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This paper presents a numerical and theoretical investigation of the sound generated
by premixed flame annihilation. Planar, axisymmetric and spherically symmetric
flame annihilation events are considered. The compressible Navier–Stokes, energy
and progress variable equations are first solved using simple chemistry simulations,
resolving both the flame dynamics and the acoustics. These simulations show that
the amplitude of the far-field sound produced by the annihilation events depends
on the flame thickness, particularly for the axisymmetric and spherically symmetric
flame annihilation events. The flame propagation velocity is also always observed
to increase significantly prior to flame annihilation, which is in keeping with other
reported experimental and numerical studies. A theory is then presented that relates
the far-field sound to the flame annihilation event by using a previously reported
and extended form of Lighthill’s acoustic analogy. A comparison with the numerical
results shows that this theory accurately represents the far-field sound produced by
considering only the temporal heat release source term in Lighthill’s acoustic analogy,
as reported by others. Additional assumptions of an infinitely thin flame and constant
flame speed are then invoked in an attempt to simplify the problem. In the planar
annihilation, this theory results in good predictions of the overall pressure change.
However, these assumptions lead to significant under-prediction of the amplitude of
far-field sound produced for the axisymmetric and spherically symmetric annihilation
events. Finally, dimensional reasoning supported by the simulations and theory is
used to develop scalings of the far-field sound in terms of the flame parameters.
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1. Introduction
Combustion is a significant source of noise pollution. Combustion generated sound

also plays a central role in the stability of many engineering devices, such as industrial
burners, gas turbines and rockets (e.g. Lieuwen 2003; Lieuwen & Yang 2006; Candel
et al. 2009; Schwarz & Janicka 2009). The ongoing pursuit of quieter and cleaner
combustion in these devices provides a continued need for further refinements in our
understanding of combustion generated sound. As a result, experimental, theoretical
and numerical studies of this phenomenon appear regularly in the literature.

† Email address for correspondence: mjbrear@unimelb.edu.au
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The first studies of combustion generated sound were undertaken when the
fundamental theories of both combustion and sound generation were experiencing
rapid development. Smith & Kilham (1963) studied sound generation by open,
premixed turbulent flames. This work appears to be the first to report experimentally
that sound generation by a turbulent premixed flame can be essentially monopolar,
but the work only briefly discussed why this might be the case. Nonetheless, this is
a remarkable result given the highly non-uniform nature of turbulent flows and is in
distinct contrast to the sound produced by non-reacting, turbulent jets. The theory of
Bragg (1963) also assumed that combustion generated sound is monopolar, but this
appears to be based on physical reasoning rather than observation.

Thomas & Williams (1966) constructed a theory describing sound generation
by changes in the volume of a premixed laminar flame. This theory could only
accommodate monopolar sound sources since the geometry considered was spherically
symmetric. Thomas & Williams (1966) compared this theory to measurements of
the sound radiated from a premixed gas mixture confined within soap bubbles and
achieved good agreement when the gas bubble was centrally ignited. Hurle et al. (1968)
extended this simple theory to investigate the sound produced by open, turbulent
premixed flames, and again found reasonable agreement with experiment. These two
studies provided evidence that the mechanism of sound generation by laminar and
turbulent flames can be closely related.

Strahle (1971) then extended Lighthill’s acoustic analogy (Lighthill 1951) to
combusting flows. Since Lighthill’s analogy is derived from the equations of fluid
motion, Strahle’s work was able to argue from a more fundamental basis that
monopolar sound sources can indeed appear in turbulent combusting flows. Several
later works have since also based their arguments on extensions of Lighthill’s and
other acoustic analogies (e.g. Hassan 1974; Kotake 1975; Strahle 1978; Dowling 1992;
Lieuwen, Mohan & Rajaram 2006). Under the assumptions of low Mach number
and a constant average mixture molecular weight, Lighthill’s acoustic analogy can be
simplified to an inhomogeneous wave equation with a single monopolar source term
(Strahle 1978; Dowling 1992; Truffaut, Searby & Boyer 1998). This source term has
been written in terms of time derivatives of the heat release rate or the flame volume.
Relating these quantities to the flame motion then allows a relation for the far-field
sound to be obtained. Much of the subsequent theoretical work on this problem starts
from this premise and continues to yield useful insights (e.g. Strahle 1985; Clavin &
Siggia 1991; Dowling 1992; Howe 1998; Schuller, Durox & Candel 2002; Lieuwen &
Yang 2006; Hirsch et al. 2007).

One mechanism affecting the flame volume, and hence sound generation, is flame
annihilation (Kidin et al. 1984, 1988; Candel, Durox & Schuller 2004). These
annihilation events have been observed in highly corrugated flames (Candel et al.
1990) including acoustically excited laminar (e.g. Durox et al. 2009; Karimi et al.
2009) and turbulent flames (Balachandran et al. 2005). When two flame surfaces
interact the unburnt gas trapped between these surfaces is consumed, resulting in
a rapid reduction in flame surface area and thus heat release. Kidin et al. (1984)
examined the noise generated by an excited conical flame with a speaker at the base.
They observed two peaks in the pressure history in the far-field. The first peak was
largest and was attributed to the collapse of a ‘flame neck’, and the second one was
attributed to the consumption of a ‘pocket’ of unburnt gas produced by the first
collapse.

Candel et al. (2004) studied sound generation in three configurations: flame
interaction with a cold plate, mutual flame annihilation and vortex flame interaction.
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Since the maximum rate of decrease in the flame surface area and hence heat release
rate determined the pressure amplitude in these three cases, Candel et al. (2004)
concluded that the dominant mechanism of sound generation was flame surface
destruction. They then suggested that flame surface destruction is a dominant source
of sound in turbulent combustors.

Several numerical studies have examined flame annihilation in detail without
considering sound production (e.g. Chen & Sohrab 1995; Echekki, Chen & Gran
1996; Wichman & Vance 1997; Petrov & Ghoniem 1998; Sun & Law 1998; Lu
& Ghosal 2003). The dynamics of converging spherical and cylindrical flames have
also been investigated both experimentally and numerically (e.g. Sivashinsky 1974;
Bradley, Gaskell & Gu 1996; Durox, Ducruix & Candel 2001; Baillot, Durox &
Demare 2002; Pantano & Pullin 2003; Lu & Ghosal 2004). Thus, if sound generation
by flame annihilation is a significant sound source, these non-acoustic studies may
provide insights into the problem.

