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Electrodynamic analysis of nanoantennas at
millimeter and optical wavelength ranges

alexander m. lerer, elena v. golovacheva, anatoly b. kleshchenkov, gennady a. shurov,

pavel v. makhno and victoria v. makhno

Electrodynamics models and radiophysical properties of carbon nanotube-dipoles (isolated on the substrate lattices), metallic
optical antennas and optical antennas, formed from ZnO nanorods coated with metal films were developed and investigated.
The models are based on numerically analytical solution of integrodifferential equations describing the diffraction of electro-
magnetic waves on impedance and dielectric bodies. The use of integral representations of the kernels of integrodifferential
equations allowed us to overcome the difficulties of solution, associated with the singularity of kernels and to reduce the com-
putation time by an order of magnitude.
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I . I N T R O D U C T I O N

It is well known that conductance of a typical wire is inversely
proportional to its length and its cross-section. Charge trans-
port in carbon nanotubes (CNTs) has a quantum nature [1].
CNT’s conductance does not depend on its length or thickness
and is equal to the so-called quantum conductance – limit
value of conductivity, corresponding to free electron transport
along the whole length of conductor. The electroconductivity
of nanotubes is higher than electroconductivity of all known
conductors of similar sizes and the value of current density
in conducting nanotube, observed at normal temperature
and is of two orders higher than that presently obtained in
superconductors.

If we consider nanotubes as transmission lines, we can
outline some specialties that distinguish nanotubes from tra-
ditional transmission lines. For CNTs there is the notion of
kinetic induction, whose value is much higher than traditional
magnetic induction. Besides electrostatic capacity, it is necess-
ary to take into account quantum capacity [1]. Hence, the
speed of the wave’s propagation in CNT is comparable to
Fermi speed and not the speed of light c, and is equal to
about 0.02c. Thus, the wavelength in the nanotube is much
smaller than the wavelength in the macroscopic metallic con-
ductor. Therefore, resonant frequencies of a nanotube-dipole
are much smaller than those for metallic dipole. A strong
deceleration of the surface waves in nanotubes was first
described in the [2]. For the first time, a rigorous theory of

nanotubes–nanoantennas was constructed independently in
[3, 4].

In [5, 6], the method for calculating the properties of the
CNT-dipoles on the substrate was developed. This method
was based on the solution of pair integral equations (PIEs)
about Fourier transform of current density on a dipole. In
this case, kernel singularity of integrodifferential equations
(IDE) about the current on the dipole is transferred to the
slow decrease of the integrand in the Fourier integral. To
improve the convergence of the Fourier integral is easier
than regularizing the IDE. For a dipole on a substrate, solution
of PIE is preferable than solution of IDE because of the Green
function (GF) expressed through the Fourier integral.

In conventional optics, light is usually controlled by redir-
ection of wave fronts propagating radiation with the help of
lenses, mirrors, and diffractive elements. This type of
control is based on the wave nature of electromagnetic fields
and, thus, is not applicable to guiding the fields in subwave-
length scale, as opposed to radio and microwave bands,
where antennas are used to control the fields in subwavelength
scale and are an effective interface between the propagating
radiation and localized fields. The same is true for the
optical antenna (OA).

The properties of OAs are similar to antennas of radio fre-
quency bands with some important differences in physical
characteristics and non-fulfillment of the principle of scalabil-
ity. The majority of differences are because the metal in the
optical frequency range is not a perfect conductor, it has the
properties of solid-state plasma, stipulated by the presence
of free electron gas. Therefore, when solving problems of dif-
fraction of electromagnetic waves in the optical frequency
range on a metallic object, it is necessary to take into
account the field inside the sample. OAs are used to increase
the efficiency of energy transport from external field to local
field and backwards. In the problems of microscopy, OA
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replaces conventional focusing lenses or objectives allowing
concentration on radiation in space dimensions smaller than
the diffraction limit [7–9]. OA leads to a giant increase of
local electric field. This property of OA can be used for
increasing efficiency of photophysical processes in light-
emitting devices and solar cells, determining DNA structure,
and detection of separate molecules [7–9]. Similar to OA,
CNTs [10], metal and metal dielectric dipoles, and spheres
[11–15] are used.

There are several types of integral equations (IEs) describ-
ing diffraction on dielectric bodies. Most of these equations
can be divided into two groups – surface IEs (SIEs) and
volume IEs (VIEs). In the SIE, the unknown variable is the
field at the interface between dielectrics. In the VIE,
the unknown variable is the field at all internal points of the
body. VIEs have several advantages: they are simpler, hetero-
geneous and the nonlinearity of the dielectric does not signifi-
cantly complicate the solution and as a result the electric field
in the dielectric is found. Applications of IEs for plasmonic
structures are described in [15–18].

