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Abstract

We present an analysis of convergence of a quasi-regression Monte Carlo method
proposed by Glasserman and Yu (2004). We show that the method surely converges
to the true price of an American option even under multiple underlyings via polynomial
chaos expansion and weaker conditions than those used in Glasserman and Yu (2004).
Further, we show the number of simulation paths grows exponentially in the number of
basis functions to obtain convergence in implementing the method. Finally, we propose
a rate of convergence considering regularity of value functions.
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1. Introduction

Seeking a closed-form or, at least, an analytical formula for an American option price
is a challenging task in practice since it induces an optimal stopping problem to be solved
(see, e.g. [9]). Hence, there is an extensive literature on numerical methods for the pricing
problem. Among the numerical methods, a least-squares (L-S) Monte Carlo method proposed
by Longstaff and Schwartz [12] has been popular with both researchers and practitioners
mainly due to its ease of implementation (see [14]). Carriere [2] and Tsisiklis and Van
Roy [15] also tackled the pricing problem through Monte Carlo estimation under a dynamic
programming formulation although they are different from L-S algorithms, since L-S algorithms
use regression only to determine a stopping rule, not to evaluate the value itself. While
the implementation of the method is simple it is challenging to conduct an analysis of the
convergence of the method.

The first attempt for this challenging work can be found in Clement et al. [3] where the
authors addressed some results on convergence of the method to an approximation to the true
price with a fixed number of basis functions. Later, the authors in [7], [9], and [14] studied the
problem under a situation where the number of paths and number of basis functions increase at
the same time. Gerhold [7] extended the work in [9] to several Lévy processes. Stentoft [14]
resorted to results on series estimators to achieve polynomial growth of the number of paths
in the number of basis functions under the assumption that the underlying asset has a bounded
state space. In using techniques from statistical learning theory, Egloff [4] and Egloff et al.
[5] adopted the boundedness assumption for their study on the convergence of the Longstaff
and Schwartz method [12]. Zanger [17] improved on the work in [4] and [5] without the
boundedness assumption but also through statistical learning theory. However, it should be
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noted that Glasserman andYu [9] and Gerhold [7] analyzed a quasi-regression method different
from the standard L-S Monte Carlo regression method proposed by Longstaff and Schwartz in
two aspects: the scheme to generate paths and the use of the exact matrix in the calculation of
coefficients of basis functions (see [9, p. 2095]).

In the present paper we complement the results on the quasi-regression Monte Carlo method
addressed in [9] in a theoretical way. Glasserman and Yu [9] proposed a quasi-regression
method and showed that the proposed algorithm converges to an approximation to the true
price of the American option with a single underlying asset following Brownian motion, and the
number of basis functions (Hermite polynomials)K in a sample sizeN to obtain convergence is
O(logN)(O(

√
logN) for geometric Brownian motion using multiples of the powers xk as basis

functions). We show that, with shorter arguments and weaker conditions than those used in [9],
the algorithm converges to the true value even under the assumption of multiple underlyings
with the critical value O(logN) through the theory of polynomial chaos expansion for both
cases: Brownian (BM) and geometric Brownian motion (GBM). In addition, considering the
regularity of the continuation value function, we present a rate of convergence of the algorithm,
which may be useful in practice although the rate is not a sharp one.

We must, however, point out that the critical value for GBM itself is not an improvement in
comparison to [9]. The result here comes from treating GBM as just a function of BM, which
is not costless because moving the exponential function in the option payoff to the payoff will
often result in a much larger K . Moreover, the switching between BM and GBM through a
transformation here corresponds to a change in basis functions for GBM in [9]; that is, it is a
different setting. Therefore, the critical value for GBM here is not comparable to the one for
GBM in [9].

In Section 2 we recall the general backward induction framework for pricing of an American
option. In Section 3 we assume our market model and introduce some notation for polynomial
chaos. The facts needed for deriving the main convergence results are collected there. We
propose the algorithm to be analyzed in Section 4. In Section 5 we present two main results:
the convergence of the algorithm and a rate of convergence of the algorithm. We will end with
some concluding remarks in Section 6.

2. General description of an American option pricing

In this section we present a general framework for pricing of an American option to which
our algorithm in the subsequent sections applies. We follow the presentation of [9]. For a
more detailed description about the formulation of the framework in many sources, we refer
the reader to, e.g. [9].

We assume a complete probability space (�,F ,P), where P is the risk-neutral measure. We
deal with the problem in a discretized time setting: the option expires in m periods with T as
the expiration date and set the early exercise points as t0 = 0 < t1 < · · · < tm = T . Hence, our
problem can be considered as an approximation to the price of anAmerican option in discretized
time or the exact price of a Bermudan option. A theoretical value Vtn(x) of American option
at tn in state x is given by

Vtn(x) = sup
τ∈�n

E[hτ (Sτ ) | S(tn),= x],

where ht : R
d → R is a payoff function for the option and ht (S) ∈ L2(�,F ,P), �n is the set

of all stopping times taking values in {tn, . . . , tm} adapted to the filtration corresponding to a
market model, S(t) = (S1(t), . . . , Sd(t)), where S(t) is a given stochastic process.
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The option value satisfies the backward induction equations

Vtm(x) = htm(x), Vtn(x) = max{htn(x),E[Vtn+1(S(tn+1)) | S(tn) = x]},
n = 0, 1, . . . , m− 1. We can rewrite these with respect to continuation values

C∗
tn
(x) = E[Vtn+1(S(tn+1)) | S(tn) = x], n = 0, 1, . . . , m− 1,

as

C∗
tm
(x) = 0, C∗

tn
(x) = E[max{htn+1(S(tn+1)), C

∗
tn+1
(S(tn+1))} | S(tn) = x],

n = 0, 1, . . . , m− 1. The option value satisfies

Vtn(x) = max{htn(x), C∗
tn
(x)}.

Therefore, we can calculate the value from the continuation values at least from a theoretical
perspective. We note that if S(0) is a constant then C∗

t0
= E[Vt1 ]. We further note that

deterministic or stochastic discounting can be absorbed into htn (see [9]).

