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Abstract. We consider an adiabatic dusty plasma containing adiabatic inertialess
electrons, adiabatic ions, and adiabatic negatively charged dust. The basic features
of the dust–ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves
(SWs) in such an adiabatic dusty plasma are investigated using the reductive
perturbation method, which is valid for small amplitude SWs, and by the pseudo-
potential approach which is valid for arbitrary amplitude SWs. The combined
effects of the adiabaticity of electrons/ions and negatively charged static/mobile
dust on the basic features (polarity, speed, amplitude and width) of small as well
as arbitrary amplitude DIA and DA SWs are examined explicitly. It is found that
the combined effects of the adiabaticity of electrons/ions and negatively charged
static/mobile dust significantly modify the basic features (polarity, speed, amp-
litude and width) of the DIA and DA SWs. The implications of our results in space
and laboratory dusty plasmas are discussed briefly.

1. Introduction
The physics of charged dust particles, which are ubiquitous in space [1–4] and
laboratory [4–7] plasmas, has received a great deal of interest in understanding the
electrostatic density perturbations and potential structures that are observed in
space environments and laboratory devices.
Shukla and Silin [8] have first considered negatively charged static dust, and

shown that due to the conservation of equilibrium charge density ne0e + nd0Zde −
ni0e = 0 and the strong inequality ne0�ni0 (where ns0 is the particle number density
of the species s with s = e, i,d for electrons, ions, dust, Zd is the number of electrons
residing onto the dust grain surface, and e is the magnitude of the electronic charge)
a dusty plasma (with negatively charged static dust grains) supports low-frequency
dust–ion-acoustic (DIA) waves with phase speedmuch smaller (larger) than electron
(ion) thermal speed. The dispersion relation (a relation between the wave frequency
ω and the wave number k) of the linear DIA waves for the cold ion limit is [8]
ω2/k2 = C2

i /[(1−α)(1+k2λ2
De)], where Ci = (kBTe0/mi)1/2 is the ion-acoustic speed

(with Te0 being the electron temperature at equilibrium and mi being the ion mass,
kB being the Boltzmann constant), λDe = (kBTe0/4πne0e

2)1/2 is the electron Debye
radius, and α = Zdnd0/ni0. When we consider a long wavelength limit (namely,
k2λ2

De�1), the dispersion relation for the DIA waves becomes ω/k = Ci/(1 − α)1/2 .
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This form of spectrum is similar to the usual ion-acoustic wave spectrum for a
plasma with α = 0 and Ti0�Te0 (where Ti0 is the ion temperature at equilibrium).
However, in dusty plasmas we usually have α � 1 and Ti0 � Te0. Therefore, a dusty
plasma cannot support the usual ion-acoustic waves, but can support the DIA
waves of Shukla and Silin [8]. The DIA waves have been experimentally observed
later [9].
On the other hand, it has been shown both theoretically [10] and experiment-

ally [11] that in an unmagnetized dusty plasma the dust charge dynamics in-
troduces a new eigenmode, namely the dust-acoustic (DA) mode [10, 11], whose
dispersion relation for a cold dust fluid limit (Td = 0) is given by [10] ω2/k2 =
C2
d (1 − μ)/(1 + σiμ + k2λ2

Di), where λDi = (kBTi0/4πni0e
2)1/2 is the ion Debye

radius, Cd = (ZdkBTi0/md)1/2 is the DA speed, μ = ne0/ni0, and σi = Ti0/Te0. Now,
if we consider a long wavelength limit (namely k2λ2

Di�1), the dispersion relation
for the DA waves becomes ω2/k2 = C2

d (1−μ)/(1+σiμ). This means that in the DA
waves, the dust particle mass provides the inertia and the pressures of inertialess
electrons and ions give rise to the restoring force. The linear properties of the DIA
and DA waves are now well understood from both theoretical and experimental
points of view [3,4,8–11].
The nonlinear waves associated with the DIA and DA waves, particularly the

DIA and DA SWs, have also received a great deal of interest in understanding
the basic properties of localized electrostatic perturbations in space and laboratory
dusty plasmas [3, 4, 10, 12–14]. The DIA SWs have been investigated by several
authors [12, 15–18]. These works [12, 15–18] are valid only for a cold ions and
isothermal (Maxwellian) electrons.
On the other hand, Mamun et al. [19] have investigated the DA SWs [10] in a