In the present work, the efficient numerical analytical
method is applied to the diffraction problem of electromag-
netic waves on metal-dielectric nanostructures [17]. To simu-
late the OA, formed by a system of N planar rectangular metal
dipoles, arranged on the surface of the dielectric substrate,
approximate boundary conditions (ABCs) for a thin dielectric
layer are used. These ABCs take into account a finite value of
the dielectric constant of metals in the optical range [18].

Presently, the core-shell structures based on ZnO nanorods
coated with metal films are being developed. They can be used
as nanoantennas in the visible and infrared ranges. The grids
of such nanorods, coated with metallic films, may be grown at
conducting sublayers, required for excitation of the plasmons.

Nanoelectromagnetism is based on consolidation of
microscopy quantum theory of electron properties of nanos-
tructures and classical macroscopic electrodynamics. In the
present work, the following electromagnetic models are used:

(1) Quantum-mechanical properties of CNT in the model are
described by macroscopic parameter–surface impedance.

(2) While investigating metallic nanowaveguides, diffraction
gratings, and nanodipoles, the finite values of dielectric
permittivity of metals in the optical frequency range
were taken into account.

The objects of investigation in the present work are:

† CNT-dipoles (isolated; on the substrate; system of
nanodipoles);

† metallic OA (round and elliptical profile; planar; lying on
the substrate);

† OA, formed from ZnO nanorods coated with metal films.

I I . C N T - D I P O L E S

CNT grown by means of common technology are located nor-
mally to the substrate. We are analyzing the method of com-
puting diffraction characteristics of N CNT-dipoles located
normally at the substrate in random order. In this work, we
are analyzing CNTs arranged in dielectric with dielectric per-
meability 11 normal to a dielectric substrate 12, m1 = m2 = 1.
We introduce a rectangular coordinate system with X, Y axes
parallel to the substrate and normal to CNT and Z-axis
directed along the dipole and normal to the substrate. The

origin of coordinates is lying on the substrate. The length of
the CNT is L and radius is a.

We consider that the following boundary condition is
correct on the surface of the dipole:

Ez = rS j, (1)

where Ez, j are the longitudinal components of electric field
intensity and surface current density, rS is the surface resist-
ance of CNT [3, 4], rs = i(p2ah− (v− in)/2e2yF), yF is the
Fermi velocity (for CNT yF = 9.71 × 105 m/s), v is the
cyclic frequency, n is the relaxation frequency (for CNT
n = 3.33 × 1011Hz), e is the electron charge, c is the velocity
of light in free space, and h− is the Planck constant.

At first, we analyze a single CNT-dipole. We consider that
only a longitudinal component of the current exists on the
dipole and depends only on z. We use boundary condition
(1). As a result, we derive the following expression:

1
iv1110

d2

dz2
+ k2

1

( )∫L

0
j(z′)ge(z, z′)dz′ + Ee

z z( ),

= rsj z( ), z [ 0, L[ ] (2)

where k1 is the wave number in upper dielectric, the core of
the IDE ge(z, z′) is defined below.

We consider external field Ee
z(z) as the sum of two planf

waves – incident wave and wave reflected from the substrate
without dipole. The reflection coefficient is defined by the
Fresnel formula. The vector of �Ee(z) is in the plane of
incidence.

The kernel of the IDE

ge(z, z′) = a
2p

∫2p

0
df
∫2p

0
g(x, x′, y, y′, z, z′)df′. (3)

In expression (3), we consider that the observation point
and the source point are lying on the surface of the dipole:

x = a cosf, y = a sinf, x′ = a cosf′, y′ = a sinf′. (4)

In expression (3), the functiong(x, x′, y, y′, z, z′) is the GF
for the vector potential in case the current direction is normal
to the surface:

∂2

∂ x2
+ ∂2

∂ y2
+ ∂2

∂ z2
+ k21

( )
g(x, x′, y, y′, z, z′)

= −d x − x′
( )

d y − y′
( )

d z − z′
( )

. (5)

Let z′ ≥ 0. For z ≥ 0 we will retrieve the solution of (5) in
the following form:

g(x, x′, y, y′, z, z′)= 1
8p2

∫1

−1

∫1

−1

e−g1 z−z′| |[
+ Q r

( )
e−g1(z+z′)

]
× 1

g1
eia �x+ib�ydadb. (6)

Following notations are used here and further �x = x−
x′, �y = y − y′, g1,2 =

										
r2 − k2

1,2

√
, r =

									
a2 + b2

√
, k2 is the

wave number in the substrate, Q = g1 − g2 t/g1 + g2 t,
t = 11/12.
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The first term in (6) is a partial solution of an inhomo-
geneous equation (5) or in other words it is free-space GF:

g0(x, x′, y, y′, z, z′) = e−ik1R

4pR
.