Sound generation by combustion has been studied using large eddy simulation
(LES) (e.g. Bui et al. 2005; Birbaud et al. 2006; Ihme, Bodony & Pitsch 2006;
Flemming, Sadiki & Janicka 2007; Bui, Schröder & Meinke 2008; Ihme, Pitsch &
Bodony 2009) and direct numerical simulations (DNS) (e.g. Miyauchi, Tanahashi &
Li 2001; Zhao & Frankel 2001; Tanahashi et al. 2002; Laverdant & Thévenin 2003,
2005; Shalaby, Laverdant & Thévenin 2009; Najafi-Yazdi, Lew & Mongeau 2010).
Since all relevant flow physics should be resolved in DNS, it offers the potential of
further insight into the sound generation problem.

The aims of this study are twofold. First, this study will investigate the mechanism
of sound generation in three premixed flame configurations using simple chemistry
simulations resolving both the flame dynamics and the acoustics. Simple chemistry
is used since the dependence of radiated sound on even basic parameters such as
the flame thickness is not yet established. A theory is then developed for these three
configurations using an extended form of Lighthill’s equation (Dowling 1992). Key
parameters are subsequently identified and their influence on the far-field sound is
investigated further. The three configurations studied are:

(i) a planar case, in which two flat flames propagate towards each other until they
annihilate;

(ii) an axisymmetric flame, which propagates inwards and then self-annihilates; and
(iii) a spherically symmetric flame, which propagates inwards and self-annihilates.

Any three-dimensional flame annihilation event can be approximated by at least one
of these canonical configurations. For example, the collapse of the ‘flame neck’ and
consumption of the flame ‘pocket’ reported by Kidin et al. (1984) can be modelled as
axisymmetric and spherically symmetric annihilation events, respectively. As such, it
is hoped that both the simulations and the theory will yield results that are useful in
understanding combustion generated sound more generally.

2. Governing equations
For an irreversible single step reaction, the governing equations in a one-dimensional

domain with spatial coordinate ζ may be expressed as follows:

∂ρ

∂t
+

1

ζ n

∂ζ nρu

∂ζ
= 0, (2.1)

∂ρu

∂t
+

1

ζ n

∂ζ nρu2

∂ζ
+

∂p

∂ζ
=

1

ζ n

∂ζ nτζζ

∂ζ
− nτφφ/ζ, (2.2)
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∂ρet

∂t
+

1

ζ n

∂

∂ζ
[ζ n(ρet + p)u] =

1

ζ n

∂

∂ζ
(ζ nuτζζ ) − 1

ζ n

∂

∂ζ
(ζ nq) + Qω̇, (2.3)

∂ρY

∂t
+

1

ζ n

∂

∂ζ
(ζ nρYu) =

1

ζ n

∂

∂ζ

(
ζ nρD

∂Y

∂ζ

)
− ω̇, (2.4)

where ρ is the density, u is the velocity, p is the pressure, τζζ and τφφ are the stress
tensors, q is the heat flux, et is the specific total internal energy, Y is the unburnt
fuel mass fraction, D is the mass diffusion coefficient, ω̇ is the reaction rate, Q is the
specific heat of reaction and t is the time. The variables n and ζ are defined as follows
for the three different one-dimensional configurations considered in this paper,

n = 0, ζ = x, planar,

n = 1, ζ = r, axisymmetric,

n = 2, ζ = R, spherically symmetric.

The total specific internal energy, pressure, heat flux and stress tensors may be
expressed as follows:

et =
1

2
u2 +

p

ρ(γ − 1)
, (2.5)

p =
γ − 1

γ
ρcpT , (2.6)

q = −k
∂T

∂ζ
, (2.7)

τ ζ ζ = µ

(
2
∂u

∂ζ
− 2

3

1

ζ n

∂ζ nu

∂ζ

)
, (2.8)

and

τ φφ = µ

(
2
u

ζ
− 2

3

1

ζ n

∂ζ nu

∂ζ

)
, (2.9)

where T is the temperature, cp is the specific heat capacity, k is the thermal conductivity
and µ is the dynamic viscosity of the gas. By assuming a constant molecular weight
mixture, the values of cp and γ in (2.6) and (2.7) are invariant. The specific heat of
reaction and the reaction rate in (2.3) and (2.4) are given by

Q = cp(Tb − Tu), (2.10)

and

ω̇ = ΛρY exp

(
−β(1 − Θ)

1 − α(1 − Θ)

)
. (2.11)

where

Θ = (T − Tu)/(Tb − Tu), (2.12)

and

Λ = B0 exp

(
−β

α

)
. (2.13)

The variable B0 in (2.11) is the pre-exponential factor, Θ is the reduced temperature,
the subscripts u and b correspond to the unburned and burned states of the mixture,
respectively. The two parameters α and β determine the flame heat release and
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activation temperature, respectively (Poinsot & Veynante 2005). The following non-
dimensional parameter groups define the problem:

Re =

(
cL

ν

)
ref

, (2.14)

Pr =
(cpµ

k

)
ref

, (2.15)

Sc =
( ν

D

)
ref

, (2.16)

Le =

(
k

ρcpD

)
ref

=
Sc

Pr
, (2.17)

Da =

(
DΛ

S2
L

)
ref

, (2.18)

Ma = (SL/c)ref , (2.19)

where c is the sonic velocity, ν is the kinematic viscosity, SL is the unstrained laminar
flame speed, L is a reference length, Re is the Reynolds number, Pr is the Prandtl
number, Sc is the Schmidt number, Le is the progress variable Lewis number, Da
is the non-dimensional Damköhler number and Ma is the non-dimensional laminar
flame speed. The subscript ref refers to the reference variables of the unburnt gas.

3. Numerical methods and flow parameters
The DNS of sound generated by a premixed flame is a challenge. Care must be taken

to simultaneously ensure adequate resolution of the flame, whilst providing a large
enough computational domain to resolve the larger long-wavelengths of the radiated
sound. In addition, care is required at the boundaries of the computational domain to
avoid spurious reflections. These requirements were achieved in the present study by
using a modified form of the code NTmix. NTmix is a high-order accurate flow solver
that has been used to perform DNS and LES of reactive flows using a single step
chemistry. It features a sixth-order compact scheme for spatial derivatives, combined
with a third-order Runge–Kutta time integrator (Cuenot, Bedet & Corjon 1997). The
NTmix has been used extensively to study laminar and turbulent combustion (e.g.
Poinsot & Lele 1992; Baum 1994; Bourlioux, Cuenot & Poinsot 2000), as well as
non-reactive flows, such as wake vortex flows (Corjon & Poinsot 1995, 1997).