two-component unmagnetized dusty plasma consisting of a negatively charged cold
dust fluid and an inertialess isothermal ion fluid. The work of Mamun et al. [19]
is only valid when a complete depletion of electrons onto the dust grain surface
is possible. A number of theoretical investigations [20–23] have been made of the
DA SWs in order to generalize the work of Mamun et al. [19] by assuming a three-
component unmagnetized dusty plasma consisting of a negatively charged cold
dust fluid and inertialess isothermal electron and ion fluids. These works are only
valid for a cold dust fluid and isothermal electrons and ions. Recently, the effects of
the dust fluid temperature on the DA SWs have been investigated by a number of
authors [24–27]. Roychoudhury and Mukherjee [24] considered a two-component
unmagnetized dusty plasma consisting of a negatively charged adiabatic dust fluid
and an inertialess isothermal ion fluid, and investigated the effects of dust fluid
temperature on large-amplitude SWs. Mendonza-Briceño et al. [25] assumed a two-
component dusty plasma containing the adiabatic dust fluid and non-adiabatic ions
following the non-thermal distribution of Cairns et al. [28], and studied the effect
of the dust fluid temperature on the DA SWs. Gill et al. [26] assumed a dusty
plasma containing the adiabatic dust fluid and non-adiabatic ions following the bi-
Maxwellian distribution of Nishihara and Tajiri [29], and studied the effect of the
dust fluid temperature on the DA SWs. Sayed and Mamun [27] assumed a dusty
plasma containing the adiabatic dust fluid and non-adiabatic (isothermal) inertia-
less electron and ion fluid, and studied the effect of the dust fluid temperature on
the DA SWs. It is obvious that all of these investigations [24–27] are concerned with
different dusty plasma models which are not consistent (appropriate) in general.
The inconsistency of all of these dusty plasma models arises from the consideration
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of one component (dust) being adiabatic, and other components (electrons or ions
or both) being non-adiabatic. Therefore, in the present work we consider a consist-
ent dusty plasma model, which assumes a dusty plasma containing non-inertial
adiabatic electron fluid, inertial (for DIA waves) and non-inertial (for DA waves)
ion fluid and negatively charged inertial adiabatic dust fluid, and perform a proper
investigation of the basic properties of the DIA and DA SWs using the reductive
perturbation method (RPM), which is valid for small amplitude SWs, and by the
pseudo-potential approach (PPA) which is valid for arbitrary amplitude SWs.
The manuscript is organized as follows. The basic equations governing the adia-

batic dusty plasma system under consideration are given in Sec. 2. The small as
well as arbitrary amplitude DIA SWs are investigated in Sec. 3. The small as well
as arbitrary amplitude DA SWs are investigated in Sec. 4. A brief discussion is
presented in Sec. 5.

2. Governing equations
We consider the propagation of an electrostatic perturbation mode in an adiabatic
dusty plasma containing electrons, ions, and negatively charged dust. The dynamics
of a one-dimensional electrostatic perturbation mode in such an adiabatic dusty
plasma is governed by

∂Ns

∂T
+

∂

∂X
(NsUs) = 0, (1)

msNs

(
∂Ns

∂T
+ Us

∂Us

∂X

)
= −qsNs

∂Φ
∂X

− ∂Ps

∂X
, (2)

∂Ps

∂T
+ Us

∂Ps

∂X
+ γsPs

∂Us

∂X
= 0, (3)

∂2Φ
∂X2 = −

∑
s

qsNs, (4)

where Ns is the number density of species s, Us is the fluid speed, Φ is the wave
potential, Ps is the fluid thermal pressure, γs is the adiabatic index,ms is the mass,
qs is the charge, X and T are the space and time variables.
It is important to mention here that for an isothermal process γs = 1 and Ps =

NskBTs with constant Ts (i.e. Ts = Ts0), and hence (1) and (3) are identical. It is also
important to mention that for inertialess isothermal electrons and ions (i.e. formj =
0, γj = 1, Pj = NjkBTj , Tj = Tj0 , where j = e for the electron fluid and j = i for
the ion fluid), (2) reduces to Ne = ne0 exp(eΦ/kBTe) and Ni = ni0 exp(−eΦ/kBTi).

3. DIA SWs
We first consider negatively charged static dust (Ud = 0) and non-inertial electrons
(me = 0), and assume the propagation of the DIA waves [8] whose dynamics is
described in terms of the normalized variables as [30]

∂nj

∂t
+

∂

∂x
(njuj ) = 0, (5)

0 = ne
∂Ψ
∂x

− ∂pi
∂x

, (6)
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ni

(
∂ui
∂t

+ ui
∂ui
∂x

)
= −ni

∂Ψ
∂x

− σi
∂pi
∂x

, (7)

∂pj

∂t
+ uj

∂pj

∂x
+ γjpj

∂uj

∂x
= 0, (8)

∂2Ψ
∂x2 = (1 − α)ne − ni + α, (9)

where nj = Nj/nj0 , uj = Uj/Ci, Ψ = eΦ/kBTe0, pj = Pj/nj0kBTj0 , t = Tωpi and
x = X/λD (with ω−1

pi = (mi/4πe2ni0)1/2 , and λD = (kBTe0/4πe2ni0)1/2). We now
study small amplitude (SA) DIA SWs by the RPM and arbitrary amplitude (AA)
DIA SWs by the PPA.