The following integral representation is valid for it:

e−ik1R

4pR
= 1

4p2

∫1

−1

K0 R1

								
r2 − k2

1

√( )
e−ir z−z′( )dr, (7)

where K0 is the Macdonald function.
The second term includes the substrate influence. For

11 = 12, g1 = 0:

g2(x, x′, y, y′, z, z′)

= 1
8p2

∫1

−1

∫1

−1

Q r
( )

e−g1(z+z′) 1
g1

eia �x+ib �ydadb (8)

We substitute expressions (7) and (8) in (3), taking into
account (4) and making the change of variables
a = r cosq, b = r sinq. As a result we obtain the following
equation:

ge(z, z′) = ge,1(z, z′) + ge,2(z, z′), (9)

ge, 1(z, z′) = a
2p

∫1

−1

I0 ag1

( )
K0 ag1

( )
e−ir z−z′( )dr, (10)

ge, 2(z, z′) = a
2p

∫1

0
rQ r
( ) e−g1(z+z′)

g1
J2

0 r a
( )

dr, (11)

J0 is the Bessel function, I0 is the modified Bessel function.
We retrieve the solution of (2) using the Galerkin method

j z( ) =
∑1
n=0

Xn Vn z( ), (12)

Xn is the unknown coefficient, Vn(z) is the basis function, in
whose capacity we use weighted Chebyshev polynomials of
the second order:

Vn z( ) = in

p n + 1( )
											
1 − z2/l2

√
Un

z
l

( )
,

n = 0, 1, 2 . . . . (13)

Fourier transformation of Vn(z)is expressed in terms of
Bessel functions Ṽn(g) = Jn+1(g l)/g. Substituting the
current from (12) into (2) and then projecting equation (2)
onto V

p
∗(z) we obtain the system of linear algebraic equations

(SLAE):

∑1
n=0

Xn Apn = Bp, p = 0, 1 . . . ,

with matrix elements Apn in left and Bp in right parts:

Apn r
( )
=
∫L

0
dzV∗

p
z( ) d2

dz2
+ k2

1

( )∫L

0
Vn(z′)ge(r, z, z′)dz′, (14)

Bp = ik11

Zc

∫l

−l
Ee z( )V∗

p
z( )dz.

Matrix elements (14) of the retrieved SLAE are double inte-
grals with kernels ge(r, z, z′) that have singularity if z = z′.
Using integral representation of the core (9), (10) we obtain the
following expression after substitution expressions (9)–(11) in (4):

Apn = A 1( )
pn + A 2( )

pn + A 3( )
pn ,

where

A 1( )
pn

=
zpna

p

∫1

0
g2

1
I0 ag1

( )
K0 ag1

( )
Jp+1 r l

( )
Jn+1 r l

( )
/r2dr,

(15)

A 3( )
pn = h

∫l

−l
V∗

p
z( )Vn(z)dz

= iznj
l

p2 p + 1
( )

n + 1( )

× cos
qp
2

1

p + n + 2
( )2−1

− 1

p − n
( )2−1

( )
,

zpn = 1 if p, n of the same parity, otherwise zpn = 0 .

A 2( )
pn = a

2p

∫1

0
rQ r
( )

J2
0 r a
( )

× Ip+1 g1 l
( )

In+1 g1 l
( )

e−2g1 l/g1 dr. (16)

The singularity of the core of the IDE is expressed in slow
convergence of integral for r in expression (15).

The integral (15) has been solved numerically. The integral
has been divided into four integrals with the following
intervals of integrations 0, k1[ ], k1, C[ ], C, E[ ], E, 1[ ).
Constants C, E are chosen under the assumption that
Cl ≫ max (p, n), Ea ≫ 1. Performing the change of vari-
ables: for the first integral – r = k1 cosc, for the second one
– r = k1chu. Both integrals are solved using a rectangular
formula. Bessel functions are replaced with its asymptote
Jp+1(g l)Jn+1(g l) ≈ (1/pg l)cos (p − n/2)p

( )
in the third in-

tegral. The modified integral is solved using a rectangular
formula. Bessel functions are also replaced with their asymp-
tote in the fourth integral. However, the modified integral is
solved analytically. Thus, slow decreasing (as g−2 if g � 1)
of integration element (15) is accounted. Integrals (16) are
solved in the same way.

