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Abstract

This paper introduces the generalized additive mixed model (GAMM) and the quantile gen-
eralized additive mixed model (QGAMM) through reanalyses of bilinguals’ lexical decision
data from Dijkstra et al. (2010) and Miwa et al. (2014). We illustrate how regression splines
can be used to test for nonlinear effects of cross-language similarity in form as well as for con-
trolling experimental trial effects. We further illustrate the tensor product smooth for a non-
linear interaction between cross-language semantic similarity and word frequency. Finally, we
show how the QGAMM helps clarify whether the effect of a particular predictor is constant
across distributions of RTs.

Introduction

In bilingual visual word recognition research, a central question has been whether readers acti-
vate two languages automatically when reading in one language. To address this question,
researchers have investigated whether and, if so, how cross-language similarities in orthog-
raphy, phonology, and semantics co-determine word processing speed. Significant contribu-
tions of cross-language similarity measures to response times provides evidence that both
languages are automatically co-activated in reading.

Up until a decade ago, cross-language similarities were typically coded as categorical pre-
dictors and tested with by-participant (F1) and by-item (F2) ANOVAs (e.g., high vs. low
cross-language orthographic similarity, as in Dijkstra, Grainger & van Heuven, 1999).
More recently, linear mixed-effects modeling (LMM, Baayen, Davidson & Bates, 2008)
replaced the classical ANOVA, with the advantage that a single statistical model can now
include both participants and items as (crossed) random effects. The LMM also enabled
researchers to move away from unnecessary dichotomization of continuous predictors
(for orthographic similarity as a continuous rather than a factorial predictor, see Dijkstra,
Miwa, Brummelhuis, Sappeli & Baayen, 2010) and further allowed them to include covari-
ates in the regression model, as opposed to seeking to match items a priori on all dimen-
sions that might potentially be confounded with the factorial manipulation of interest
(see, e.g., Baayen, 2010). In this tutorial introduction, we outline more recent mathematical
models that offer further precision for understanding experimental data in psycholinguis-
tics: the generalized additive mixed model (GAMM) and the quantile generalized additive
mixed model (QGAMM). Whereas the LMM provided a step forward compared to the clas-
sical ANOVA, it is restricted in the sense that it assumes that the effects of continuous
regressors are linear.

The GAMM relaxes this linearity assumption and offers researchers further flexibility to
detect nonlinear trends in their data. As will be shown, nonlinearity is ubiquitous in language
studies. The GAMM is capable of handling an interaction between a nonlinear predictor and a
factor, as well as an interaction between two nonlinear predictors. The QGAMM is a recent
extension of the GAMM that enables constructing models for any desired quantile of the
response variable’s distribution.

Throughout this paper, familiarity with the LMM and basic knowledge in R are assumed
(see Pinheiro & Bates, 2000 and Baayen, Davidson & Bates, 2008 for introduction of the LMM
with R). In what follows, we make use of treatment coding for factors. We first demonstrate
how the GAMM can be applied in bilingual processing research, reanalyzing lexical decision
data from Dijkstra et al. (2010, Experiment 1) and Miwa, Dijkstra, Bolger, and Baayen (2014,
Experiments 1 and 2). The former study tested 21 Dutch-English bilinguals reading 194
English words and 194 nonwords in a lexical decision experiment. We reanalyzed data for
189 target words. The latter study tested 19 Japanese-English bilinguals and 19 English mono-
linguals reading English words in a lexical decision experiment with 250 words and 200 non-
words. This time we reanalyzed data for 228 target words unless otherwise noted. All
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numerical predictors were standardized. R code for the analyses
presented below is available in the supplementary material
(https://osf.io/g5ax4/).