3.1. SA DIA SWs: RPM

To investigate the basic features of SA DIA SWs by the RPM and the stretched
coordinates [33] ζ = ε1/2(x − Vpt) and τ = ε3/2t, where ε is a smallness parameter
measuring the weakness of the dispersion, and Vp is the phase speed (ω/k) of the
DIA waves normalized by Ci, i.e. Vp = ω/kCi. We can expand the variables nj , uj ,
pj and Ψ in power series of ε as

nj = 1 + εn
(1)
j + ε2n

(2)
j + · · · , (10)

uj = 0 + εu
(1)
j + ε2u

(2)
j + · · · , (11)

pj = 1 + εp
(1)
j + ε2p

(2)
j + · · · , (12)

Ψ = 0 + εΨ(1) + ε2Ψ(2) + · · · . (13)

Now, expressing (5)–(9) in terms of ζ and τ , substituting (10)–(13) into them, one
can easily develop different sets of equations in various powers of ε. To the lowest
order in ε one obtains

n(1)
e =

u
(1)
e

Vp
=

p
(1)
e

γe
=

Ψ(1)

γe
, (14)

n
(1)
i =

u
(1)
i

Vp
=

p
(1)
i

γi
= − Ψ(1)

V 2
p

(
1 −

(
γiσi/V 2

p

)) , (15)

V 2
p =

γe
1 − α

+ γiσi. (16)

Equation (16) is the linear dispersion relation for the DIA waves propagating in
a dusty plasma under consideration. It is obvious that for isothermal electrons
(γe = 1) and cold ions (σi = 0) the dispersion relation (ω/k = Ci/

√
1 − α) is exactly

the same as that obtained by Shukla and Silin [8]. We note that γe and γi can vary
from one to three, σi can vary from zero to one, and α can vary from zero (dust-
free plasma limit) to around one (complete electron depletion). We have numerically
shown how the phase speed (Vp) varies with γ (= γe = γi), α and σi. The results
are displayed in Figs 1 and 2 which indicate that the phase speed Vp increases with
increasing the values of γ, α and σi.
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Figure 1. The variation of the phase speed Vp of the DIA waves with γ and α for σi = 0.2.

Figure 2. The variation of the phase speed Vp of the DIA waves with γ and σi for α = 0.5.

Similarly, to the next order in ε one obtains another set of equations which, after
using (14)–(16), can be reduced to a well-known Korteweg–de Vries (KdV) equation

∂Ψ(1)

∂τ
+ AiΨ(1) ∂Ψ(1)

∂ζ
+ Bi

∂3Ψ(1)

∂ζ3 = 0, (17)

where the coefficients Ai and Bi are given by

Ai = Bi

[
1

V 2
σ

(
3 + σi

Γi
Vσ

)
− 1 − α

γ2
e

(
3 − Γe

γe

)]
, (18)

Bi =
V 2

σ

2Vp
, (19)

in which Vσ = V 2
p − γiσi and Γj = γj (1 + γj ). Now, transforming the independent

variables ζ and τ to ξ = ζ − U0τ
′ and τ = τ ′ (where U0 is a constant velocity

normalized by Ci) and imposing the appropriate boundary conditions (namely

https://doi.org/10.1017/S0022377808007721 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377808007721


418 A. A. Mamun et al.

Figure 3. The Ai = 0 surface (variation of α with γ and σi).

Ψ(1) → 0, ∂Ψ(1)/∂ξ → 0, ∂2Ψ(1)/∂ξ2 → 0 at ξ → ±∞), one can express a stationary
solitary wave solution of (17) as

Ψ(1) = Ψm sech2(ξ/Δ), (20)
where the amplitude Ψm (normalized by kBTe0/e) and the width Δ (normalized by
λD ) are given by

Ψm =
3U0

Ai
, (21)

Δ =
√

4Bi/U0 . (22)