The governing equations in NTmix were modified such that the axisymmetric
and spherically symmetric configurations can be simulated. The governing equations
were discretised into 3000 nodes from ζ = 0 to 15Lref, where Lref is the reference
length. Extensive grid independence studies were conducted to ensure the resolution
is sufficient: there were at least 10 grid points inside the flame thickness at all times.

A symmetry boundary condition was used to simulate half of the domain in the
planar case. For the axisymmetric and spherical cases, the singularity at the origin
was treated using the method presented by Mohseni & Colonius (2000). The outflow
boundaries were modelled with non-reflecting boundary conditions (Poinsot & Lele
1992) for the planar cases. A modified version of these boundary conditions was
derived for the axisymmetic (C. S. Yoo, personal communication) and spherical cases
(Talei 2011).

The flow field parameters used for different cases are presented in table 1. These
parameter sets were applied to all three configurations. The Prandtl number is 0.75 for
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Case Re Da δ/Lref Le SL/cref Tb/Tu α β

1 2000 129.616 0.1 1 0.01 4 0.75 8
2 1000 129.616 0.2 1 0.01 4 0.75 8
3 500 129.616 0.4 1 0.01 4 0.75 8

Table 1. Flow field parameters used for each configuration.
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Figure 1. (i) Non-dimensional reaction rate ω̇/(ω̇max)∞, (ii) reduced temperature Θ and (iii)
non-dimensional pressure (p − pref)/ρrefc

2
ref versus non-dimensional distance from the origin

at different instants before (solid), during (dashed and dash-dotted) and after (dash dot dot)
annihilation.

all simulations. The laminar flame thickness δ is measured using (Poinsot & Veynante
2005)

δ = (Tb − Tu)

/∣∣∣∣dT

dx

∣∣∣∣
max

. (3.1)

The flame thickness is defined using the temperature profile when the flame is far
from the origin and can be considered essentially planar.

In all simulations, the flow field is initialised with a region of unburnt gas from
ζ = 0 to ζ = 7.5Lref that is surrounded by burnt gas from ζ = 7.5Lref to 15Lref at
the adiabatic flame temperature. After initialising the flow field, the flame starts to
propagate towards the origin. The propagation velocity is initially equal to the planar
laminar flame speed but varies as the flame approaches the symmetry plane, axis or
point (depending on the configuration).

4. Numerical results
Consider case 1 in table 1 as the baseline case. Figure 1i shows the reaction rate

versus normalised distance ζ/Lref at several instants. A part of the computational
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Figure 2. x − t diagram of the pressure field during the collision of two planar flames.

domain is shown in figure 1. The flame propagates from right to left and the symmetry
plane is at ζ/δ = 0. The instants are chosen as follows:

(i) ‘Before’ annihilation the flames are four flame thicknesses away from the origin.
Negligible interaction between flames is observed.

(ii) The first instant ‘during’ annihilation is chosen such that the flames are two
flame thicknesses away from the origin.

(iii) The second instant during annihilation is when the point of maximum heat
release is close to the origin.

(iv) The instant ‘after’ annihilation is when the reaction has ended and the domain
contains burnt gas only.

It may be observed that for each of the three configurations, the reaction rate
remains close to the same spatial profile throughout. Once the flame is close to
the symmetry plane, the reaction rate starts to marginally increase. Finally, as the
reactants are progressively consumed, the peak reaction rate decreases until the flame
is annihilated. Figure 1ii shows the reduced temperature versus normalised distance
for several instants. As can be seen, the reduced temperature increases as two preheat
zones start to merge for all three configurations. After the extinction event, the tem-
perature is uniform and equal to the burnt gas temperature throughout the domain.

Now consider the pressure in the planar case, which is shown in the bottom left-
most frame of figure 1. Before the annihilation event there is small, hardly observable
change in the pressure profile across the flame corresponding to the pressure gradient
required to accelerate the unburned gases to the positive burned gas velocity. However,
during the extinction event, the pressure at the origin first increases then decreases,
leading to a much larger pressure pulse that propagates away from the symmetry plane
in the positive x -direction. Figures 1(b)iii and (c) show the pressure for axisymmetric
and spherically symmetric cases, respectively. As the flame propagates towards the
origin, the pressure difference between burnt and unburnt gas regions increase and
reaches a maximum near the origin. After the annihilation event the resulting pressure
wave propagates towards the outflow boundary while the pressure peak decreases.

The propagating sound wave resulting from planar flame annihilation may be
observed in an x − t diagram (figure 2). Here, the time t = 0 refers to the instant
when the point of maximum reaction rate reaches the symmetry plane. At negative
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Figure 3. Non-dimensional pressure (p − pref)/ρrefc
2
ref for flame annihilation from

simulations (i) at the symmetry axis and (ii) in the far-field ζ/Lref = 7.5.

times (prior to collision), the nearly vertical contour lines reflect the slow propagation
of the laminar flame. During the annihilation event, acoustic energy is produced. The
sound wave resulting from flame annihilation then appears as a pressure wave moving
towards the outflow boundaries at the sonic velocity of the burnt gas, as evidenced
by the diagonal contour lines in the x − t diagram.

Figure 3 shows a comparison between a temporal history of pressure observed near
the origin and in the far-field for planar, axisymmetric and spherically symmetric
cases. As can be seen from figure 3i for the case of planar flame annihilation, there is
a maximum in the pressure history which will be termed as the ‘peak pressure’. The
generated pressure wave after the annihilation event has a steady state value that is
less than the reference pressure. This pressure will be referred to as the steady state
far-field pressure in figure 3(a)ii. Note that in the planar case, the pressure in the
far-field has a very similar temporal history to that at the origin.