3. Preliminaries

First, we assume our market model; the underlying assets {Si}di=1 follow a correlated GBM
with a fixed initial value S0 = {s1, . . . , sd} under the risk-neutral measure

dSi(t) = rSi(t) dt + σiSi(t) dWi(t), i = 1, . . . , d,

equivalently,

Si(t) = si exp
((
r − 1

2σ
2
i

)
t + σiWi(t)

)
, i = 1, . . . , d,

where {Wi}di=1 is a correlated BM, r is the risk free rate, and σi is the volatility of the ith asset.
The correlations between Wi and Wj are given by a d × d matrix ρ with [ρ]ij = ρij , where
ρii = 1 and −1 ≤ ρij ≤ 1. Since, by the Cholesky decomposition,

ρ = HH�,

where H is a lower triangular matrix,

W (t) = HZ(t),

where Z(t) is a d-dimensional BM (see [8]). Then, in our discretized setting, for i = 1, . . . , d,

Si(tn) = si exp

((
r − 1

2
σ 2
i

)
tn + σi

d∑
j=1

hijZj (tn)

)
, n = 0, 1, . . . , m.

For notational convenience, we denote (Si(tn))di=1 and (Zi(tn)/
√
tn)

d
i=1 by Sn and ξn for n =

1, . . . , m. Note that ξn is a random vector consisting of independent and identically distributed
(i.i.d.) random variables with a standard normal distribution. The following assumption turns
out to be useful.

Assumption 1. Assume that ρ is positive-definite. Then, since H is invertible, the σ -algebras
generated by Sn and ξn are equivalent; that is,

σ(Sn) = σ(ξn).
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Therefore, by the Doob–Dynkin lemma (see [6]), there exists a Borel-measurable function Ctn
from R

d to R such that

C∗
tn
(Sn) = Ctn(ξn), n = 1, . . . , m− 1.

Thus, for each n ∈ {1, . . . , m− 1}, we have

C∗
tn
(Sn) = Ctn(ξn) ∈ L2(�, σ (ξn),P).

For notational simplicity, we write Cn for Ctn for each n.

A popular approach for computations involved with random data is to represent them as
a polynomial chaos expansion. This method has been applied successfully to research on
numerical partial differential equations with uncertain data while the theoretical foundation
dates back to the classical Cameron–Martin theorem. We introduce some facts about this
method in the context of the current application. We refer the reader to [6] for a detailed
development of the theory.

Define the normalized Hermite polynomials {ψk}k∈N0 by

ψk(x) = 1√
k! Hk(x), x ∈ R,

where Hk(x) = (−1)kexp( 1
2x

2)(dk exp(− 1
2x

2)/dxk). The normalized Hermite polynomials
satisfy

ψ ′
k(x) = √

kψk−1(x), k ≥ 1, (1)

and

ψk+1(x) = x√
k + 1

ψk(x)−
√
k√

k + 1
ψk−1(x), k ≥ 1. (2)

We further note that ∫
R

ψm(x)ψn(x)ω(x) dx = δmn,

where ω is the standard normal density function (see [1]).
We consider L2(�, σ (ξ),P), where ξ has a standard normal distribution Fξ . For any

ϕ ∈ L2(�, σ (ξ),P), by the Doob–Dynkin lemma, there exists a Borel-measurable function
f : R → R such that ϕ = f (ξ). Then, since the normalized Hermite polynomials constitute
an orthonormal system for L2(R,B(R), Fξ (dx)), the set {ψk(ξ)}k∈N0 is also an orthonormal
system of L2(�, σ (ξ),P). Moreover, Theorems 3.3 and 3.4 in [6] imply that {ψk(ξ)}k∈N0 is a
complete orthonormal system for L2(�, σ (ξ),P); that is,

ϕ = f (ξ) =
∞∑
k=0

akψk(ξ) in L2,

where
ak = 〈ϕ,ψk(ξ)〉

=
∫
�

ϕψk(ξ) dP

=
∫
�

f (ξ)ψk(ξ) dP

=
∫

R

f (x)ψk(x)Fξ (dx), k ∈ N0.
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The above constructing procedure naturally extends to multidimensional cases. Let us
consider a random vector ξ : � → R

d , where ξ = (ξ1, . . . , ξd) and {ξi}di=1 is i.i.d. with a stan-
dard normal distribution. Then, denoting {ψ(i)j }j∈N0 by the normalized Hermite polynomials
corresponding to ξi , Theorems 3.6 and 3.7 in [6] imply the set of multivariate tensor products
of the polynomials given by

ψα(ξ) =
d∏

m=1

ψ(m)αm
(ξm), α = (α1, . . . , αd) ∈ N

d
0 ,

is a complete orthonormal system of L2(�, σ (ξ),P). For each ϕ ∈ L2(�, σ (ξ),P) and a
Borel-measurable function f : R

d → R,

ϕ = f (ξ) =
∑
α∈N

d
0

aαψα(ξ) in L2,

where

aα =< ϕ,ψα(ξ) >=
∫
�

ϕψα(ξ) dP =
∫
�

f (ξ)ψα(ξ) dP =
∫

Rd

f (x)ψα(x)Fξ (dx)

and Fξ (dx) = Fξ(1) (dx)× · · · × Fξ(d) (dx).
Although the multi-index representation is legitimate in theoretical development, it is im-

practical to use the multi-index representation for the purpose of a finite-term approximation
to a function in L2(�, σ (ξ),P). We therefore introduce a single-index that is more tractable in
constructing a finite truncation of an infinite-sum representation of a function in L2. Among
single-index schemes, we adopt the graded lexicographic order, which says that higher-degree
monomials are bigger and we use lexicographic order to break ties (see Appendix A for an
example). By adopting the scheme,

ϕ = f (ξ) =
∞∑
k=0

akψk(ξ),

where ak =< ϕ,ψk(ξ) >, k ∈ N0. Thus, we have

Cn(ξn) =
∞∑
k=0

akψk(ξn),

where ak =< Cn(ξn),ψk(ξn) >. Note that supposing α(k) = (α1
k , . . . , α

d
k ) is the multi-index

with |α(k)| = ∑d
m=1 α(k) corresponding to k, we have |α(k)| ≤ |α(k + 1)| and |α(k)| ≤ k.