It is obvious from (20) and (21) that the DIA SWs will be associated with positive
(negative) potential when Ai > 0 (Ai < 0). We, therefore, first analytically analyze
the role of the adiabaticity of electrons on changing the polarity of the DIA solitary
potential by analyzing Ai for a cold ion limit (σi = 0). This limit allows us to write
Ai as Ai = (1 + γe − 3α)/2γe. This means that the DIA SWs will be associated
with positive potential when α < (1 + γe)/3 and with negative potential when
α > (1 + γe)/3. This clearly indicates that one cannot have SWs with negative
potential for γe � 2 since α is always less than one. We note that for isothermal
electrons (γe = 1) one can have the DIA SWs with positive (negative) potential
when α < 2/3 (α > 2/3). This completely agrees with Bharuthram and Shukla [12]
and Mamun and Shukla [15,16]. To find the parametric regimes for which positive
and negative solitary profile exist, we have numerically analyzed Ai and obtain
the Ai = 0 surface with α, γ and σi. The Ai = 0 surface is displayed in Fig. 3.
We have then graphically shown how the amplitude and the width of the solitary
profile vary with different dusty plasma parameters. These are displayed in Figs 4–
7. Figure 4 shows that the amplitude of the DIA solitary potential profiles increases
with increasing the value of α, but decreases with increasing the value of γ. Figure 5
indicates that the amplitude of the solitary profile decreases with increasing the
value of γ and σi. It is obvious from Fig. 6 that the width of the solitary potential
profiles increases with increasing the values of α and γ. It is found from Fig. 7 that
the width decreases with increasing the value of σi, but increases with increasing
the value of γ.
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Figure 4. The variation of the amplitude Ψm of the DIA solitary wave with γ and α for
σi = 0.2 and U0 = 0.1.

Figure 5. The variation of the amplitude Ψm of the DIA solitary wave with γ and σi for
α = 0.2 and U0 = 0.1.

3.2. AA DIA SWs: PPA

To investigate the basic features of the AA DIA SWs by the PPA, we use the
transformation ξ = x − Mt (whereM is the Mach number, solitary wave speed/Ci),
the steady-state condition (∂/∂t = 0), and the appropriate boundary conditions for
localized perturbation (namely nj → 1, uj → 0, pj → 1 and Ψ → 0 at ξ → ±∞),
which allow us to write (5)–(9) as

ne =
(

1 +
γ − 1

γ
Ψ

)1/(γ−1)

, (23)

γσnγ+1
i − (M 2 − 2Ψ + γσ )n2

i + M 2 = 0, (24)

d2Ψ
dξ2 = (1 − α)ne − ni + α, (25)
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Figure 6. The variation of the width Δ of the DIA solitary wave with γ and α for σi = 0.2
and U0 = 0.1.

Figure 7. The variation of the width Δ of the DIA solitary wave with γ and σi for α = 0.3
and U0 = 0.1.

where γσ = 2σiγ/(γ−1). It is obvious from (23) and (24) that one cannot substitute
γ = 1 into (23) and (24) directly. Since our present interest is in examining the
combined effects of the adiabatic electrons and negatively charged static dust on
DIA SWs in an adiabatic dusty plasma, it is sufficient to express (23) and (24) as

ne =
(

1 +
γ − 1

γ
Ψ

)1/(γ−1)

≡ 1 +
(

1
γ

)
Ψ +

(
2 − γ

γ22!

)
Ψ2 +

[
(3 − 2γ)(2 − γ)

γ33!

]
Ψ3 + · · · (26)
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ni =
1√
6σi

(
Ψ1 −

√
Ψ2

1 − 12σiM 2
)1/2

, (27)

where Ψ1 = M 2 + 3σi − 2Ψ. It may be noted here that (26) is valid for both γ = 1
(which corresponds to ne = eΦ ) and γ = 3 (which corresponds to ne = (1+2Φ/3)1/2 ).
It is obvious from (26) and (27) that one can consider two situations. The first
corresponds to γ = 1 and σi = 0 (see [12, 15, 16, 18]) and the other corresponds to
γ = 3 and σi�0. The latter is where our present interest lies.
Now, substituting (26) and (27) into (25), multiplying the resulting equation

by dΨ/dξ, and applying the boundary condition, dΦ/dξ → 0 at ξ → ±∞, one
obtains [32]

1
2

(
dΨ
dξ

)2

+ V (Ψ) = 0, (28)

where V (Ψ) is given by [30]

V (Ψ) = C − αΨ − (1 − α)
(

1 +
2
3
Ψ

)3/2

− M√
2
(Ψ1 + Ψ2)1/2 − 23/2σiM

3(Ψ1 + Ψ2)−3/2 , (29)

where C = 1 − α + σi + M 2 is the integration constant chosen in such a way that
V (Ψ) = 0 atΨ = 0, andΨ2 =