For the axisymmetric and spherically symmetric annihilation events, a minimum
is observed in the pressure history close to the origin and in the far-field. For both
these cases in figure 3, the peak pressure in the far-field is small compared to the near
field. This is not surprising considering the dimensionality of each problem; classical
acoustics dictates a scaling of 1/

√
r and 1/R for the axisymmetric and spherically

symmetric cases, respectively.
Figure 4 shows a comparison of pressure versus time at two points in the domain

for each of the different configurations and different flame thicknesses. Figure 4i
shows the pressure at a point near the annihilation location (ζ/Lref = 0 for the planar
case and ζ/Lref = 0.0025 for the axisymmetric and spherically symmetric cases) while
figure 4ii shows a point in the far-field (ζ/Lref = 7.5) for all three configurations and
flame thicknesses. Flame thickness has negligible effect on the peak pressure near the
symmetry plane in all cases. In the planar case (figure 4a), the steady state far-field
pressure does not vary as the flame thickness is changed both at the symmetry plane
and in the far-field. However, in the other two configurations, increases in the flame
thickness result in significant increases in the peak pressure in the far-field.
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Figure 4. Non-dimensional pressure (p −pref)/ρrefc
2
ref for flame annihilation from simulations

(i) at the symmetry axis and (ii) in the far-field ζ/Lref = 7.5 for different flame thicknesses,
δ/Lref = 0.1 (solid line), δ/Lref = 0.2 (dashed), δ/Lref = 0.4 (dash-dotted).

5. Theoretical analysis
In order to investigate further the mechanism of sound generation, a theory is now

developed to describe the production of sound as a function of key flame parameters.
This is based on the work of Lighthill (1951). Dowling (1992) reformulated Lighthill’s
equation for combusting flows as follows:

1

c2
∞

∂2p

∂t2
− ∇2p =

∂

∂t

(
ρ∞

ρ

(
Qω̇

cpT
− ∇ · q

cpT
+

τij

cpT

∂ui

∂xj

))

+
∂2

∂xi∂xj

(ρuiuj − τij )

+
1

c2
∞

∂

∂t

((
1 − ρ∞c2

∞
ρc2

)
Dp

Dt
− p − p∞

ρ

Dρ

Dt

)

+
∂2

∂xi∂t
(uiρe), (5.1)

where subscript ∞ refers to the flow field variables in the far-field. Here ρe is the
so-called excess density,

ρe = ρ − ρ∞ − (p − p∞)/c2
∞. (5.2)

In a reacting flow, the first term on the right-hand side of (5.1) describes a
strong monopolar source of sound (Strahle 1978; Clavin & Siggia 1991; Dowling
1992). Where combustion is unsteady and the flow Mach number is low, this term
dominates the other source terms (Dowling 1992). By retaining only the source term
associated with temporal fluctuations in the heat release, (5.1) can be expressed as

1

c2
∞

∂2p

∂t2
− ∇2p =

∂

∂t

[
ρ∞

ρ

(
Qω̇

cpT

)]
. (5.3)
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For a wave equation with Π(r, t) as the source term,

1

c2
∞

∂2p

∂t2
− ∇2p = Π(r, t), (5.4)

the solution can be obtained using a free-space Green’s function (e.g. Duffy 2001),

p′(r, t) = p(r, t) − pref =

∫ t+

0

∫∫∫
V0

G(r, t |r0, τ )Π(r0, τ ) dV0 dτ, (5.5)

where r is the position vector for any point inside or outside the source region, r0

is the position vector in the source region, V0 is the volume of the source region
and t+ denotes the time slightly later than t and τ ∈ [0, t+]. The Green’s functions
G(r, t |r0, τ ) are as follows (e.g. Duffy 2001),
planar:

c∞

2
H

(
t − τ − |r − r0|

c∞

)
, (5.6)

axisymmetric:

1

2π

H
(
t − τ − |r − r0|/c∞

)√
(t − τ )2 − |r − r0|2/c2

∞
, (5.7)

and spherically symmetric:

δ(t − τ − |r − r0|/c∞)

4π|r − r0| . (5.8)

The heat release term in (5.3) may be re-arranged as

Π(r, t) =

(
Tb

Tu

− 1

)
∂

∂t

(
ρbTuω̇

ρT

)
, (5.9)

where the density in the far-field is equal to the burned gas density (ρ∞ = ρb) in this
case. The term inside the second bracket on the right-hand side may be rearranged
as follows:

ρbTuω̇

ρT
=

ρb

ρu

ρuTu

ρT
ω̇ =

ρb

ρu

1

1 + p′/pu

ω̇ (5.10)

where p′ = p − pu. For small p′/pu (i.e. low Mach number flows),

1

1 + p′/pu

≈ 1. (5.11)

With this approximation

Π(r, t) =

(
1 − Tu

Tb

)
∂

∂t
(ω̇(r, t)). (5.12)

To evaluate the theoretical assumptions up to this point, figure 5 shows a
comparison of simulation results with the solution of Lighthill’s equation retaining
only the heat release term (5.3). The graphs show pressure at an instant after
annihilation. In all cases, there is a good agreement between theory and simulation.
This shows that considering the heat release term as the main mechanism of sound
generation is a reasonable assumption.

Given the rate of reaction, (5.5) and (5.12) provide a means of determining sound
production. In the ensuing sections, particular results for each configuration are now
developed under increasingly restrictive assumptions.
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Figure 5. Non-dimensional pressure (p − pref)/ρrefc
2
ref for the planar, axisymmetric and

spherically symmetric flame annihilation from simulations (solid line), solution of (5.3) (dashed),
δ/Lref = 0.1.

5.1. Flames of finite thickness

Recall that figure 1 showed that the spatial variation of reaction rate relative to the
moving flame location, was fairly time invariant. Therefore, the reaction rate may
be modelled as a temporally invariant function of space relative to a moving flame
location ζf (τ ), i.e.

ω̇(ζ, τ ) = f (ζf (τ ) − |ζ |), (5.13)

where ζf (τ ) represents the instantaneous flame location, and defined in this study as
the location of the maximum reaction rate. The variable ζ is the axial coordinate in
the planar configuration and the radial coordinate in the axisymmetric and spherically
symmetric configurations. Furthermore, when the flame is far from the origin, the
integral of the function may be easily shown to be∫ +∞

0

f (ζf − |ζ |) dζ = ρuSL. (5.14)

In the ensuing sections, both (5.13) and (5.14) will be invoked in their expected region
of validity – when the flame is reasonably far from the origin, specifically when
ζf >> δL.