Nonlinearity in cross-language form similarity effects

In the LMM analysis of Dijkstra et al. (2010), a rated orthographic
similarity (rated on a 7-point Likert scale, henceforth OS) between
target English words and their Dutch translation equivalents (e.g.,
tomate – tomaat) was included as a covariate, together with a fac-
tor (Ident) coding for whether an English word had an identical
cognate in Dutch. Identical cognates revealed substantial facilita-
tion on top of a facilitatory effect of OS, as shown in Figure 1,
Panel A. From a modeling perspective, the factor Ident is some-
what awkward, as it marks the maximum value of OS. Within
the context of the LMM, the effect of OS can be modeled as non-
linear by regressing the response on powers of OS (e.g., OS
squared, cubed etc.). Panel B of Figure 1 shows the effect of OS
when its functional form is given by a second-degree polynomial.
In this model, Ident is not included as predictor. Model compari-
son clarifies that the polynomial model lacks precision when
pitted against the model with a linear effect of OS in combination

with Ident; the substantial facilitation for Ident is no longer
visible.

The generalized additive mixed model (GAMM) offers a toolkit
for building a more precise statistical model for the present dataset.
In what follows, we make use of the mgcv package (Wood, 2003;
2004; 2017). An introduction to the main concepts underlying
GAMMs is available in Baayen, Vasishth, Kliegl, and Bates (2017).
Central to GAMMs is the concept of a spline, a function that approx-
imates awiggly curve bymeansof aweighted sumof simple nonlinear
functions known as basis functions. The more wiggly a curve is, the
more basis functions are required to approximate it. In order to
avoid overfitting, GAMMs implement a penalty for wiggliness, the
assumption being that the truth is more likely to be simple (less wig-
gly) than complex (highlywiggly). Penalization reduces theweights of
the basis functions.When the weight of a basis function is reduced to
zero, it no longer contributes to the model. Often, penalized weights
are substantially reduced, but not zero, compared to unpenalized
weights, which would provide the closest fit to the data, but at the
price of overfitting. The effective degrees of freedom (edf) of a spline
function, which is used to evaluate significance, will be larger when
more basis functions are required and when these basis functions
have larger weights. When the edf of a spline is close to 1, the

Fig. 1. LMMs and a GAMM fitted to Dutch-English bilinguals’ RTs. (A) the effects of OS and Ident (red circle) in a LMM, (B) the quadratic effect of OS in a LMM, (C) the
nonlinear effect of OS in a GAMM, (D) the nonlinear effect of Frequency in a GAMM, (E) by-Participant random wiggly curves for Trials in a GAMM, (F) the distribution
of the random intercepts. Note that all the predictors are standardized and that the presented effects are partial effects (i.e., the contribution of the predictor to
the fitted values, independently of the contributions of the other predictors in the model)
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functional shape of the spline will be very similar to a straight line.
Importantly, the penalization method implemented in GAMMs
ensures that when the functional relation between a response and a
predictor is in fact linear, themodelwill detect linearity andwill elim-
inate all wiggly basis functions by driving their weights to zero.

Like the LMM, the GAMM allows researchers to include par-
ticipants and items as crossed random effects. Within the context
of the LMM, one can allow a regression line to have intercepts and
slopes that differ by subject (or item) by setting up a population
intercept and slope, and adding by participant (or by-item)
adjustments for both intercept and slope. Within the context of
the GAMM, it is possible to set up the nonlinear equivalent of
random intercepts and random slopes by means of special splines
known as factor smooths. Factor smooths implement shrinkage
for wiggly curves, just as the LMM implements shrinkage for ran-
dom intercepts and random slopes.

As a first illustration, we fit a GAMM to the data of Dijkstra et al.
(2010). We set the model up in such a way that the effects ofOS and
word frequency (here, we use the standardized log English subtitle
frequency of Brysbaert & New (2009), henceforth Frequency) can
be nonlinear. If it turns out that these effects are actually linear, the
edf values for these parameters should become 1. As participants
often show nonlinear trends over experimental time, we set up a
by-participant factor smooth for trial number (Trial), in order to
incorporate ups anddowns in attention andmotivation as the experi-
ment unfolds (see Baayen et al., 2017 for further discussion)1. This
factor smooth also estimates the “intercepts” (the points where the
wiggly curves cross the Y-axis), so it is not necessary to request sep-
arate by-subject random intercepts. We do request by-word random
intercepts. The R code for this model,