√
Ψ2

1 − 12σiM 2 . Equation (28) can be regarded as an
‘energy integral’ of an oscillating particle of unit mass, with pseudo-speed dΨ/dξ,
pseudo-positionΨ, pseudo-time ξ and pseudo-potential V (Ψ). This equation is valid
for the AA stationary DIA SWs in an adiabatic dusty plasma in the presence of
negatively charged static dust. The expansion of V (Ψ) around Ψ = 0 is

V (Ψ) = − 1
2 C2Ψ2 + 1

6 C3Ψ3 + · · · , (30)

where

C2 =
1
3
(1 − α) − 1

M 2 − 3σi
, (31)

C3 = −1
9
(1 − α) +

3(M 2 + σi)
(M 2 − 3σi)3 . (32)

It is clear from (30) that V (Ψ) = dV (Ψ)/dΨ = 0 at Ψ = 0. Therefore, solitary
wave solutions of (28) exist if (i) (d2V/dΨ2)Ψ=0 < 0, i.e. C2 > 0, so that the fixed
point at the origin is unstable, and (ii) V (Ψ) < 0 when 0 > |Ψ| > |Ψm |, where |Ψm |
is a non-zero value of Ψ for which V (Ψm ) = 0, and Ψm is the amplitude of the
SWs. The condition (i) is satisfied when M > Mc, where Mc = Vp and its variation
with α and σi is shown in Figs 1 and 2. To examine whether the conditions (i)
and (ii) are satisfied simultaneously, V (Ψ) (given in (29)) is numerically analyzed
by using typical dusty plasma parameters, namely α = 0.1–0.9, σi = 0.1–0.9, and
M = Mc + 0.1.
One can easily show by the numerical analysis of V (Ψ) (given in (29)) that the

DIA SWs exist only with positive potential (Ψ > 0), but not with negative potential
(Ψ < 0). A part of the numerical analysis, showing the formation of the potential
wells in the positive Ψ-axis, i.e. showing the existence of the DIA SWs with Ψ > 0,
is displayed in Figs 8 and 9.
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Figure 8. How the potential well starts to form in the positive Ψ-axis when M exceeds
Mc = 1.91, where α = 0.1, σi = 0.1, M = 1.91 (solid curve), M = 1.94 (dotted curve) and
M = 1.97 (dashed curve).

Figure 9.How the potential well starts to form in positiveΨ-axis whenM exceedsMc = 5.72,
where α = 0.9, σi = 10−3 , M = 5.72 (solid curve), M = 5.75 (dotted curve) and M = 5.78
(dashed curve).

Figure 8 shows the formation of the potential wells in the positive Ψ-axis, which
corresponds to the formation of the DIA SWs with positive potential, for α = 0.1,
σi = 0.1, M = 1.91 (solid curve), M = 1.94 (dotted curve) and M = 1.97 (dashed
curve). Figure 9 shows the formation of the potential wells in the negative Ψ-axis,
which corresponds to the formation of SWs with negative potential, for α = 0.9,
σi = 0.9, M = 5.72 (solid curve), M = 5.75 (dotted curve) and M = 5.78 (dashed
curve).
Figures 8 and 9 can also provide a visualization of the amplitude (Ψm ) and the

width (|Ψm |/|Vm |, where |Vm | is the minimum value of V (Ψ) in the potential wells
formed in the positive Ψ-axis). Figures 8 and 9, where the values of M are around
its critical value (Mc), indicate the existence of SA DIA SWs. However, in the same
way, one can easily show the existence of large-, even extremely large-amplitude
DIA SWs just by increasing the value of M . It is found from this visualization
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(after a more numerical analysis with different values of α and σi, which are not
shown) that the variation of the amplitude and the width with α and σi in the case
of AA DIA SWs are exactly the same as that in the case of SA DIA SWs.

4. DA SWs
We next consider the negatively charged mobile dust (i.e. Ud � 0) and non-inertial
electrons and ions (me = 0 and mi = 0), and assume the propagation of the DA
waves [10] whose dynamics is described in terms of normalized variables as [31]

∂ns

∂t
+

∂

∂x
(nsus) = 0, (33)

∂ps

∂t
+ us

∂ps

∂x
+ γps

∂us

∂x
= 0, (34)

∂pe
∂x

= neσi
∂Ψ
∂x

, (35)

∂pi
∂x

= −ni
∂Ψ
∂x

, (36)

∂ud
∂t

+ ud
∂ud
∂x

=
∂Ψ
∂x

− σd
nd

∂pd
∂x

, (37)

∂2Ψ
∂x2 = μene − μini + nd, (38)

where ns = Ns/ns0 , us = Us/Cd, Ψ = eΦ/kBTi0, ps = Ps/ns0kBTs0 , t = Tωpd,
x = X/λDm (with ω−1

pd = (md/4πZ2
de

2nd0)1/2 and λDm = (kBTi0/4πZdnd0e
2)1/2),

σd = Td0/ZdTi0, μ = ne0/ni0, μe = μ/(1 − μ), and μi = 1/(1 − μ).
It is important to note that for isothermal processes, (35) and (36) reduce to

ne = exp(Ψ/σi) and ni = exp(−Ψ) which are used by Mendonza-Briceño et al. [25],
Gill et al. [26] and Sayed and Mamun [27]. To consider an adiabatic dusty plasma,
one cannot use γ = 1 and ps = ns with constant Ts . We now study SA DA SWs by
the RPM and AA DA SWs by the PPA.