Let us analyze diffraction on the system of several
CNT-dipoles. In this case, it is also not difficult to define the

electrodynamic analysis of nanoantennas 539

https://doi.org/10.1017/S1759078713000196 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078713000196


system of IDEs and to solve it using the Galerkin method.
Matrix elements of the SLAE that defines interaction
between dipoles are of the same form as (14). The difference
is that the source point and the observation point are
located on different CNT. In this case, GF does not have a
singularity. That is why it is natural to use singular part of
GF in the following form:

g0(x, x′, y, y′, z, z′) = e−i k1R

4pR
,

R =
																																					
x − x′( )2 + y − y′

( )2 + z − z′( )2,
√

(17)

and to take integrals in (14) numerically over quadratures of a
pinpoint accuracy. This has been done, for example, in [19,
20]. However, the distance between CNTs can be much
smaller than its length. In this case, the order of the quadra-
tures and calculating time grow dramatically. Therefore, we
will detach the static part in (17) and use the following integral
representation:

1
R
= 1

p

∫1

−1

K0 g r
( )

eig(z−z′)dg,

g0(x, x′, y, y′, z, z′)

= g01(x, x′, y, y′, z, z′) + g02(x, x′, y, y′, z, z′)

= 1
4p

e−i k1R − 1
R

+ 1
p

∫1

−1

K0 g r
( )

eig(z−z′)dg

[ ]
.

Now integrals with GF g01 can be easily solved numerically
for all values of R and matrix elements with GF g02 are
expressed using the Fourier integral. Conversions of these
matrix elements including convergence acceleration of inte-
grals are similar to the ones described above. Since it does
not depend on frequency, it is enough to solve it once. This
calculation method repeatedly decreases the calculation time.

IDE for nanodipoles lying on the substrate [5] (that is more
complicated) is solved in the same way.

I I I . O P T I C A L M E T A L L I C A N T E N N A S

We are using well-known three-dimensional IDE for the
dielectric object [21] for modeling OA (Fig. 1):

E(x, y, z) = graddiv + k2
[ ] ∫

V
tE(x′, y′, z′)g(R)dv′

+ Eext(x, y, z); (18)

where g(R) is the GF, t = 1s − 1, 1s is dielectric permittivity of
the object, 1 is the dielectric permittivity of the dielectric, sur-
rounding the object, and k is the wave number inside it.

Values for complex dielectric constants of metals and
refractive index of ZnO in optical range are presented in
website [22]. These experimental results are well approxi-
mated by a formula for dielectric conductivity for plasma:

1′s = 1 − l/lp
( )2

,

1′′s = −l3G/ 2pcl2
p

( )
, 1s = 1′s − i1′′,s

where lp is the plasma wavelength, G is the collision frequency
of electrons. For copper, lp ¼ 151.9 nm, G ¼20.25 × 1015 Hz,
for silver lp ¼ 147 nm and G ¼20.135 × 1015 Hz [23].

Let us analyze the dielectric cylinder with radius a and
length 2l lying along z-axis with the center placed in the
origin of coordinates (picture 1). If a ≪ l, we can consider
that the electric field intensity has only one component paral-
lel to Z-axis and depends only on coordinates r, Z. In this case,
equation (18) can be modified to two-dimensional IDE:

j(r, z)
t(r)

= Eext(r, z) + d2

dz2
+ k2

[ ]

×
∫l

−l

∫a

0
j(r′, z′)g(r, r′, z, z′)rdr′dz′, (19)

where j(r, z) ¼ t(r)E(r, z) and GF for OA perpendicular to the
substrate is of the form (6) and for OA without a substrate is of
the form (7).

First, let us analyze OA without the substrate. The kernel of
IDE (19) G(r, r′, z, z′) has a logarithmic singularity. Presenting
it in the form of Fourier integral in the same way as that for CNT:

g(R) = 1
4p2

∫1

−1

K0(d k) e−ir(z−z′)dr,

where k =
																					
r2 + r′2 − 2rr′cosf

√
, d =

								
r2 − k2

√
.

Then

g(r, r′, z, z′) = 1
4p

∫1

−1

g̃(r, r′, g) e−ig(z−z′)dg, (20)

where

g̃(r, r′, g) = I0(rd)K0(r′d), r ≤ r′,
I0(r′d)K0(rd), r ≥ r′.