5.1.1. Planar flame annihilation

Using the Green’s function solution of (5.3), the pressure may be obtained in the
far-field,

p′(x, t) =
cb

2

(
1 − Tu

Tb

)∫ +ζ+

−ζ+

∫ t− |x−ζ |
cb

0

∂ω̇

∂τ
dζ dτ,

=
cb

2

(
1 − Tu

Tb

)∫ +ζ+

−ζ+

ω̇

(
ζ, t − |x − ζ |

cb

)
dζ − cb

2

(
1 − Tu

Tb

)∫ +ζ+

−ζ+

ω̇(ζ, 0) dζ,

(5.15)

where ζ+ specifies the size of the source region. The second integral term on the
right-hand side of (5.15) is proportional to the integral of the reaction rate of the two
flames before the collision event and can be obtained using (5.14),

cb

2

(
1 − Tu

Tb

)∫ +ζ+

−ζ+

ω̇(ζ, 0) dζ = ρucb

(
1 − Tu

Tb

)
SL. (5.16)
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The first integral term on the right-hand side of (5.15) can be evaluated by assuming
that |x| −→ ∞ and so |x − ζ | ≈ |x|. If τ1 is defined as the instant that the total
integrated reaction rate starts to change when the flame is close to the origin (recall
figure 1) and τ2 as the instant at which the flame has just disappeared, the first integral
term in (5.15) can be obtained,

∫ +ζ+

−ζ+

ω̇

(
ζ, t − |x − ζ |

cb

)
dζ =

⎧⎪⎨
⎪⎩

2ρuSL, t − |x|/cb < τ1,

ω̇T (t − |x|/cb), τ1 < t − |x|/cb < τ2,

0, τ2 < t − |x|/cb,

(5.17)

where ω̇T is the instantaneous total reaction rate (i.e. the reaction rate integrated
over space). Considering (5.16) and (5.17), the general solution for the pressure in the
planar case can, therefore, be described as

p′(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t − |x|/cb < τ1,

ρucb

(
1 − Tu

Tb

)
SL

(
ω̇T (t − |x|/cb)

ρuSL

− 1

)
, τ1 < t − |x|/cb < τ2,

−ρucb

(
1 − Tu

Tb

)
SL, τ2 < t − |x|/cb.

(5.18)

Equation (5.18) has three parts. The first part of the solution (t − |x|/cb < τ1) shows
that the net sound production where the flame is reasonably far from the symmetry
plane is zero, as expected. The second part (τ1 < t − |x|/cb < τ2) corresponds to
when the annihilation event occurs and the total reaction rate starts to change. In the
last term (τ2 < t − |x|/cb), the sound produced as a result of complete annihilation
appears as a constant negative pressure wave. This instant is when the acoustic wave
produced during collision has passed the observer located at x, resulting in the steady
state far-field pressure,

p′(x, t) = −ρucb

(
1 − Tu

Tb

)
SL. (5.19)

The theory therefore suggests that the steady state pressure change is independent of
flame thickness and linearly dependent on flame speed.

5.1.2. Axisymmetric flame annihilation

Again considering only the far-field, |r | −→ ∞ and so |r − r0| ≈ |r|, the pressure
can be expressed as

p′(r, t) =

(
1 − Tu

Tb

)∫ t−r/cb

0

∫ ζ+

0

ζ∂ω̇/∂τ√
(t − τ )2 − r2/c2

b

dζ dτ. (5.20)

Equation (5.20) shows that analysis of this axisymmetric flame is slightly more difficult
than that of the planar case because of the time-dependent Green’s function. In order
to evaluate this integral, the following cases are considered.

Case 1: t − r/cb < τ1

Where the flame is moving towards the origin and before there is significant flame
curvature, the integral can be obtained using the following:∫ ζ+

0

ζ
∂ω̇

∂τ
dζ = −SL

∫ ζ+

0

ζf ′(ζf − ζ ) dζ. (5.21)
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This integral can be calculated using integration by parts∫ ζ+

0

ζf ′(ζf − ζ ) dζ = ζf (ζf − ζ )
∣∣∣ζ+

0
−

∫ ζ+

0

f (ζf − ζ ) dζ. (5.22)

Since the boundary of the source region is always chosen to be outside the flame,
the first term on the right-hand side in (5.22) is zero. Therefore, the solution can be
obtained as a function of the total integrated reaction rate,

p′(r, t) = −
(

1 − Tu

Tb

)
SL

∫ t−r/cb

0

∫ ζ+

0

f (ζf − ζ ) dζ√
(t − τ )2 − r2/c2

b

dτ. (5.23)

Since at any t < τ1 the propagation velocity is approximately constant, (5.23) may be
evaluated as

p′(r, t) = −ρuS
2
L

(
1 − Tu

Tb

)∫ t−r/cb

0

dτ√
(t − τ )2 − r2/c2

b

= −ρuS
2
L

(
1 − Tu

Tb

)
H (t − r/cb) ln

(
r/cb

t −
√

t2 − r2/c2
b

)
. (5.24)

Case 2: t − r/cb > τ1

In this case the solution can be obtained by dividing the time period of the integral
into two parts: (0, τ1) and (τ1, t − r/cb), i.e.,

p′(r, t) = −ρuS
2
L

(
1 − Tu

Tb

)∫ τ1

0

dτ√
(t − τ )2 − r2/c2

b

+

(
1 − Tu

Tb

) ∫ t−r/cb

τ1

∫ ζ+

0

ζ∂ω̇/∂τ√
(t − τ )2 − r2/c2

b

dζ dτ,

= −ρuS
2
L

(
1 − Tu

Tb

)
H (t − r/cb) ln

(
r/cb

t − τ1 −
√

(t − τ1)2 − r2/c2
b

)

+

(
1 − Tu

Tb

) ∫ t−r/cb

τ1

∫ ζ+

0

ζ∂ω̇/∂τ√
(t − τ )2 − r2/c2

b

dζ dτ. (5.25)

General solution

The general solution can be expressed using the Heaviside function by combining
cases 1 and 2,

p′(r, t) = −ρu

(
1 − Tu

Tb

)
S2

LH (t − r/cb)

{
ln

(
r/cb

t −
√

t2 − r2/c2
b

)

+H [cb(t − τ1) − r] ln

(
t − τ1 −

√
(t − τ1)2 − r2/c2

b

r/cb

)}

+

(
1 − Tu

Tb

) ∫ t−r/cb

τ1

∫ ζ+

0

ζ∂ω̇/∂τ√
(t − τ )2 − r2/c2

b

dζ dτ. (5.26)
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This result is quite general as the assumption that the flame is propagating at
constant speed with a time-invariant profile prior to the time τ1 is expected to be
valid as long as τ1 is chosen such that the flame is sufficiently far from the origin.