4.1. SA DA SWs: RPM

To investigate the basic features of SA DA SWs by the reductive perturbation
technique and the stretched coordinates [33] ζ = ε1/2(x−V0t) and τ = ε3/2t, where
ε is a smallness parameter measuring the weakness of the dispersion, and V0 is the
phase speed (ω/k) of the DA waves normalized by Cd, i.e. V0 = ω/kCd. We can
expand the variables ns , us , ps , and Ψ in power series of ε as

ns = 1 + εn(1)
s + ε2n(2)

s + · · · , (39)

us = 0 + εu(1)
s + ε2u(2)

s + · · · , (40)

ps = 1 + εp(1)
s + ε2p(2)

s + · · · , (41)

Ψ = 0 + εΨ(1) + ε2Ψ(2) + · · · . (42)

Now, expressing (33)–(38) in terms of ζ and τ , substituting (39)–(42) into (33)–(38),
one can easily develop different sets of equations in various powers of ε. To the
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lowest order in ε one obtains

n(1)
e =

u
(1)
e

V0
=

p
(1)
e

γ
= σi

Ψ(1)

γ
, (43)

n
(1)
i =

u
(1)
i

V0
=

p
(1)
i

γ
= −Ψ(1)

γ
, (44)

n
(1)
d =

u
(1)
d

V0
=

p
(1)
d

γ
=

Ψ(1)

σdγ − V0
2 , (45)

V 2
0 = γ

(
σd +

1 − μ

σiμ + 1

)
. (46)

Equation (46) is the linear dispersion relation for the DA waves propagating
in a dusty plasma under consideration. It implies that for inertialess isothermal
electrons and ions (γ = 1) and cold dust fluid (σd = 0), the phase speed (ω/k =
Cd

√
(1 − μ)/(1 + σiμ)) is exactly the same as obtained byRao [10] andMamun [21].

We note that 1 � γ � 3, 0 < σi � 1 and 0 � μ < 1. Therefore, owing to the
adiabaticity of electrons and ions, the phase speed of the DA waves can be increased
significantly.
Similarly, to the next order in ε one obtains another set of equations which, after

using (43)–(46), can be reduced to a well-known KdV equation

∂Ψ(1)

∂τ
+ AdΨ(1) ∂Ψ(1)

∂ζ
+ Bd

∂3Ψ(1)

∂ζ3 = 0, (47)

where the coefficients Ad and Bd are given by

Ad = −Bd

[
Γ
(
μeσ

2
i − μi

)
+

1
V 6

μ

(
3V 2

μ + Γσ

)]
, (48)

Bd =
V 4

μ

2V0
, (49)

in which V 2
μ = γ(1 − μ)/(1 + σiμ), Γ = (2 − γ)/γ2 , and Γσ = σdγ(1 + γ).

Now, transforming the independent variables ζ and τ to ξ = ζ − U0τ
′ and τ = τ ′

(where U0 is a constant velocity normalized by Cd) and imposing the appropriate
boundary conditions (namely Ψ(1) → 0, ∂Ψ(1)/∂ξ → 0, ∂2Ψ(1)/∂ξ2 → 0 at ξ →
±∞), one can express the stationary solution of the KdV equation (47) as

Ψ(1) = Ψ0 sech2(ξ/δ), (50)

where the amplitude Ψm (normalized by kBTi0/e) and the width δ (normalized by
λDm) are given by

Ψ0 =
3U0

Ad
, (51)

δ =
√

4Bd/U0 . (52)

It is obvious from (50) and (51) that the DA SWs will be associated with positive
(negative) potential when Ad > 0 (Ad < 0). We note that for isothermal electrons
and ions (γ = 1) and cold dust fluid (σd = 0), we can express Ad as Ad = −[V0/
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Figure 10. The variation of the phase speed V0 of the DA waves with γ and σi for
σd = 0.0001 and μ = 0.5.