{
(21)

IDE (19) is solved using the Galerkin method. Resolving an
unknown function j(r, z) into weighted Chebyshev poly-
nomials of the second order we obtain

j(r, z) =
∑1
m=0

Zm(r) �Um
z
l

( )
,

�Um
z
l

( )
= im 1

p l
1

m + 1
(l2 − z2)1/2Um

z
l

( )
. (22)

In (22), Zm(r) are unknown functions, in contrast with
(12), where Xn are unknown coefficients.

Fig. 1. Nanovibrators – OAs. (a) nanovibrator and (b) nanovibrator on the
substrate 12, coated with the metal layer.
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Let us substitute (22) into (19) and project on �Un(z/l). As a
result we will obtain the following system of IEs

∑1
m=0

Zm(r)Dnm

t(r)
=

Bn(r) + 1
2p

∑1
m=0

∫1

−1

(g2 − k2)
Jm+1(gl)

g

Jn+1(gl)
g

dg

×
∫1

0
r′ Zm(r′)g̃(r, r′, g)dr′, m = 0, 1, 2 . . . (23)

where

Dnm =
∫l

−l

�Un
z
l

( )
�Um

z
l

( )
dz

=

0, m and n of the different parity
l
p2

cos q
p

2

( ) 1
m

1
n

1
p2 − 1

− 1
q2 − 1

[ ]
,

m and n of the same parity,

q = m − n, p = m + n

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bn(r) = 1
2p

∫2p

0
df
∫l

−l

�Um
z
l

( )
Eext(r, z)dz

= E0 sin u J0(k | rq)
Jn+1(kzl)

kz
, k2

| = k2
x + k2

y ,

IE (23) are solved by the collocation method. We use quadra-
ture

�a
0 r′f (r′)dr′ =

∑P
p=1

�Apf (rp) and require the fulfillment
of (23) in quadrature nodes. We use the notations
�ApZm(rp) = Xmp – unknown coefficients, Bnq = Bn(rq). In
(23), we are taking into consideration only first M equations.
As a result, we obtain the SLAE:

∑M

m=0

Xmp
Dnm

�Aqt(rq)
= Bnq +

∑M

m=0

∑P

p=1

XmpAqp
nm,

n = 0, 1, . . .M, q = 1, . . . , P, (24)

where

Aqp
nm =

1
p

∫1

0
g2 − k2
( ) Jm(g l)

g

× Jn(g l)
g

g̃ rp, rq, g
( )

dg,

m and n of the

same parity,

0,
m and n of the

different parity.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Using integral representation of singular core (20) helps us to
overcome difficulties associated with solving integrals of bisin-
gular functions in the same way as that in the previous case. In
this case, the singularity of the core of IDE is expressed in slow
convergence of integrals in spectral space (25). It is easier to
improve convergence of integrals using the method described
above than to perform regularization.

After solving the final SLAE (24), we derive an unknown
function j(r, z).

It is not difficult to derive an expression for the far field:

Eq = HfZ0 ≈ e−ikr

4p(r/l)
F(q),

where

F(q) = 2pk2

l

∫a

0
r′t(r′)J0(r′sinq)dr′

×
∫l

−l
j(r′, z′)eik cos q z′dz′,

where q is the observation angle, counted from dipole, F(q) is
the non-dimensional scattering diagram.

Solution of IDE (19) is similar for OA on the substrate. The
singular part of GF is located in the first term that is GF for the
task resolved above.

The derived solution can be easily generalized on the dif-
fraction on several dielectric cylinders.

I V . P L A N A R M E T A L O A S

Here, we investigate the OA system consisting of a system of N
rectangular dipoles deposited on the dielectric substrate.

We use the Cartesian coordinate system where plane y = 0
corresponds to the top of the substrate. Dipoles are parallel to
the z-axis and perpendicular to the x-axis. Permittivity of sub-
strate is denoted by 12, and permittivity of dielectric is 11 = 1.
Let us consider scattering of the plane wave. At first, we con-
sider one dipole with length 2l 2a, a ≪ l. It is supposed that
the surface current on dipoles has a longitudinal component
jz only.

Avoiding calculation of the field within metal film is poss-
ible by using the method of ABC for the dielectric layer [24].
We suppose that ABC is valid on metal surface:

Ez = −it jz , (26)

where t = Z0/kd, d = 1s − 11( ) t, Z0, k are wave resistance
and wave number in free space, 1s, t are permittivity and
width of dipoles.

