds that there are two switch regions

S1 =
[

1

β
,

�β

β(β − 1)

]
= [g2, 4g−2] and S2 =

[
2

β
,

1

β
+ �β

β(β − 1)

]
= [2g2, 3g−1],

and three equality regions:

E0 = [0, g2), E1 = (4g − 2, 2g2) and E2 = E�β
 = (3g − 1, 2g].
As in §2.1 we need to subdivide E0 and E2:

E
(1)
0 = [0, 2g − 1), E

(2)
0 = E0 \ E(1)0 and E

(1)
2 = (1, 2g], E

(2)
2 = E2 \ E(1)2 .

E1 also needs to be subdivided into two equal parts:

E
(�)
1 = (4g − 2, g) and E

(r)
1 = (g, 2g2);

note that g is a fixed point under K . As in the previous sections, one can show that the
dynamics ofK is isomorphic to a mixing Markov chain. We leave the details to the reader.
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