5.1.3. Spherically symmetric flame annihilation

Again considering only the far-field, the solution of the wave equation uses a similar
argument as for the axisymmetric case (§ 5.1.2),

p′(r, t) =

(
1 − Tu

Tb

)
H (t − R/cb)

∫ ζ+

0

ζ 2∂ω̇/∂τ dζ |
τ=t−R/cb

R
. (5.27)

For τ < τ1, the integral term may be obtained using (5.13),∫ ζ+

0

ζ 2 ∂ω̇

∂τ
dζ = −SL

∫ ζ+

0

ζ 2f ′(ζf − ζ ) dζ. (5.28)

Using an analogous approach to the axisymmetric case,

p′(r, t) = −2

(
1 − Tu

Tb

)
SLH (t − R/cb)

∫ ζ+

0

ζf (ζf − ζ ) dζ |
τ=t−R/cb

R
. (5.29)

Unlike the axisymmetric case the integral in (5.29) is not independent of the reaction
rate profile. If the flame is thin, the integral will be dominated by the values close to
ζf , and ∫ ζ+

0

ζf (ζf − ζ ) dζ ∼ ζf

∫ ζ+

0

f (ζf − ζ ) dζ = ζf ρuSL. (5.30)

Now, the solution for t − R/cb < τ1 may be obtained,

p′(r, t) = −2ρu

(
1 − Tu

Tb

)
S2

Lζf (t − R/cb)H (t − R/cb)/R. (5.31)

Using (5.31), the general solution may be expressed as

p′(r, t) = −2ρu

(
1 − Tu

Tb

)
S2

LH (t − R/cb)ζf (t − R/cb)H [τ1 − (t − R/cb)]

+

(
1 − Tu

Tb

)
H (t − R/cb) {1 − H [τ1 − (t − R/cb)]}

∫ ζ+

0

ζ 2∂ω̇/∂τ dζ |
τ=t−R/cb

R
.

(5.32)

Comparison of (5.32) and (5.26) shows that when the flame is sufficiently far from
the origin (i.e. t − r/cb < τ1 for axisymmetric and t − R/cb < τ1 for spherically
symmetric case) the pressure fluctuations is proportional to ρu (1 − (Tu/Tb)) SL

2 for
both axisymmetric and spherically symmetric cases.

5.2. Flames of zero thickness

The special case of an infinitely thin flame is now developed. For a flame of zero
thickness, the flow field variables can be modelled using a Heaviside function,

ρ = (ρu − ρb)H (ζf − |ζ |) + ρb, Y = H (ζf − |ζ |). (5.33)
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Substituting these functions into (2.4) and assuming ζ > 0,

−ρuVf δ(ζf − ζ ) = −n

ζ
ρuDδ(ζf − ζ ) + ρuDδ′(ζf − ζ ) − ω̇, (5.34)

where Vf is the flame propagation velocity

Vf (τ ) = −dζf

dτ
. (5.35)

It may be noted that we can replace ζ with ζf in the first term on the right-hand
side of (5.34) since for other values of ζ this term will be equal to zero. In order to
obtain the solutions for each configuration, (5.34) is multiplied by ζ n and integrated
across the flame, ∫ ζ+

0

ζ nω̇ dζ = ρuζ
n
f Vf (τ )H (ζf ). (5.36)

Therefore, the spatial integral can be obtained as follows:∫ ζ+

0

ζ n ∂ω̇

∂τ
dζ = ρu

(
ζ n
f

∂Vf

∂τ
− nζ n−1

f V 2
f

)
H (ζf ). (5.37)

5.2.1. Planar flame annihilation

For a flame of zero thickness, the first integral term in (5.15) can be expressed in
the form of a Heaviside function∫ +ζ+

−ζ+

ω̇

(
ζ, t − |x − ζ |

cb

)
dζ = ρuVf (τ )H (ζf (τ ))|τ=t−|x|/cb

, (5.38)

and, therefore, the solution for a flame of zero thickness may be obtained,

p′(x, t) = ρucb

(
1 − Tu

Tb

)
SLH (t − |x|/cb)

(
Vf (τ )

SL

H (ζf (τ )) − 1

)
|τ=t−|x|/cb

. (5.39)

Equation (5.39) shows that the steady state far-field pressure (i.e. as t −→ ∞) is the
same as that obtained from the theoretical analysis for finite flame thickness analysis.
Also since peak pressure will occur where the flame collides with the symmetric plane,
the peak pressure may be obtained,

ppeak = ρucb

(
1 − Tu

Tb

)(
Vf (τe) − SL

)
, (5.40)

where τe refers to the extinction instant (i.e. ζf (τe) = 0). Equation (5.40) shows that in
order to calculate the peak pressure, the propagation velocity at the collision instant
needs to be estimated.

5.2.2. Axisymmetric flame annihilation

Equation (5.37) is used to evaluate the integral in (5.20). For n = 1 in (5.37),∫ ζ+

0

ζ
∂ω̇

∂τ
dζ = ρu

(
−V 2

f +
∂Vf

∂τ
ζf

)
H (ζf ). (5.41)

Therefore, the solution may be obtained,

p′(r, t) = ρu

(
1 − Tu

Tb

)∫ t−r/cb

0

(−Vf (τ )2 + ζf ∂Vf /∂τ )H (ζf )√
(t − τ )2 − r2/c2

b

dτ. (5.42)
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Equation (5.42) shows the pressure fluctuation in the far-field depends on both the
propagation velocity and time derivative of propagation velocity. However, at the
extinction instant it is only a function of propagation velocity. This dependency is
similar to the planar flame annihilation results for the peak pressure.

5.2.3. Spherically symmetric flame annihilation

For a flame of zero thickness and using (5.37),

p′(R, t) = ρu

(
1 − Tu

Tb

)(
−2ζf V 2

f + ζ 2
f

∂Vf

∂τ

)
H (τ )H (ζf (τ ))/R|τ=t−R/cb

, (5.43)

which is the result obtained by Thomas & Williams (1966) for inward burning thin
flames.