Let us introduce the term “external electromagnetic field”
�Eext . This term means the sum of field of incident wave and
transmitted and reflected from substrate without strips.

Applying two-dimensional Fourier transform, we can
obtain expressions for components of the electromagnetic
field:

Ex x, y, z
( )

= iZ0

4p2 k

∫1

−1

∫1

−1

agUe r
( )

j̃z a,g
( )

× exp i ax+gz
( )[ ]

V1 r, y
( )

dadg,

Ey x, y, z
( )

= Z0

4p2 k

∫1

−1

∫1

−1

gUe r
( )

j̃z a, g
( )

× exp i ax+gz
( )[ ]

V2 r, y
( )

dadg,

Ez x, y, z
( )

= iZ0

4p2 k

∫1

−1

∫1

−1

g2Ue −k2Um[ ] j̃z a,g
( )

× exp i ax+gz
( )[ ]

V1 r, y
( )

dadg, (27)

electrodynamic analysis of nanoantennas 541

https://doi.org/10.1017/S1759078713000196 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078713000196


where

Ue r
( )

= 1
11b2 + 12b1

, Um r
( )

= 1
b1 + b2

,

b1,2 =
												
r2 − k211,2

√
, r =

									
a2 + b2

√
,

j̃z(a, g) is the two-dimensional Fourier transform of jz x, z( ),

V1 r, y
( )

=
exp −b1y

( )
, y ≥ 0,

exp b2y
( )

, y ≤ 0,

{

V2 r, y
( )

=
−b2 exp −b1y

( )
, y ≥ 0,

b1 exp b2y
( )

, y ≤ 0.

{

After substitution of (27) in ABC (26) we have

− iZ0

k
d2

dz2

∫l

−l

∫a

−a
j(x′, z′)ge(x, x′, z, z′)dx′dz′

[

+ k2
∫l

−l

∫a

−a
j(x′, z′)gm(x, x′, z, z′)dx′′dz′

]

+ Eext
z x, z( ) = −it jz x, z( ), x| | ≤ a, z| | ≤ l, (28)

where
ge, m(x, x′, z, z′) = 1

4p2

∫1

−1

∫1

−1

Ue, m r
( )

exp i a�x + g�z
( )[ ]

dadg, �x = x − x′, �z = z − z′. Let us present an unknown
function jz(x, z) in the following form:

jz x, z( ) = I z( )/ p
								
a2 − x2

√( )
, (29)

where I(z) is the current on strip. The singularity at the edge of
the strips of the form 1/

								
a2 − x2

√
is typical for ideal conduct-

ing metal. For the impedance strip, the current rises at the
edges. Numerical results [16] show that the singularity in
the form of 1/

								
a2 − x2

√
has good internal convergence of sol-

ution for impedance strips as well. This singularity makes it
possible to simplify analytical transformation of the Fourier
integrals.

Let us substitute (29) into IDE (28), which requires the ful-
fillment of IDE at x = 0. As a result, we have

− iZ0

k
d2

dz2

∫l

−l
I(z′)ĝe(z, z′)dz′ + k2

[ ∫l

−l
I(z′)gm(z, z′)dz′

]

+ Eext
z 0, z( ) = −it Iz z( )/ p a( ), z| | ≤ l, (30)

where

ĝe, m(z, z′) = 1
4p2

∫1

−1

∫1

−1

Ue, m r
( )

J0 a a( )

× exp ig�z
( )

dadg.

To solve IDE (30), we use Galerkin’s method with basis func-
tions in the form of (13). As a result, we have SLAE. The cal-
culation of matrix elements of the obtained system is similar
to the previous case. It is possible to obtain a system of
paired IEs for a system of dipoles. To solve this system, the
method of Galerkin is also used.

To calculate the scattering diagram, the asymptotic [6] was
applied to field components and expressed in the form of
Fourier integral (27):

1
4p2

∫1

−1

∫1

−1

f a, g
( ) exp −b1 y

( )
b1

exp i a x + g z
( )[ ]

dadg

≈ f aa, ga

( ) exp −ik
			
11

√
r

( )
2p r

,

where aa = −k
			
11

√
sin u cosf, ga = −k

			
11

√
cos u, r, u, f

are spherical coordinates, angle u counts from dipole, and
anglef counts from substrate. Components of the field in
spherical coordinate system:

Eu,f r, u, f
( )

= Fu,f u, f
( ) exp −ik

			
11

√
r

( )
4p r/l

.