(1 − μ)2 ][1 + (3 + σiμ)σiμ + μ(1 + σ2
i )/2] which is always negative. This means that

for isothermal electrons and ions (γ = 1) and cold dust fluid (σd = 0) DA SWs exist
only with negative potential. This agrees completely with Mamun [21]. To include
the effects of the adiabaticity of electrons and ions on the polarity of the DA solitary
wave potential, we numerically analyze Ad, and find that Ad is always negative.
This means that the DA SWs are associated only with the negative potential, and
that the effects of the adiabaticity of electrons and ions do not have any role in
changing the polarity of the solitary potential. However, these can have a significant
role in modifying the other basic properties (namely speed, amplitude and width)
of the DA SWs. These are displayed in Figs 10–15. Figures 10 and 11 show that the
DW SW speed (V0) increases with γ, but decreases with μ and σi. Figures 12 and 13
indicate that the magnitude of the DW SW amplitude (|Ψm |) increases with γ, but
decreases with μ and σi. It is obvious from Figs 14 and 15 that the DW SW width
(δ) increases with γ, but decreases with μ and σi. It is clear from Figs 11, 13 and 15
that the dust fluid temperature does not have any significant role in modifying the
basic features of the DA SWs.

4.2. AA DA SWs: PPA

To study the AA DA SWs for γ = 3 and σd�0, we use transformation ξ = x − Mt
(where M is the Mach number, solitary wave speed/Cd), the steady-state condition
(∂/∂t = 0) and the appropriate boundary conditions for localized perturbations
(namely ns → 1, us → 0, ps → 1 and Ψ → 0 at ξ → ±∞) in (33)–(37). These allow
us to express ne, ni and nd as

ne =
(

1 +
2
3
σiΨ

)1/2

, (53)

ni =
(

1 − 2
3
Ψ

)1/2

, (54)

nd =
Mσ√
6σd

(Ψ1 − Ψ2)1/2 , (55)
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Figure 11. The variation of the phase speed V0 of the DA waves with μ and σd for σi = 0.5
and γ = 3.

Figure 12. The variation of the amplitude Ψ0 of the DA SWs with σi and γ for σd = 0.0001
and μ = 0.5.

where Ψ1 = 1 + 2Ψ/M 2
σ , Ψ2 =

√
Ψ2

1 − 12σdM 2/M 4
σ , and Mσ = (M 2 + 3σd)1/2 .

Again, using the transformation ξ = x − Mt, substituting (53)–(55) into (38),
multiplying the resulting equation by dΨ/dξ, and applying the boundary condition,
dΦ/dξ → 0 at ξ → ±∞, one obtains [32]

1
2

(
dΨ
dξ

)2

+ V (Ψ) = 0, (56)

where V (Ψ) is given by [31]

V (Ψ) = C − μe
σi

(
1 +

2
3
σiΨ

)3/2

− μi

(
1 − 2

3
Ψ

)3/2

− M√
2
Mσ (Ψ1 + Ψ2)1/2 − 23/2σd

M 3

M 3
σ

(Ψ1 + Ψ2)−3/2 , (57)
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Figure 13. The variation of the amplitude Ψ0 of the DA SWs with μ and σd for σi = 0.5
and γ = 3.

Figure 14. The variation of the width δ of the DA SWs with γ and σi for σd = 0.0001 and
μ = 0.5.

where the integration constant C = μe/σi + μi + σd + M 2 is chosen in such a way
that V (Ψ) = 0 at Ψ = 0. Equation (56) can be regarded as an ‘energy integral’ of
an oscillating particle of unit mass, with pseudo-speed dΨ/dξ, pseudo-position Ψ,
pseudo-time ξ and pseudo-potential V (Ψ). This equation is valid for AA stationary
DA SWs in an adiabatic hot dusty plasma. The expansion of V (Ψ) around Ψ = 0 is

V (Ψ) = C2Ψ2 + C3Ψ3 + · · · , (58)

where

C2 =
1
2

[
1

M 2 − 3σd
− 1 + σiμ

3(1 − μ)

]
, (59)

C3 = −1
6

[
3(M 2 + σd)
(M 2 − 3σd)3 +

1 − σ2
i μ

9(1 − μ)

]
. (60)
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Figure 15. The variation of the width δ of the DA SWs with μ and σd for σi = 0.5 and
γ = 3.