requests regression splines with the s() directive. For factor
smooths, additional arguments are required: in addition to the
continuous variable (Trial), we specify the grouping factor
(Participant), ask for a factor smooth with bs=“fs”, and request
shrinkage with m = 1. By-word random intercepts are also set up
with the s() directive, with the basis function parameter set to
“re”. The directive “discrete = TRUE” requests an algorithm
that can substantially reduce computation time with hardly any
loss of accuracy. The model summary, obtained with summary
(dijkstra.gam), is presented in Table 1.

Unlike the LMM, a GAMM summary has two parts: a para-
metric part for linear terms and a nonparametric part for smooth
terms. Note that random effects are listed together with fixed
effects. An F-test (detailed in Wood, 2013) is reported that clari-
fies whether a smooth term provides a noteworthy contribution to
the model fit. Comparison of models with and without a given
smooth term typically leads to the same conclusions as this
F-test. For this model, the only parametric parameter is the inter-
cept, estimated at -1.88. In the non-parametric part of the sum-
mary, we see that the effective degrees of freedom (edf) for the
two covariates, OS and Frequency, are close to 3, indicating

some wiggliness. To interpret the smooth terms of the model
visualization is essential. Figure 1, Panel C presents the effect of
OS. Where the confidence interval does not include zero (the
red line), the effect is significant. Thus, for the smallest values
of orthographic similarity, we find longer RTs, for most of the
range of OS, there is no effect, and then for the higher values
of OS, we find shorter RTs. The effect shown is the partial effect
of the predictor. Panel D visualizes the effect of word frequency,
which is strong in the middle range of log frequency, and tapers
off at both tails of the distribution. Panel E presents the
by-participant random curves for Trial. The main difference
between participants that strikes the eye is their intercept, which
differentiates between slower and faster subjects. But there is
considerable variability between participants, with some showing
stable behavior, with other showing nearly linear trends up or

down, and some others showing undulating patterns suggestive
of fluctuations in attention. Finally, Panel E presents a quantile-
quantile plot for the model residuals, which roughly follow a nor-
mal distribution, as required.2

Model fit can be improved by including randomslopes forOS and
Frequency. The effect of these random slopes is that they will tilt,
somewhat differently for each subject, the orientation of the regres-
sion curve. The terms to add to the model specified above for
by-subject random slopes for frequency and OS are, respectively,

Table 1. Summary of the GAMM fitted to lexical decision RTs of Dijkstra et al.
(2010). Note: s(OS): spline for OS, s(Frequency): spline for Frequency, s(Trial,
Participant): factor smooths for Trial by Participant, s(Word): by-word random
intercepts.

Parametric terms Estimate SE t-value p-value

(Intercept) −1.88 0.06 −32.60 <.001

Smooth terms edf Ref.df F p-value

s(OS) 2.75 2.94 11.63 <.001

s(Frequency) 3.17 3.44 23.24 <.001

s(Trial, Participant) 65.67 189.00 12.76 <.001

s(Word) 113.60 175.00 2.19 <.001

> dijkstra.gam = bam(invRT ∼ s(OS) +

s(Frequency) +

s(Trial, Participant, bs="fs", m = 1) +

s(Word, bs="re"),

data = dijkstra, discrete = TRUE)

1Factor smooths for participant by trial typically account for a large part of trial-to-trial
dependencies in reaction time experiments. Further control over these dependencies can be
gained by incorporating in the model an AR(1) process in the residual error, see Baayen,
Vasishth et al. (2017) and Baayen, van Rij, de Cat &Wood (2018).