Now, we present an estimate for the fourth moment of Hermite polynomials useful in
developing our main results later.

Proposition 1. Let ψ and ψ be Hermite polynomials and multidimensional Hermite polyno-
mials, respectively. Then, the following hold:

(i) for sufficiently large k, there exist positive constants C and C̃ such that

C
32k

k
≤ E[ψ4

k ] ≤ C̃
32k

k
;

(ii) for k ≥ 1, there exists a positive constant C such that

E[ψ4
k ] ≤ C32|α(k)|.
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Proof. From Theorem 2.1. in [12], it is obvious that (i) holds. For (ii), we note that

E[ψ4
k ] =

d∏
j=1

E[ψ4
α(k)j

].

Then, by (i), we have E[ψ4
k ] ≤ C32|α(k)|, which completes the proof. �

Note that C denotes a generic positive constant throughout the paper.

4. Algorithm

We recall the quasi-regression algorithm to be analyzed that was proposed in [10].
Step 1. Set Ĉm = 0 and V̂m = max{hm, Ĉm} = hm.
Step 2. For each n = 1, . . . , m− 1, starting from m− 1, we repeat the following:

• generate N independent copies {Si1, . . . ,Sin+1} of path {S1, . . . ,Sn+1}, i = 1, . . . , N ,
up to time tn+1, independent of all previously generated paths. Set

γ̂n,k = 1

N

N∑
i=1

V̂n+1(S
i
n+1)ψn,k(S

i
n), k = 0, . . . , K,

calculate the coefficients β̂n = �−1
n γ̂n,whereK represents the number of basis functions

and �n is defined below, and set

Ĉn =
K∑
k=0

β̂n,kψn,k and V̂n = max{hn, Ĉn}.

Step 3. Set ĈN,K,0(S0) = (1/N)
∑N
i=1 V̂1(S

i
1) and V̂0(S0) = max{h0(S0), ĈN,K,0(S0)}.

In this algorithm, S0 is fixed and the ψ ′ are general basis functions . We note that step 2 is
different from the algorithm in [14], which generates a single set of paths for all dates. Moreover,
we also note that the present algorithm has another feature different from the algorithm in [13];
in the regression process, we use the exact matrix

�n = E[ψn(Sn)ψn(Sn)�]
instead of its sample counterpart

1

N

N∑
i=1

ψn(S
i
n)ψn(S

i
n)

�,

calculated from the simulated values themselves; the method adopting this alteration is called
the quasi-regression method (see [10, pp. 2094–2095] or [13] for a detailed description of the
method).

Our purpose is to analyze convergence of the algorithm for two concrete examples: BM and
GBM. To this end we alter step 2 in the algorithm to be more convenient for our purpose.
Specifically, we choose a proper transformation φ so as to have φ(S) = ξ and take the
composite ψ ◦ φ as basis functions in the algorithm, where the ψ ′ are Hermite polynomials.
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Considering the assumption and results in Section 3 it is possible for one to have this kind of
basis functions at least for correlated BM and GBM under Assumption 1. For instance, in the
one-dimensional case, the basis functions for GBM are, by the facts from Section 3 and the
argument in the present section,

ψk(φtn(Stn)) = ψk(ξtn),

where φn(x) = (logx + tn/2)/
√
tn. The resulting modified version of step 2 is as follows.

Step 2. For each n = 1, . . . , m− 1, starting from m− 1, we repeat the following:

• generate N independent copies {Zi1, . . . ,Zin+1} of path {Z1, . . . ,Zn+1}, i = 1, . . . , N ,
up to time tn+1, independent of all previously generated paths. Calculate

Sin+1 and ξ
i
n

and

β̂n,k = 1

N

N∑
i=1

V̂n+1(S
i
n+1)ψk(ξ

i
n), k = 0, . . . , K. (3)

• Set

ĈN,K,n =
K∑
k=0

β̂n,kψk and V̂n = max{hn, ĈN,K,n}. (4)

The meaning of the additional subindices N and K will be clear in the next section.
We note that Glasserman and Yu [10] used the expectation of the weighted L2-norm on

functions G : R → R that slightly differs from the ordinary L2-norm (see [10, p. 2106]). We
alter slightly step 3 so as to use the ordinary L2-norm to estimate errors in the analysis of the
convergence of the algorithm. For n = 0, generateN independent copies Si1 of S1 independent
of all previously generated paths. With these samples, we calculate ĈN,K,0(S0). The overhead
for this additional computational effort is negligible. Moreover, at the cost of adding this
step, we gain a huge reward; there are many assumptions in [10] but those assumptions are
unnecessary, which will be clear in the next section.

Before going to the main results of this paper, we now reconsider an assumption for the
single-period problem in [10] where the dimension of the underlying asset is 1. Glasserman
and Yu in [10] proposed three assumptions (A1), (A2), and (A3) to obtain the desired result for
the single-period problem:

(A1) |β| = 1;

(A2) h2(St2) = ∑K
k=0 akψ2k(St2) for some constants ak;

(A3) ψnk(Sn) are martingales, up to a deterministic function of time.

Among them, a remark on assumption (A2) is needed. Specifically, we note that

h2(St2) = H(ξt2)

for some Borel-measurable function H : R → R. Hence, by the polynomial chaos expansion
in Section 4, we have

h2(St2) =
∞∑
k=0

akψk(ξt2),

which is the motivating idea for the present section.
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Gerhold [8] gave some intuitive justification of the infinite series representation above and
the interpretation of (A2) as a good approximation of the payoff at t2 (see Gerhold [7, p. 596]).
However, in our setting, the intuitive justification turns into a rigorous one.