V . N U M E R I C A L R E S U L T S

The algorithms presented here were implemented in C ++
program. As shown, kernels of integrals are the same for all
the matrix elements. That is why these kernels can be evaluated
only once along with values for Ṽn(g). Such an approach
reduces the calculation time by an order of magnitude. For
example, the time of calculation of one point of frequency
characteristic is 0.4 s for CNT under substrate and 0.015 s for
CNT in free space on PC with CPU 2.33 GHz. The time of cal-
culation using the obtained method is 10 times less than in the
case of using the modified collocation method [25, 26].

The analysis of internal convergence shows that the required
number of basis functions (order of SLAE) increases, while the
electrical length of nanodipoles and 11, 12 increases. For calcu-
lating the impedance Zin with error ,1% at frequency f ¼
250 GHz (half of plasma wavelength fits along the dipole) it
will be sufficient to take M ¼ 10, at frequency f ¼ 1000 GHz
(eight half-wavelength fits along the dipole) – M ¼ 50.
Internal convergence of solution for the far-field is 3–5 times
faster than for calculation of Zin for any method of excitation.

For planar OA to achieve the same accuracy, it is sufficient
to take 3–7 basis functions, and 3–7 basis functions for the
cylindrical OA for each coordinate. Such precision, of
course, is purely of theoretical interest, since it is much
higher than the accuracy of the mathematical model.

Investigation of impedance Zin of single-layer CNT-dipoles
is carried out. In the figures the complex input resistance, nor-
malized to the value R0 = (h/2e2) ≈ 12.9 kV, is presented.
For all figures, where the dimensions are not specified, it is
supposed that 2l ¼ 20 mm, a ¼ 2.712 nm.

The investigation of input impedance Zin of isolated single-
layer CNT-dipoles of various lengths is also presented (Fig. 2).
Solid lines designate the real part of Zin, dashed lines designate
the imaginary part of Zin.

In millimeter and submillimeter wavelength ranges, there
are resonances at the frequency response at lengths of
dipoles much smaller than the wavelength in free space. In
the frequency range up to 1 THz, the nanotube, whose half-
length l ¼ 10 mm, has three distinct resonances. In a perfectly
conducting dipole of the same length, the first resonance (first
root of Zin(f ) = 0) is observed at a frequency of about
7.5 GHz. This effect is explained by the possibility of

542 alexander m. lerer et al.

https://doi.org/10.1017/S1759078713000196 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078713000196


propagation of surface waves (plasmons) along the nanotube
[1]. In the case of nanotube of length 50 mm, the number of
resonances is much larger, and their amplitudes are less
than the CNT’s length (10 mm). It should be pointed out
that the imaginary part of the input impedance of CNT with
a length of 50 mm for frequency up to 300 GHz is negative.
Thus, there are no resonances of radiation for the CNT with
a length of 50 mm for frequencies up to 300 GHz. The
average value of the real and imaginary parts of the input
resistance of CNT with a length of 100 mm is of the same
order with the case of nanotubes with 50 nm length, but
without resonances. The nature of the input impedance of
CNT with length of 100 mm is similar to the input resistance
of the traditional dipole antenna, made of classical metal.

Thus, with the increase of the length of the nanodipole the
number of resonances increases, but the efficiency of the radi-
ation decreases. Antenna parameters of CNT-dipole converge
to the parameters of conventional electric dipole, perhaps sur-
passing them on Q-factor. As has been noted, the electrical
length of the nanodipole is greater than the length of conven-
tional electric dipole. Therefore, the current distribution on it
is much more complex and there are several extremes (Fig. 3).

In Fig. 4 results of the frequency dependence of the radi-
ation pattern for a system of 1, 3, and 5 nanodipoles are pre-
sented for observation angle u = 908 (normal to the dipole).
In this case, the radiating nanotube is situated in the center
of the system and the other nanotubes are receivers. The dis-
tance between the nanotubes is d ¼ 10 nm.

Fig. 2. Impedance of CNT-dipoles with different lengths. Curves 1 2 l ¼ 10 mm; 2 2 l ¼ 50 mm; 3 2 l ¼ 100 mm.

Fig. 3. Current distribution on nanodipole. Solid curves – 1 ¼ 1, dash curves – 1 ¼ 10. Curves: 1, f ¼ 100 GHz; 2, f ¼ 1000 GHz; 3, f ¼ 1000 GHz, ideal metal.
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The curves have extremes at the points where the imagin-
ary part of the input impedance becomes zero (Fig. 2). In this
case, the maximums (minimums) of function F correspond to
the minimums (maximums) of the real part of input impe-
dance. Maximum amplitude of far-field of system of three
dipoles is two times higher than far-field magnitude of
single dipole. Further increasing of the number of dipoles
gives a significant increase of far-field amplitude also.