2GAMs, as implemented in the mgcv package, provide many tools for dealing with
datasets that violate the iid assumptions of the standard Gaussian modeling framework.
When the data are not homoskedastic, the gaulss family argument enables fitting a model
in which not only the mean, but also the variance, varies (potentially nonlinearly) with a
predictor. When residuals follow a t-distribution rather than a normal distribution, this
can be accommodated with the scat family argument. Autocorrelations in the residuals
can be modeled to some extent by positing an AR(1) process in the errors. For examples,
see Chuang et al. (2020) for worked examples.
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s(Participant, Frequency, bs = "re")

and

s(Participant, OS, bs = "re")

Addition of these two terms decreases the fREML scores of the
model from 1064 to 1056, which is a substantial improvement,
as indicated by model comparison using the compareML()
function from the itsadug package (van Rij, Wieling, Baayen
& van Rijn, 2017). Like the anova() function for the LMM,
compareML() is used to compare nested GAMMs.

It is noteworthy that once the factor Ident is taken in to account,
the effect of OS becomes linear, with a substantially increased
p-value. Since model comparison, using compareML(), indicates
that the inclusion of Ident provides only a modest improvement in
goodness of fit (the ML score of the model decreased from 1049 to
1045), we are still left with two theoretical possibilities for future
research. The first possibility is that Ident is not necessary as pre-
dictor, as it is confounded with the endpoint of the scale of ortho-
graphic similarity. In this case, we let the spline function do the
work for us, with the implication that cognates that are spelled
almost but not completely the same also have a processing advan-
tage, albeit a smaller one than that of identical cognates. The second
possibility is that Ident is a theoretically important predictor, the
idea being that under identity there is substantial facilitation for
cognates, the conclusion reached by Dijkstra et al. (2010).
Statistics cannot decide which possibility is to be preferred.

Using Miwa et al.’s (2014) data obtained from Japanese-
English bilinguals, we similarly fitted a GAMM to RTs to investi-
gate an effect of cross-language phonological similarity. There was
no sign of nonlinearity (see the supplementary material).

Nonlinearity in responses to words and nonwords

With the GAMM, it is possible to test for an interaction between a
nonlinear predictor and a factor. In this example, using the miwa-
comp dataset (Miwa et al., 2014, 19 Japanese in Experiment 1 and
19 English monolinguals in Experiment 2, 250 words, 200 non-
words), we examined how response patterns changed throughout
the experiment forwords andnonwords. To understandhowpartici-
pants responded towords and nonwords throughout the experiment
in detail, we tested how RTs changed as the experiment went by
(Trial) for different levels of the factor StimulusType (levels: Word,
Nonword). This was achieved with the by-directive within the s()
function, which requests two wiggly curves, one for each factor
level. The main effect of StimulusType should be included so that
two wiggly curves can be set at appropriate places on the y-axis.

A comparison of the model with and without the interaction
indicated that the two different wiggly curves for Word and
Nonword were indeed necessary. In addition to RTs to words
being overall shorter than to nonwords, participants showed dif-
ferent learning effects for words and nonwords throughout the
experiment: nonlinear for words and linear for nonwords
(Figure 2, Panels A and B, see also Table 2). To see how the
two curves differ, we compute a difference curve for Word
and Nonword (see the supplementary material for the
procedure). Panel C indicates that the bilingual participants’
RTs to Word and Nonword were equally slow at the beginning.
RTs to words became rapidly shorter until about a third into
the experiment. After that, the RTs to words remained faster
than RTs to nonwords, but with the difference staying the
same, until the end of the experiment. Possibly, bilingual partici-
pants initially made either-word-or-nonword decisions and then
optimized their response criteria to make if-not-word-then-
nonword decisions.

Using the same procedure, we computed the difference curve
for monolingual participants (Panel D). They clearly distin-
guished words from nonwords from the very beginning – the dif-
ference curve is situated well above the zero-line across the whole
experiment – likely because the processing of real words was
highly automatized.