5. Main results

In this section we present two main results: the convergence of the algorithm when multiple
underlying assets are considered and a rate of convergence of the algorithm. To this end we
introduce several artificial devices useful for the proof of the main results below. Define, for
n ∈ {1, 2, . . . , m− 1},

CK,n = PKVn+1 =
K∑
k=0

βn,kψk, (5)

where PK is the orthogonal projection onto span{ψ0, . . . , ψK} and

βn,k = E[Vn+1ψk]. (6)

Define an approximation to the backward induction equations as follows: V̄m = hm,

C̄K,n = PKV̄n+1 =
K∑
k=0

β̄n,kψk, n ∈ {1, . . . , m− 1}, (7)

where V̄n+1 = max{hn+1, C̄n+1} and

β̄n,k = E[V̄n+1ψk]. (8)

Finally, define, for n ∈ {1, . . . , m− 1},

C̃N,K,n =
K∑
k=0

β̃n,kψk, (9)

where

β̃n,k = 1

N

N∑
i=1

V̄n+1(S
i
n+1)ψk(ξ

i
n). (10)

Now, we address the single period problem where m = 2. We introduce an assumption
needed to derive the main results.

Assumption 2. Assume that E[h4
n] < ∞ for each n.

The Assumption 2 is remarkably less restrictive than the ones for the fourth moment of h in
the literature (see [10, Equation (B3)] and [8, Theorem 6]). We now address the result for the
case of the single-period and single underlying asset.

Theorem 1. (i) Ifm=2 andK=((1 − δ)/c)logN,where c = log32 and δ ∈ (0, 1), ĈN,K,0(S0)

converges to C0(S0) in L2 as N → ∞.

(ii) If K = ((1 + δ)/c)logN, δ > 0, the algorithm, for some payoff function, diverges to the
infinite in L2 as N → ∞.
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Proof. Note that, for the definitions of β̂1,k, ĈN,K,1, CK,1, andβ1,k , see (3)–(6), respectively.
(i) First, we estimate E[(ĈN,K,1(ξ1)− CK,1(ξ1))

2] under the assumption of the algorithm
that the coefficients of ĈN,K,1 and CK,1 are independent of ξ1.

By independence and orthogonality,

E[(ĈN,K,1(ξ1)− CK,1(ξ1))
2] = E[

K∑
k=0

(β̂1,k − β1,k)
2].

Since E[β̂1,k] = β1,k since V̂2 = h2 = V2,

K∑
k=0

E[(β̂1,k − β1,k)
2] = 1

N

K∑
k=0

var(ψ1,k(ξ1)ht2(S2)) ≤ 1

N

K∑
k=0

E[ψ2
1,k(ξ1)h

2
t2
(S2)].

Thus, by the Cauchy–Schwarz inequality and Proposition 1,

E

[ K∑
k=0

(β̂1,k − β1,k)
2
]

≤ C
(K + 1)32K

N
.

Therefore, since CK,1 → C1 in L2, by the triangle inequality, we have ĈN,K,1 → C1 in L2.
Now, we show that ĈN,K,0(S0) converges to C0(S0) = E[V1] in L2. Note that

E[(Ĉ0(S0)− E[V1])2]

= E

[(
1

N

N∑
i=1

V̂1(S
i
1)− E[V1]

)2]

≤ 2E

[(
1

N

N∑
i=1

V̂1(S
i
1)− 1

N

N∑
i=1

V1(S
i
1)

)2]
+ 2E

[(
1

N

N∑
i=1

V1(S
i
1)− E[V1]

)2]

≤ 2E[(ĈN,K,1(ξ i1)− C1(ξ
i
1))

2] + 2
var(V1)

N
.

Then, since the coefficients of ĈN,K,1 are independent of ξ i1 by alteration of step 3, we obtain
the convergence as N → ∞.

(ii) It is enough to address an example showing the divergence.
Let ht2(S2) = (t2/t1)

K/2ψ2K(ξ2) via φ. By the triangle inequality and the fact that CK,1 →
C1 in L2, it is sufficient to show that E[(ĈN,K,1(ξ1)− CK,1(ξ1))

2] diverges to ∞. Note that

E[(ĈN,K,1(ξ1)− CK,1(ξ1))
2]

= E

[ K∑
k=0

(β̂1,k − β1,k)
2
]

=
K∑
k=0

var(β̂k)

= 1

N

K∑
k=0

E

[(
t2

t1

)K
ψ2

2K(ξ2)ψ
2
1k(ξ1)

]
− 1

N

K∑
k=0

(
E

[(
t2

t1

)K/2
ψ2K(ξ2)ψ1k(ξ1)

])2

.
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Then, by [10, Equation (28)],

E[(ĈN,K,1(ξ1)− CK,1(ξ1))
2] = E[

K∑
k=0

(β̂1,k − β1,k)
2]

= 1

N

K∑
k=0

E

[(
t2

t1

)K
ψ2

2K(ξ2)ψ
2
1k(ξ1)

]
− 1

N

≥ 1

N
E

[(
t2

t1

)K
ψ2

2K(ξ2)ψ
2
1K(ξ1)

]
− 1

N
.

Now, we note that E[tK/22

√
K!ψ2K(ξ2) | ξ1] = t

K/2
1

√
K!ψ1K(ξ1) (see [10, pp. 2098–

2099]). Then, by the Jensen inequality,

E[(ĈN,K,1(ξ1)− CK,1(ξ1))
2] = E

[ K∑
k=0

(β̂1,k − β1,k)
2
]

≥ 1

N
E

[(
t2

t1

)
ψ2

2K(ξ2)ψ
2
1K(ξ1)

]
− 1

N

= 1

N
E

[
1

K!
(

1

t1

)K
ψ2

1K(ξ1)E[(tK/22

√
K!ψ2K(ξ2))

2 | ξ1]
]

− 1

N

≥ 1

N
E[ψ4

1K(ξ1)] − 1

N
.