5.3. Flames of zero thickness propagating at SL

5.3.1. Planar flame annihilation

Assuming a constant propagation velocity Vf = SL, the flame position can be
described as

ζf = ζ0 − SLτ, (5.44)

where ζ0 is the initial position of the flame. Therefore, the solution of the wave
equation can be obtained from (5.39),

p′(x, t) = −ρucb

(
1 − Tu

Tb

)
SLH (t − |x|/cb)H

[
SL

(
t − |x|

cb

)
− ζ0

]
. (5.45)

Equation (5.45) features a Heaviside function H (x, t) travelling at the speed of
sound in the burned gas. The steady state far-field pressure in (5.45) can be rearranged
in a non-dimensional form as a function of temperature ratio and laminar flame speed,

p′

ρuc2
u

= −SL

cu

(
1 − Tu

Tb

)√
Tb

Tu

. (5.46)

5.3.2. Axisymmetric flame annihilation

Assuming constant propagation velocity (Vf = SL and ∂Vf /∂τ = 0), the solution
can be obtained from (5.42),

p′(r, t) = −ρuSL
2

(
1 − Tu

Tb

) ∫ t−r/cb

0

dτ√
(t − τ )2 − r2/c2

b

= −ρu

(
1 − Tu

Tb

)
SL

2H (t − r/cb)

{
ln

(
r/cb

t −
√

t2 − r2/c2
b

)

+ H [cb(t − τ1) − r] ln

(
t − τ1 −

√
(t − τ1)2 − r2/c2

b

r/cb

)}
. (5.47)

Comparison of (5.47) and (5.26) shows that the general finite thickness solution in
(5.26) includes the solution for a flame of zero thickness and constant flame speed
plus a contribution of sound produced during the annihilation. This second term
is dependent on the dynamics of the annihilation event. Equation (5.26) shows that
for a flame of zero thickness with a constant propagation velocity and reaction rate
profile the integral term will be zero because τ1 is the extinction instant and at any
instant after τ1 we have a source free region.
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Figure 6. Non-dimensional pressure (p − pref)/ρrefc
2
ref for the planar, axisymmetric and

spherically symmetric flame annihilation from simulations (solid line), zero flame thickness
(dash-dotted).

5.3.3. Spherically symmetric flame annihilation

The pressure in the far-field for a constant propagation velocity (Vf = SL) may be
determined from (5.43),

p′(r, t) = −2ρuSL
2

(
1 − Tu

Tb

)
(ζ0 − SL(t − R/cb))H (ζ0 − SL(t − R/cb))H (t − R/cb)/R.

(5.48)

Similar to the axisymmetric case, (5.48) is a part of the general finite thickness
solution (5.32).

5.4. Discussion of the theoretical results

The simulation results for axisymmetric and spherically symmetric flame annihilation
both demonstrated that the flame thickness had a significant effect on the far-field
sound produced (figure 4). The corresponding theoretical results for the far-field
sound ((5.26) and (5.27)) both featured terms which require integration over the flame
thickness, and so potentially incorporate this observed effect into a theory of sound
production.

Figure 6 compares the zero flame thickness results with simulation ((5.45), (5.47)
and (5.48)). The graphs show the pressure versus x, r and R at some instant after
annihilation. In the case of planar flame annihilation, the predicted step change
in the pressure agrees with the numerical results. In the case of axisymmetric and
spherically symmetric flame annihilations, it is clear that the zero flame thickness
result significantly underestimates the sound production. Thus, comparison of
figures 5 and 6 is direct evidence that the source term in (5.3) is the dominant
source term in the problem, and that the flame thickness and the dynamics of the
annihilation event need to be taken into account.

Considering now in more detail the dynamics of the annihilation event, figure 7(a)
shows the total integrated reaction rate versus flame position for case 1 in table 1. (The
point of maximum reaction rate is defined as the flame position in this study.) The
total reaction rate is similar for all three configurations and is not constant during
the annihilation event. Indeed, the total integrated reaction rate starts to change when
the flame is roughly two flame thicknesses away from the origin for all configurations.
Similarly, figure 7(b) shows that the flame starts to accelerate prior to annihilation.
Significant variations in the propagation velocity Vf during flame annihilation have
also been observed by others (see, for example, Chen & Sohrab 1995; Echekki et al.
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Figure 7. (a) Normalised total reaction rate:
∫ ∞

0 ω̇dζ/ρuSL, (b) magnitude of normalised
propagation velocity: |Vf |/SL versus ζ/δ, square: planar case, circle: axisymmetric case, delta:
spherically symmetric case.

1996; Wichman & Vance 1997; Petrov & Ghoniem 1998; Sun & Law 1998; Lu &
Ghosal 2003).

Returning to the acoustic theory in § 5.2, Vf was identified as a key parameter in
expanded forms of the source term in (5.3), and so is a key parameter in the sound
production. The relative contribution of reaction rate, diffusion and curvature effects
have been observed to drive these variations, such that Vf can be obtained using the
following equation (Gibson 1968; Echekki & Chen 1999):

V f = u + Sdn f , (5.49)

where n f = ∇Y/|∇Y | and Sd is the displacement velocity,

Sd = − ω̇

ρ|∇Y | − ∇ · (ρD∇Y )

ρ|∇Y | . (5.50)

Equations (5.49) and (5.50) can be rearranged such that the effect of curvature can
be observed,

Vf = u − ω̇

ρ|∇Y | n f︸ ︷︷ ︸
Term I

−

∂

∂ζ

(
ρD

∂Y

∂ζ

)
ρ|∇Y | n f︸ ︷︷ ︸
Term II

− D(∇ · n f )n f︸ ︷︷ ︸
Term III

. (5.51)

Figure 8 shows the contribution of each term in (5.51) to the increase in the
propagation velocity for all configurations. As can be seen, the curvature term
in (5.51) accounts for the differences in Vf for the planar, axisymmetric and
spherically symmetric cases. This demonstrates that flame acceleration should start at
a progressively greater distance from the origin in the axisymmetric and spherically
symmetric cases, as observed in figure 7(b), and that the results of this study are
consistent with those reported in other studies concerned with the dynamics of
premixed flame annihilation.

Thus, the results in figures 6, 7 and 8 are consistent. By not including the increased
reaction rate and significant flame acceleration observed in figure 7, the sound
produced by the zero flame thickness results in figure 6 should underestimate the
simulation result.
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Figure 8. (a) Normalised gas velocity: u/SL, magnitude of (b) term I, (c) term II and
(d ) term III in (5.51) normalised by SL versus ζ/δ, square: planar case, circle: axisymmetric
case, delta: spherically symmetric case.

5.5. Non-dimensionalising the theoretical solutions

Figure 9 shows the effect of flame thickness for three different flames thicknesses
listed in table 1. As can be seen there is almost no difference between all three cases
when plotted as a function of ζ/δ, demonstrating that the annihilation events scale
with the flame thickness in all cases. This is not surprising since the flame thickness is
the only length scale in the problem other than the initial flame position, which has
a very small effect on the results.