Nonlinear interaction involving cross-language similarity

With GAMMs, we can model interactions between two nonlinear
predictors. Under the assumption that languages have semantic
representations in common (see, e.g., Bilingual Interactive
Activation (BIA+) model, a localist-connectionist model of bilin-
gual visual word recognition with orthographic, phonological,
and semantic representations, Dijkstra & van Heuven, 2002),
cross-language semantic similarity (henceforth SS) is expected
to facilitate word recognition. Furthermore, because bottom-up
processing to the semantic level should proceed faster for higher
frequency words, there may be more opportunity for SS to con-
tribute for these words. Testing for an interaction of SS by
Frequency requires a tensor product smooth with the te() func-
tion. Since SS is a meaningful measure only for bilinguals, we
investigate a three-way interaction by requesting two wiggly
regression surfaces, one for each of the two levels of
FirstLanguage. The main effect of FirstLanguage should be
included so that two wiggly surfaces can be set at appropriate
places on the y-axis.

> jpn.gam1 = bam(invRT∼ StimulusType +

s(Trial, by = StimulusType) +

s(Trial, Participant, bs = "fs", m = 1) +

s(Word, bs = "re"),

data = miwacomp[miwacomp$FirstLanguage == "Japanese", ],

discrete = TRUE)

828 Koji Miwa and Harald Baayen

https://doi.org/10.1017/S1366728921000079 Published online by Cambridge University Press

https://doi.org/10.1017/S1366728921000079


Fig. 2. Trial effects for words and nonwords observed through GAMMs. (A) the nonlinear trial effect seen in Japanese participants’ responses to words, (B) the
linear trial effect seen in Japanese participants’ responses to nonwords, (C) the difference curve computed between the panels A and B, (D) the difference
curve computed for non-native speakers of Japanese. Note that Trial is standardized and that the presented effects are partial effects (i.e., the contribution of
the predictor to the fitted values, independently of the contributions of the other predictors in the model)

> miwa.gam3 = bam(invRT∼ FirstLanguage +

te(SS, Frequency, by = FirstLanguage) +

s(Trial, by = FirstLanguage) +

s(Trial, Participant, bs = "fs", m = 1) +

s(Participant, Frequency, bs = "re") +

s(Word, bs = "re"),

data = miwa, discrete = TRUE)
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Both wiggly surfaces were evaluated as significant, and are visua-
lized in Figure 3, Panel A for monolinguals and Panel B for bilin-
guals. These figures should be interpreted like a topographic
contour map, with colder colors indicating shorter RTs.
Unexpectedly, monolingual participants were also sensitive to
some aspect of SS, possibly because when words share semantics
across languages, they have more prototypical meanings. Here, we
focus on how bilinguals made use of SS and Frequency, with mono-
linguals as the baseline of comparison. We therefore created a dif-
ference surface by subtracting the monolinguals’ surface from the
bilinguals’ (see the supplementary material for the procedure).
The difference surface was significant and is visualized in Panel C
in Figure 3. For bilingual participants, as can be seen in the right
half of the difference surface, SS afforded more facilitation com-
pared to monolinguals, specifically for high-frequency words.

Response times observed through the additive quantile
regression

Just like LMMs, GAMMs estimate the mean, or more precisely,
the expectation of the mean of the response. However, effects of
predictors are not necessarily uniform across the distribution of
response times. Effects may primarily affect early reaction times,
or conversely, play a role primarily during late decision stages
(see, e.g., Ratcliff, 1979; Schmidtke, Matsuki & Kuperman,
2017). Quantile regression makes it possible to predict any desired

quantile of a response distribution. Thus, at the 0.1 decile, one can
study early effects, at the median one can study the central ten-
dency, and at the 0.9 decile, late effects. When fitting a model
for a specific quantile, all datapoints in the distribution are
taken into account, but datapoints far away from a given quantile
are given less weight. By drawing multiple regression curves at dif-
ferent quantiles of the dependent variable, the effects of a pre-
dictor across the distribution of RTs can be gauged.