Finally, by Proposition 1, we have

E[(ĈN,K,1(ξ1)− CK,1(ξ1))
2] ≥ C

32K

NK
− 1

N
,

which completes the proof. �

Remark 1. Given L ∈ N0, consider a set S = {ψk : |α(k)| ≤ L}. We note that |S| =
(d + L)!/d!L!. Thus, K ≤ (d + |α(K)|)!/d! |α(K)|!. With

ht2(S2) =
(
t2

t1

)∑d
j (α(K)j )/2

d

ψ2K(ξ2),

the proof of the theorem also holds for the case of multiple underlying assets by the independence
of multidimensional Hermite polynomials with a generalized result |α(K)| = O(logN). When
d = 1, the result is exactly same as the one in the above theorem.

Remark 2. Glasserman andYu, after [10, Theorem 1] dealing with the convergence for single-
period problem, stated: ‘This result shows rather precisely that, from a sample size of N , the
highestK for which coefficients of polynomials of orderK can be estimated uniformly well is
O(logN).’ Now, we state that [10, Theorem 1] shows precisely that the sample sizeN required
to achieve convergence uniformly well over payoff functions grows exponentially in K.

We now extend this result to the case of multi-period problems. To do so, we need two
lemmas.
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Lemma 1. (i) For n = m− 1,

K∑
k=0

E[(β̂m−1,k − β̃m−1,k)
2 = 0.

(ii) For each n ∈ {1, . . . , m− 2},
K∑
k=0

E[(β̂n,k − β̃n,k)
2] ≤ 2m−n−1Am−n−1

K

m−n−1∑
l=1

K∑
k=0

E[(β̃m−l,k − β̄m−l,k)2],

where AK = (K + 1)2 max0≤k≤K E[ψ4
k ].

Proof. See Appendix A. �
Lemma 2. For each n ∈ {1, . . . , m− 1},

K∑
k=0

E[(β̃n,k − β̄n,k)
2] ≤ C

(K + 1)3

N

(
max

0≤k≤K

√
E[ψ4

k ] + max
0≤k≤K E[ψ4

k ]
)
.

Proof. See Appendix A. �
We are now in position to address the result for the case of multiple underlying assets.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, if K = ((1 − δ)/c)logN, where
c = log 32m and δ ∈ (0, 1), the algorithm converges to the true value of an American option in
L2 as N → ∞.

Proof. Note that for each n ∈ {1, . . . , m− 1},
E[(ĈN,K,n(ξn)− Cn(ξn))

2]
≤ 4(E[(ĈN,K,n(ξn)− C̃N,K,n(ξn))

2] + E[(C̃N,K,n(ξn)− C̄K,n(ξn))
2]

+ E[(C̄K,n(ξn)− CK,n(ξn))
2] + E[(CK,n(ξn)− Cn(ξn))

2]).
For the definitions of β̂n,k, ĈN,K,n, CK,n, βn,k, C̄K,n, β̄n,k, C̃N,K,n, and β̃1,k see (3)–(10), res-
pectively. We estimate each term on the right-hand-side of the above inequality under the
assumption of the algorithm that the coefficients of ĈN,K,n and C̃N,K,n are independent of ξn:

(i) For E[(ĈN,K,n(ξn)− C̃N,K,n(ξn))
2]. Note that, by independence,

E[(ĈN,K,n(ξn)− C̃N,K,n(ξn))
2] = E

[( K∑
k=0

(β̂n,k − β̃n,k)ψk(ξn)

)2]

= E

[ K∑
k=0

(β̂n,k − β̃n,k)
2
]
.

Then, by Lemmas 1 and 2 and Proposition 1,

E[(ĈN,K,n(ξn)− C̃N,K,n(ξn))
2]

≤ 2m−n−1Am−n−1
K

m−n−1∑
l=1

K∑
k=0

E[(β̃m−l,k − β̄m−l,k)2]
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≤ C
Am−n−1
K (K + 1)3

N

(
max

0≤k≤K

√
E[ψ4

k (ξ)] + max
0≤k≤K E[ψ4

k (ξ)]
)

≤ C
(K + 1)2m−2n+1

N
32(m−n)K

≤ C
(K + 1)2m32m |α(K) |

N
,

where C is a generic positive constant.
(ii) For E[(C̃N,K,n(ξn)− C̄K,n(ξn))

2]. Since

E[(C̃N,K,n(ξn)− C̄K,n(ξn))
2] = E

[ K∑
k=0

(β̃n,k − β̄n,k)
2
]
,

by Lemmas 1, 2 and Proposition 1,

E[(C̃N,K,n(ξn)− C̄K,n(ξn))
2]

≤ C(K + 1)3
1

N

(
max

0≤k≤K

√
E[ψ4

k (ξ)] + max
0≤k≤K E[ψ4

k (ξ)]
)

≤ C
(K + 1)332 |α(K) |

N
.

(iii) For E[(C̄K,n(ξn)− CK,n(ξn))
2] and E[(CK,n(ξn)− Cn(ξn))

2]. Note that

E[(C̄K,n(ξn)− CK,n(ξn))
2] =

K∑
k=0

(β̄n,k − βn,k)
2

=
K∑
k=0

(E[(V̄n+1(Sn+1)− Vn+1(Sn+1))ψk(ξn)])2.

Then

E[(C̄K,n(ξn)− CK,n(ξn))
2] = E[(PK(V̄n+1(Sn+1)− Vn+1(Sn+1)))

2]
≤ E[(V̄n+1(Sn+1)− Vn+1(Sn+1))

2]
≤ E[| max{hn+1(Sn+1), C̄K,n+1(ξn+1)}

− max{hn+1(Sn+1), Cn+1(ξn+1)}|2]
≤ E[(C̄K,n+1(ξn+1)− Cn+1(ξn+1))

2]
≤ 2E[(C̄K,n+1(ξn+1)− CK,n+1(ξn+1))

2]
+ 2E[(CK,n+1(ξn+1)− Cn+1(ξn+1))

2].
Thus, by repeating the procedure, we have

E[(C̄K,n(ξn)− CK,n(ξn))
2] ≤ 2m−n−1

E[(C̄K,m−1(ξm−1)− CK,m−1(ξm−1))
2]

+
m−n−1∑
l=1

2m−n−l
E[(CK,m−l (ξm−l )− Cm−l (ξm−l ))2].
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Since V̄ (Sm) = hm(Sm) = Vm(Sm), we have

E[(C̄K,n(ξn)− CK,n(ξn))
2] ≤ 2m−n−1

m−n−1∑
l=1

E[(CK,m−l (ξm−l )− Cm−l (ξm−l ))2].