The propagation velocity is also equal to the laminar flame speed in the far-field.
The following reference parameters are, therefore, chosen:

ζ̄ =
ζ

δ
, t̄ =

tSL

δ
. (5.52)

Using these non-dimensional parameters, the general solutions for the finite thickness
flames are

p′

ρuc2
u

=
SL

cu

(
1 − Tu

Tb

)√
Tb

Tu

(∫ ζ̄+

0

ω̄(ζ̄ , t̄ − x̄/c̄b) dζ̄ − 1

)
, (5.53)

for the planar case,

p′

ρuc2
u

=

(
SL

cu

)2 (
1 − Tu

Tb

)∫ t̄−r̄/c̄b

0

∫ ζ̄+

0

ζ̄ ∂ω̄/∂τ̄√
(̄t − τ̄ )2 − r̄2/c̄b

2
dζ̄ dτ̄ , (5.54)
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Figure 9. (i) Normalised total reaction rate:
∫ ∞

0 ω̇ dζ/ρuSL, (ii) magnitude of normalised
propagation velocity: |Vf |/SL, (iii) normalised gas velocity: |u|/SL versus ζ/δ, square: δ = 0.1,
circle: δ = 0.2, delta: δ = 0.4.

for the axisymmetric case and,

p′

ρuc2
u

=

(
SL

cu

)2 (
1 − Tu

Tb

) ∫ ζ̄+

0

ζ̄ 2∂ω̄/∂τ̄ dζ̄ |τ̄=t̄−R̄/c̄b

R̄
, (5.55)

for the spherically symmetric case.
Equation (5.53) shows that the pressure history in the far-field of the planar

annihilation event is not a function of flame thickness, which is consistent with
the simulation results. In order to analyse the axisymmetric results, some further
simplification is required. The term in the denominator of (5.54) can be factorised,

(̄t − τ̄ )2 − r̄2/c̄b
2 = [(̄t − τ̄ ) − r̄/c̄b] [(̄t − τ̄ ) + r̄/c̄b] . (5.56)

Equation (5.56) becomes singular when (̄t − τ̄ ) = r̄/c̄b, which is one terminal of the
definite integral in τ̄ in (5.54). As Dowling & Ffowcs Williams (1983) therefore argue,
the first term dominates the second term on the right-hand side of (5.56), leading to
the approximation

(̄t − τ̄ )2 − r̄2/c̄b
2 = 2r̄/c̄b [(̄t − τ̄ ) − r̄/c̄b] . (5.57)

This implies that

p′

ρuc2
u

∝
√

c̄b

r̄
=

√
cb

SL

√
δ

r
=

(
Tb

Tu

)1/4 (
SL

cu

)−(1/2) (
δ

r

)1/2

. (5.58)

In the case of spherically symmetric annihilation, it may be observed from (5.55) that

p′

ρuc2
u

∝ 1

R̄
=

δ

R
. (5.59)
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Figure 10. Non-dimensional pressure (p − pref)/ρrefc
2
ref versus radius after the annihilation

event for several time instants and different flame thicknesses: (i) δ/Lref = 0.1, (ii) δ/Lref = 0.2
and (iii) δ/Lref = 0.4.

Figure 10 shows pressure versus radius in the axisymmetric and spherically
symmetric flame annihilations for several instants after extinction and different flame
thicknesses. As can be seen the curves joining the pressure peaks follow (5.58) and
(5.59) closely. The variables K1 and K2 are equal to 0.0079 and 0.0016, respectively.
This confirms the importance of flame thickness on sound production.

Combining these results, the scaling of the problem can now be stated. For planar
annihilation,

p′

ρuc2
u

∼
(

SL

cu

)(
δ

x

)0 (
1 − Tu

Tb

)(
Tb

Tu

)(1/2)

g1

(
Tb

Tu

, x, t

)
, (5.60)

for axisymmetric annihilation,

p′

ρuc2
u

∼
(

SL

cu

)3/2 (
δ

r

)1/2 (
1 − Tu

Tb

) (
Tb

Tu

)(1/4)

g2

(
Tb

Tu

, r, t

)
, (5.61)
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and for spherically symmetric annihilation,

p′

ρuc2
u

∼
(

SL

cu

)2 (
δ

R

)1 (
1 − Tu

Tb

)
g3

(
Tb

Tu

, R, t

)
. (5.62)

More generally these can be written as

p′

ρuc2
u

∼
(

SL

cu

)1+(n/2) (
δ

ζ

)n/2 (
1 − Tu

Tb

)(
Tb

Tu

)(2−n)/4

g

(
Tb

Tu

, ζ, t

)
, (5.63)

where function g describes the annihilation event.

6. Conclusions
This paper presented a numerical and theoretical study of sound production by

planar, axisymmetric and spherically symmetric premixed flame annihilation events.
Simple chemistry simulations resolving both the flame dynamics and the acoustics,
using a higher order accurate solver that was appropriate for aeroacoustic studies,
was first used to examine sound production and propagation by these events.
The simulations showed that annihilation events could be a significant source of
sound, which was consistent with previously reported studies. The far-field sound
was compared for the different annihilation configurations and for different flame
thicknesses. For the planar annihilation, it was found that there was relatively little
influence of flame thickness. In contrast, the far-field pressure in the axisymmetric
and spherical cases were shown to exhibit a dependence on the flame thickness.

A theory was then presented that related the far-field sound to the flame annihilation
by using (Dowling 1992) extended form of Lighthill’s acoustic analogy. This theory
retained only the heat release source term from Lighthill’s equation and agreed
closely with the corresponding numerical results. From these more general theoretical
results, increasingly restrictive assumptions were then applied. The assumption of
an infinitely thin flame propagating at constant velocity was demonstrated to be
adequate for prediction of the the steady state pressure change in the planar case, but
considerably underestimated the far-field pressure in the other configurations.

Inspection of the theoretical results suggested that the flame thickness and
propagation velocity were significant influences in these configurations. The
simulations were then used to carry out a more detailed study of the propagation
velocity and heat release rates during the extinction event, showing that the behaviours
could be collapsed by normalising with flame parameters. The observations were then
used to hypothesize the basic dependence of far-field pressure with the Mach number,
ratio of flame thickness to observer distance, and heat release parameter. These basic
scalings were observed to perform well in comparison with the simulations.
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