It is clear from (58) that V (Ψ) = dV (Ψ)/dΨ = 0 at Ψ = 0. Therefore, solitary
wave solutions of (56) exist if (i) (d2V/dΨ2)Ψ=0 < 0, i.e. C2 < 0, so that the fixed
point at the origin is unstable, and (ii) V (Ψ) < 0 when 0 > |Ψ| > |Ψm |, where |Ψm |
is a non-zero value of Ψ for which V (Ψm ) = 0, and Ψm is the amplitude of the
SWs. The condition (i) is satisfied when M > Mc, where Mc = V0 is defined by
(46) and its variation with μ, σi and σd are shown in Figs 10 and 11. To examine
whether the conditions (i) and (ii) are satisfied simultaneously, V (Ψ) (given in (57))
is numerically analyzed by using typical plasma parameters, namely μ = 0.1−0.9,
σi = 0.1 − 0.9, σd = 10−5 − 10−3 , and M > Mc.
One can easily show by the numerical analysis of V (Ψ) (given in (57)) that the

DA SWs exist only with negative potential (Ψ < 0), but not with positive potential
(Ψ > 0). A part of the numerical analysis, showing the formation of the potential
wells in the negative Ψ-axis, i.e. showing the existence of the DA SWs with negative
potential, is displayed in Figs 16 and 17. Figure 16 shows the formation of the
potential wells in the negative Ψ-axis, which corresponds to the formation of the
DA SWs with negative potential, for μ = 0.1, σi = 0.1, σd = 10−5 , M = 1.64 (solid
curve), M = 1.67 (dotted curve) and M = 1.70 (dashed curve). Figure 17 shows
the formation of the potential wells in the negative Ψ-axis, which corresponds to
the formation of SWs with negative potential, for μ = 0.9, σi = 0.9, σd = 10−3 ,
M = 0.42 (solid curve), M = 0.44 (dotted curve) and M = 0.46 (dashed curve).
Figures 16 and 17 can also provide a visualization of the amplitude (Ψm ) and the
width (|Ψm |/|Vm |, where |Vm | is the minimum value of V (Ψ) in the potential wells
formed in the negative Ψ-axis). Figures 16 and 17, where the values of M are
around its critical value (Mc), indicate the existence of SA DA SWs. However,
in the same way, one can easily show the existence of large-, even extremely
large-amplitude DA SWs just by increasing the value of M . It is found from this
visualization (after a more numerical analysis with different values of μ and σi,
which are not shown) that the variation of the amplitude and the width with μ and
σi in the case of AA DA SWs are exactly the same as that in the case of SA DA
SWs.
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Figure 16. How the potential well starts to form in the negative Ψ-axis when M exceeds
Mc = 1.635, where μ = 0.1, σi = 0.1, σd = 10−5 , M = 1.64 (solid curve), M = 1.67 (dotted
curve) and M = 1.70 (dashed curve).

Figure 17. How the potential well starts to form in the negative Ψ-axis when M exceeds
Mc = 0.411, where μ = 0.9, σi = 0.9, σd = 10−3 , M = 0.42 (solid curve), M = 0.44 (dotted
curve) and M = 0.46 (dashed curve).

5. Discussion
We have considered a consistent and realistic dusty plasma system containing non-
inertial adiabatic electrons and inertial (in the case of DIA SWs) or non-inertial (in
the case of DA SWs) ions, and negatively charged static (in the case of DIA SWs)
or mobile (in the case of DA SWs) dust, and performed a proper investigation of the
basic properties of DIA and DA SWs by the RPM [33] and PPA [32]. The results
that we have found in this investigation can be summarized as follows.

1. The effects of adiabatic electrons, negatively charged static dust and adiabatic
ion-temperature significantly modify the basic properties (speed, amplitude and
width) of the DIA KdV solitons.

2. The effect of the adiabatic electrons kills the possibility of the formation of the
negative DIA SWs for any possible set of plasma parameters (0 � σi < 1 and
0 � σi � 1).
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3. It is obvious that for γe = 1 and σi = 0 the DIA SWs obtained in this
investigation agree completely with Bharuthram and Shukla [12] and Mamun
and Shukla [15,16].

4. The effects of adiabaticity of electrons and ions significantly modify the basic
properties (speed, amplitude and width) of the DA KdV solitons.

5. It is found that the effects of the adiabatic electrons and ions do not have any
role in changing the polarity of the DA SWs for any possible set of plasma
parameters (1 � γ � 3, 0 < σi � 1 and 0 � μ < 1).

6. It may be noted that for γ = 1 and σd = 0 the basic features of the DA
SWs found in the present investigation agree completely with Rao [10] and
Mamun [21].

The ranges of different plasma parameters used in this investigation are very
wide (σi = 0.1–0.9 and σi = 0.1–0.9), and are relevant to both space [1–4] and
laboratory [4, 6, 7] plasmas. Thus, the results of the present investigation should
help us to explain the basic features of the localized electro-acoustic perturbations
propagating in space [1–4] and laboratory [4,6,7] dusty plasmas.
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