In the following example, we illustrate QGAMMs (Fasiolo,
Goude, Nedellec & Wood, 2017). Importantly, QGAMMs do
not make any distributional assumptions about the residuals.
Thus, no transformations of the response are required. The fol-
lowing model, fitted with mqgam() function of the qgam pack-
age (Fasiolo et al., 2017) predicts the specified quantiles of the RT
distribution of the experiment reported by Dijkstra et al. (2010).
For details on how to summarize and plot the resulting mqgam
object, see the supplementary materials.

> qntls = seq(0.1, 0.9, by = 0.2)
> ldt.qgam = mqgam(RT∼ s(OS, k = 5)+

s(Frequency) +

s(Trial) +

s(Participant, bs="re"),

data = ldt, qu = qntls)

Table 2. Summary of the GAMM fitted to lexical decision RTs of Miwa et al. (2014)

Parametric terms Estimate SE t-value p-value

(Intercept) −1.27 0.04 −29.63 <.001

StimulusType Word −0.16 0.01 −11.39 <.001

Smooth terms edf Ref.df F p-value

s(Trial):StimulusType Nonword 1.00 1.00 30.48 <.001

s(Trial):StimulusType Word 5.93 6.96 13.94 <.001

s(Trial, Participant) 114.92 170.00 25.65 <.001

s(Word) 374.28 448.00 5.06 <.001

Fig. 3. Nonlinear interactions between semantic similarity and target word frequency observed through GAMMs. (A) the nonlinear interaction between SS and
Frequency for non-native speakers of Japanese, (B) the nonlinear interaction between SS and Frequency for native speakers of Japanese, (C) the difference surface
computed between the panels A and B. Note: colder color indicates shorter RTs.
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The effect of OS is visualized in Figure 4. From left to right, the
panels show the effect of OS at the 1st, 3rd, 5th, 7th, and 9th deciles.
Its effect is present across all deciles. The nonlinear effect
observed in the GAMM analysis (Figure 1, Panel C) is well-
replicated at lower deciles (note that a QGAMM does not assess
the difference between the quantiles statistically). From this ana-
lysis, we can infer that OS indeed contributes already at the earli-
est stages of word recognition.

A QGAMM can also be used to track the time-course of an
interactive effect of two (or more) predictors (for the interaction
between OS and Frequency, see the supplementary material).

Conclusion

GAMMs and QGAMMs provide the analyst with tools that
improve substantially on what the LMM makes available.
Regression splines allowed us to address in more detail whether
the facilitation for identical cognates reported by Dijkstra e al.
(2010) is indeed substantial, or can instead be understood as
the endpoint of a nonlinear trend. A reanalysis of Miwa et al.’s
(2014) data clarified that bilinguals and monolinguals responded
differently to words and nonwords in the course of the experi-
ment. We also illustrated the tensor product smooth for the non-
linear interaction of semantic similarity and word frequency,
resulting in a wiggly regression surface. Using the QGAMM, we
illustrated nonlinear orthographic similarity effects for both
short and long response times.

GAMMs and QGAMMs are designed in such a way that if the
true effect is linear, the model will discover this and report the
effect as such. However, many effects in lexical processing turn
out to be nonlinear, including not only the effect of word fre-
quency, but also subject-specific effects of learning, fatigue, or
fluctuations in attention, which can be modeled using factor
smooths. The examples presented in this introduction cover
only a small part of what is possible, and these statistical techni-
ques are undergoing rapid further development. For interested
readers, there are various other applications of GAMMs in lan-
guage studies (see Chuang, Fon, Papakyritsis & Baayen, 2020;
Hendrix, Bolger & Baayen, 2017; Murakami, 2016; van Rij
et al., 2019; Wieling, 2018). For understanding the quantitative
structure of experiment datasets and how a response variable is
shaped by both linguistic predictors, participant properties, and
the experimental task, GAMMs and QGAMMs have much to
offer for bilingualism research.

Supplementary Material. For supplementary material accompanying this
paper, visit http://dx.doi.org/10.1017/S1366728921000079
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