Thus,
E[(C̄K,n(ξn)− CK,n(ξn))

2] + E[(CK,n(ξn)− Cn(ξn))
2]

≤ 2m−n−1
m−n∑
l=1

E[(CK,m−l (ξm−l )− Cm−l (ξm−l ))2].

By (i)–(iii), we finally reach

E[(ĈN,K,n(ξn)− Cn(ξn))
2]

≤ C1
(K + 1)2m32m|α(K)|

N
+ C2

m−n∑
l=1

E[(CK,m−l (ξm−l )− Cm−l (ξm−l ))2].

Therefore, as N → ∞, ĈN,K,n(ξn) converges to Cn(ξn) in L2 for each n ∈ {1, . . . , m − 1},
which completes the proof. �
Remark 3. We make several remarks about the theorem. For the case of multi-periods and a
single underlying asset, we observe that the continuation value function at tm−1 is the same as
the one in the single-period problem. Thus, the critical relation O(logN) for the single-period
problem still holds for the multi-periods problem. Since the observation is also true for the
case of multiple underlying assets by Remark 1, the critical relationO(logN) still holds for this
case. Therefore, for any case, the critical relation is O(logN) for GBM. Furthermore, we note
that the proof still holds for correlated BM by using the proper transformation φ. Therefore,
we conclude that the highestK to achieve convergence isO(logN) for any case. However, this
result for GBM is not comparable to the one for GBM in [9] as mentioned in the introduction.

Next, we present a rate of convergence of the algorithm considering the regularity of the
continuation value function Cn. To this end, we need some notation and definitions about
regularity for use in the next section. First, we introduce some basic notation for regularity
which is common in partial differential equations. We follow [16, Section 2] and [11]. Let
� = {x | − ∞ < x < ∞} and ω(x) = (1/

√
2π) exp(− 1

2x
2). Define

L2
ω(�) = {v | v is measurable and ‖v‖L2

ω(�)
< ∞},

where ‖v‖L2
ω(�)

= (
∫
�

|v(x)|2ω(x) dx)1/2. Further, let ∂xv = ∂v/∂x, and, for a nonnegative
integer r ,

Hr
ω(�) = {v | ∂kx v ∈ L2

ω(�), 0 ≤ k ≤ r}.
The semi-norm and the norm of Hr

ω(�) are given by

|v|Hr
ω(�)

= ‖∂rxv‖L2
ω(�)

and ‖v‖Hr
ω(�)

=
( r∑
k=0

|v|2
Hk
ω(�)

)1/2

.

Similarly, for d-dimensions, let

�i = {xi | − ∞ < xi < ∞}, �d = �1 ×�2 × · · · ×�d, x = (x1, x2, . . . , xd).
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Also, let |x| = (
∑d
i=1 x

2
i )

1/2 and ω(x) = (1/(2π)d/2) exp(− 1
2 |x|2). Define

Lpω(�
d) = {v | v is measurable and ‖v‖Lpω(�d) < ∞}.

Let α = (α1, α2, . . . , αd) be a multi-index and

∂αx v(x) = ∂ |α|v
∂
α1
x1 · · · ∂αdxd

(x),

where | α | = ∑d
j=1 αj . For any nonnegative integer r ,

Hr
ω(�

d) = {v | ∂αx v ∈ L2
ω(�

d), 0 ≤ |α| ≤ r}.
The semi-norm |v|Hr

ω(�
d) and the norm ‖v‖Hr

ω(�
d) ofHr

ω(�
d) are the natural extensions of the

one-dimensional case (see [10] and [16] and references therein).
First, we deal with the one-dimensional case. To this end, we need a lemma.

Lemma 3. For any positive integer r , if v ∈ Hr
ω(�) then, for sufficiently large K ,

‖v − PKv‖L2
ω(�)

≤ 1√
(K + 1)K · · · (K − r + 2)

‖v‖Hr
ω(�)

.

Proof. We note that, by the Plancherel theorem,

‖v − PKv‖2
L2
ω(�)

=
∞∑

l=K+1

a2
l ,

where al = ∫
R
v(x)ψl(x)ω(x) dx, ω(x) = (1/

√
2π) exp(− 1

2x
2). Now, by (1), (2), and

integration by parts,∫
R

v(x)ψl(x)ω(x) dx =
∫

R

v(x)

[
x√
l
ψl−1(x)−

√
l − 1√
l
ψl−2(x)

]
ω(x) dx

= 1√
l

∫
R

xv(x)ψl−1(x)ω(x) dx − 1√
l

∫
R

v(x)ψ
′
l−1(x)ω(x) dx

= 1√
l

∫
R

v
′
(x)ψl−1(x)ω(x) dx.

By repeating the calculation, we have∫
R

v(x)ψl(x)ω(x) dx = 1√
l
√
l − 1 · · · √l − r + 1

∫
R

v(r)(x)ψl−r (x)ω(x) dx.

Thus,∣∣∣∣
∫

R

v(x)ψl(x)ω(x) dx

∣∣∣∣ ≤ 1√
(K + 1)K · · · (K − r + 2)

∣∣∣∣
∫

R

v(r)(x)ψl−r (x)ω(x) dx.

∣∣∣∣
Therefore,

‖v − PKv‖2
L2
ω(�)

≤ 1√
(K + 1)K · · · (K − r + 2)

‖v(r)‖2
L2
ω(�)

,

which completes the proof. �
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IfCn is inHr
ω(�) for each r , the error E[(CK,n−Cn)2] converges faster than any polynomial

order and we may expect exponential decay of the error in L2. One can find the same result for
ω(x) = e−x2

in [16]. However, the proof there is not applicable here.
We now address a convergence rate for the case where d = 1.

Proposition 2. Suppose that K = ((1 − δ)/c)logN . Then, if Cn ∈ Hr
ω(�) for some positive

integer r and each n = 1, . . . , m − 1, then the algorithm converges at least as fast as
O((logN)−r/2) in L2.

Proof. By the proof of Theorem 2,

E[(ĈN,K,n(ξn)− Cn(ξn))
2] ≤ C1

K2m32mK

N
+ C2

m−n∑
l=2

E[(CK,m−l (ξm−l )− Cm−l (ξm−l ))2].

Then, using (1), (2), and Lemma 3 completes the proof. �
We note this proposition allows us to choose N and, in turn, K so as to obtain an approxi-

mation within a given error, which is convenient in practice.
We now consider the multi-dimensional case. To this end, we add one more condition to

our multi-index scheme, the graded lexicographic order; given an expansion order L, we use
a truncated basis {ψk : |α(k)| ≤ L}. With this new scheme, we thus have

∑K
k=0 akψk, where

1 +K = (d + L)!/d!L! for L = 0, 1, 2, . . ..

Lemma 4. For any positive integer r , if v ∈ Hr
ω(�

d), for sufficiently large K ,

‖v − PKv‖L2
ω(�

d) ≤ 1√
(L/d)(L/d − 1) · · · (L/d − (r − 1))

‖v‖Hr
ω(�

d).

Proof. We note, by the Plancherel theorem,

‖v − PLv‖2
L2
ω(�)

=
∑

|α(k)|>L
a2
α(k),

where aα(k) = ∫
Rd
v(x)ψα(k)1(x1) · · ·ψα(k)d (xd)ω(x) dx. For |α(k)| = L + 1, there exists at

least one component α(k)i such that α(k)i ≥ |α(k)|/d. Suppose that, for some k, α(k)1 ≥
(L+ 1)/d. Then, by Lemma 3, we have∫

Rd

v(x)ψα(k)1(x1) · · ·ψα(k)d (xd)ω(x) dx

≤
(√(

L+ 1

d

)(
L+ 1

d
− 1

)
· · ·

(
L+ 1

d
− (r − 1)

))−1

×
∫

Rd

∂(r)v(x)

∂x1
ψα(k)1(x1)ψα(k)2(x2) · · ·ψα(k)d (xd)ω(x) dx.

Hence, we have

‖v − PLv‖2
L2
ω(�

d)
≤ 1

(L/d)(L/d − 1) · · · (L/d − (r − 1))

d∑
i=1

∥∥∥∥∂(r)v(x)∂xi

∥∥∥∥
2

L2
ω(�d )

,

which completes the proof. �
We address a rate of convergence of the algorithm for the multi-dimensional case.
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Proposition 3. Suppose that L = ((1 − δ)/c)logN . Then, if Cn ∈ Hr
ω(�

d) for some positive
integer r and each n = 1, . . . , m − 1, then the algorithm converges at least as fast as
O((logN)−r/2) in L2.

Proof. By the proof of Theorem 2,

E[(ĈN,K,n(ξn)− Cn(ξn))
2]

≤ C1
((d + L)!/d!L!)2m32mL

N
+ C2

m−n∑
l=2

E[(CK,m−l (ξm−l )− Cm−l (ξm−l ))2].

Then, using (1), (2), and Lemma 4 completes the proof. �

6. Concluding remarks

In this paper we improved on the results of [9]. First of all, we proved the L2-convergence
of the quasi-regression Monte Carlo method to the true price of an American option under
the setting where the number of paths and number of basis functions increase together and
the dimension of the underlying assets is greater than one. Secondly, we have shown that the
highest possible number of basis functions for N paths is O(logN) to achieve convergence
in implementing the method even under multiple undelyings. Finally, we proposed a rate of
convergence considering the regularity of the continuation value function.

For further research, one question is to find a sharper convergence rate than the one proposed
in this paper. It amounts to finding a sharper bound on the error between the finite truncation of
the continuation value function and itself. It could be a challenging problem. Another question
is an extension of the results in [7] in the same manner as here. The critical hardness could be
how to obtain Lp-asymtotics on the basis function used in [7], see Appendix B in that paper.

Appendix A.

The idea behind the proofs of Lemmas 1 and 2 for Theorem 1 is similar to that for the case of
BM in [9], although the details are different because of differences in the number of underlyings
and the assumptions on the fourth moments that are less restrictive than in [9].

Proof of Lemma 1. In this proof we drop the boldface notation for convenience.
(i) It is obvious since V̂m(Sim) = hm(S

i
m) = V̄m(S

i
m).

(ii) By the Cauchy–Schwarz inequality,

(β̂n,k − β̃n,k)
2 =

(
1

N

N∑
i=1

V̂n+1(S
i
n+1)ψk(ξ

i
n)− 1

N

N∑
i=1

V̄n+1(S
i
n+1)ψk(ξ

i
n)

)2

≤ 1

N

N∑
i=1

ψ2
k (ξ

i
n)(V̂n+1(S

i
n+1)− V̄n+1(S

i
n+1))

2.

Then, by noting that

|V̂n+1(S
i
n+1)− V̄n+1(S

i
n+1)|

= | max{hn+1(S
i
n+1), ĈN,K,n+1(S

i
n+1)} − max{hn+1(S

i
n+1), C̄N,K,n+1(S

i
n+1)}|

≤ ||CN,K,n+1(S
i
n+1)− C̄N,K,n+1(S

i
n+1)|,
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and

(ĈN,K,n+1(S
i
n+1)− C̄N,K,n+1(S

i
n+1))

2 =
( K∑
k=0

(β̂n+1,k − β̄n+1,k)ψk(ξ
i
n+1)

)2

≤ (K + 1)
K∑
k=0

(β̂n+1,k − β̄n+1,k)
2ψ2

k (ξ
i
n+1),

we have

E[(β̂n,k − β̃n,k)
2] ≤ (K + 1)E

[ K∑
l=0

ψ2
k (ξ

i
n)ψ

2
l (ξ

i
n+1)(β̂n+1,l − β̄n+1,l)

2
]

= (K + 1)
K∑
l=0

E[ψ2
k (ξ

i
n)ψ

2
l (ξ

i
n+1)]E[(β̂n+1,l − β̄n+1,l)

2]

≤ (K + 1)
K∑
l=0

√
E[ψ4

k (ξ
i
n)]

√
E[ψ4

k (ξ
i
n+1)]E[(β̂n+1,l − β̄n+1,l)

2]

≤ (K + 1) max
0≤k≤K E[ψ4

k (ξ)]
K∑
l=0

E[(β̂n+1,l − β̄n+1,l)
2].

Thus, letting BK = (K + 1)max0≤k≤K E[ψ4
k (ξ)], we have

E

[ K∑
k=0

(β̂n,k − β̃n,k)
2
]

≤ BK(K + 1)
K∑
k=0

E[(β̂n+1,k − β̄n+1,k)
2].

Let AK = (K + 1)2 max0≤k≤K E[ψ4
k (ξ)]. Then, since

E[(β̂n+1,k − β̄n+1,k)
2] ≤ 2E[(β̂n+1,k − β̃n+1,k)

2] + 2E[(β̃n+1,k − β̄n+1,k)
2],

we have

E

[ K∑
k=0

(β̂n,k − β̃n,k)
2
]

≤ 2AK

K∑
k=0

E[(β̂n+1,k − β̃n+1,k)
2] + 2AK

K∑
k=0

E[(β̃n+1,k − β̄n+1,k)
2].

By repeating the procedure, we reach

E

[ K∑
k=0

(β̂n,k − β̃n,k)
2
]

≤ (2AK)
m−n−1

K∑
k=0

E[(β̂m−1,k − β̃m−1,k)
2]

+
m−n−1∑
l=1

(2AK)
m−n−l

K∑
k=0

E[(β̃m−l,k − β̄m−l,k)2].

Therefore , by (i), we finally have

E

[ K∑
k=0

(β̂n,k − β̃n,k)
2
]

≤ 2m−n−1Am−n−1
K

m−n−1∑
l=1

K∑
k=0

E[(β̃m−l,k − β̄m−l,k)2],

which completes the proof. �
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Proof of Lemma 2. For each n ∈ {1, . . . , m− 1},
K∑
k=0

E[(β̃n,k − β̄n,k)
2] ≤ C

(K + 1)3

N

(
max

0≤k≤K

√
E[ψ4

k ] + max
0≤k≤K E[ψ4

k ]
)
.

Note that E[β̃n,k] = β̄n,k . Then, for n ∈ {1, . . . , m− 2},
K∑
k=0

E[(β̃n,k − β̄n,k)
2] =

K∑
k=0

1

N
var(ψk(ξn)V̄n+1(Sn+1))

≤
K∑
k=0

1

N
E[ψ2

k (ξn)V̄
2
n+1(Sn+1)]

≤
K∑
k=0

1

N
E[ψ2

k (ξn)max{h2
n+1(Sn+1), C̄

2
n+1(Sn+1)}]

≤
K∑
k=0

1

N
E[ψ2

k (ξn)(h
2
n+1(Sn+1)+ C̄2

n+1(Sn+1))]

= 1

N

K∑
k=0

E[ψ2
k (ξn)h

2
n+1(Sn+1)] + 1

N

K∑
k=0

E[ψ2
k (ξn)C̄

2
n+1(Sn+1)].

Thus, by the Cauchy–Schwarz inequality,

K∑
k=0

E[(β̃n,k − β̄n,k)
2] ≤ 1

N

K∑
k=0

√
E[ψ4

k (ξ)]
√
E[h4

n+1(Sn+1)]

+ 1

N

K∑
k=0

E

[
ψ2
k (ξn)

( K∑
l=0

β̄n+1,lψl(ξn+1)

)2]

≤ 1

N
(K + 1) max

1≤n≤m

√
E[h4

n(Sn)] max
0≤k≤K

√
E[ψ4

k (ξ)]

+ 1

N
(K + 1)

K∑
k=0

E

[
ψ2
k (ξn)

( K∑
l=0

β̄2
n+1,lψ

2
l (ξn+1)

)]
.

Then, by noting that
∑K
k=0 β̄

2
n+1,k = E[(PKV̄n+2)

2] ≤ E[V̄ 2
n+2] and invoking Assumption 2,

K∑
k=0

E[(β̃n,k − β̄n,k)
2] ≤ 1

N
(K + 1) max

1≤n≤m

√
E[h4

n(Sn)] max
0≤k≤K

√
E[ψ4

k (ξ)]

+ 1

N
‖V̄n+2‖2

L2(K + 1)
K∑
k=0

E

[
ψ2
k (ξn)

( K∑
l=0

ψ2
l (ξn+1)

)]

≤ 1

N
(K + 1) max

1≤n≤m

√
E[h4

n(Sn)] max
0≤k≤K

√
E[ψ4

k (ξ)]

+ 1

N
E[V̄ 2

n+1](K + 1)3 max
0≤k≤K E[ψ4

k (ξ)]

≤ C(K + 1)3
1

N

(
max

0≤k≤K

√
E[ψ4

k (ξ)] + max
0≤k≤K E[ψ4

k (ξ)]
)
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Table 1.

|i| Multi-index i Single index k

1

(1 0 0 0) 2
(0 1 0 0) 3
(0 0 1 0) 4
(0 0 0 1) 5

2

(2 0 0 0) 6
(1 1 0 0) 7
(1 0 1 0) 8
(1 0 0 1) 9
(0 2 0 0) 10
(0 1 1 0) 11
(0 1 0 1) 12
(0 0 2 0) 13
(0 0 1 1) 14
(0 0 0 2) 15

3
(3 0 0 0) 16
(2 1 0 0) 17
(2 0 1 0) 18

...
...

for some constantC > 0. Since max{h2
m(Sm), C̄

2
m(Sm)} = h2

m(Sm), the estimate also holds for
n = m− 1, which completes the proof. �

An example of graded lexicographic ordering. In Table 1 we present a graded lexicographic
ordering of the multi-index i in d = 4 dimensions.
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