In Fig. 5 results of calculation of scattering pattern for the
problem of plane wave diffraction are presented. The fre-
quency dependencies of scattering pattern are shown at two
values of observation angle. Maximums of radiation and scat-
tering diagram are the same. Maximum level of scattering
pattern decreases with increase of the frequency.

The form of scattering pattern and radiation pattern of
dipole with l ≪ l is weakly dependent on frequency.

Even for the second resonant frequency, there is only one
lobe of scattering pattern. This is because the resonances of

the amplitude–frequency characteristics of the scattered field
and the current distribution j(z) on a dipole are determined
by the ratio of the dipole’s length and length of a plasma
wave in the CNT.

The form of scattering pattern and number of scattering
lobes are determined mainly by the ratio of the dipole’s
length and the wavelength in free space l:

F = const cos u
∫l

−l
j z( ) exp ikz( )dz.

For CNT-dipole at f ¼ 1500 GHz, we have l/l = 0.05.
To make the linear system of dipoles to have directivity in

the H-plane, such as for traditional vibrators, the distance
between the dipoles should be about one-quarter of the wave-
length in free space. Thus, it is impossible to create a direc-
tional antenna array of CNTs which have nanoscale sizes.

Fig. 4. Frequency response of far-field for problem of excitation of system of parallel nanodipoles. Curve 1 single nanotube; curve 2–3 nanotubes; curve 3–5 nanotubes.

Fig. 5. Frequency response of far-field for diffraction problem. Incidence angle is equal to observation angle –908 (upper curve), 708 (bottom curve).
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Results of calculation of near field of CNT without the sub-
strate are presented in Fig. 6. The origin of the coordinate is at
the center of CNT. Owing to the symmetry of the problem, the
field is shown for z . 0 case only. The amplitude of the field
near the CNT is 2–3 orders of magnitude higher than the
external field. The intensity of the field rapidly decreases
with the increase of distance from CNT.

Now let us consider the frequency response of OA. The
dependence of the scattered field on the wavelength has a res-
onant character (Figs 7 and 8). There are two resonances at the
defined size and type of excitation. At the first resonance, one
half-wavelength fits along the dipole, at the second, three half-
wavelengths. The amplitude of the first resonance is much
higher than the amplitude of the second resonance. The res-
onant wavelength of the CNT-dipole is greater than the res-
onant wavelengths of the perfectly conducting dipole of the

same size. Of course, the resonant wavelength increases
when the length of the dipole increases. For a given length
of CNT-dipole lr can be changed in a wide range by changing
the type of metal and its thickness. The intensity of the scat-
tered field of CNT-dipole increases with the increase of the
radius, but it is smaller than that of a perfectly conducting
dipole. It should be noted that there is a dependence of lr

on the radius and thickness of the metal coating. For dielectric
and an ideal metal dipole lr increases with the radius a, and
for the metal dipole, the dependence is inverse (Fig. 7).

In the case of diffraction on a metal film coated with nano-
crystal ZnO (Fig. 8), the resonance is observed even when the
film thickness t is of a few nanometers. The resonant wave-
length is strongly dependent on the thickness of the coating.
For comparison, the figure also shows the characteristics of
fully metal dipoles. It is shown that at t ¼ 20 nm (curve 4),
the characteristics of the nanocrystal and copper dipole
(curve 6) are close. For smaller t, the field penetrates into
the nanocrystal, thus increasing its influence on the scattering
diagram.

The above-mentioned dependence of lr on the radius and
thickness of the metal coating can be explained by a simple
formula for estimating the resonance wavelength mth reson-
ance:

l m( )
r = c

v
2Le

m
,

where c is the speed of light in free space, n is the propagation
speed of wave along dipole, and Le is the electric (effective)
length of dipole, Le . L, Le depends on L/a and the frequency.

For the ideal dipole, it is valid that n = c and the depen-
dence l(m)

r (a) is explained by the dependence Le(a). For a
dielectric or non-ideal conducting metal dipole, the depen-
dence l(m)

r (a) is explained by the dependence of moderating
ratio n = c/n on radius. If the wave propagates along the
dielectric cylinder, then the field is concentrated within the
dielectric and exponentially decreases outside the dielectric.

Fig. 6. Normalized intensity of electric field near dipole. Caption near the
curves denotes normalized to l ¼ L/2 distance to nanodipole.

Fig. 7. Characteristics of copper nanodipoles with different radius; L ¼ 0.7 mm. Curves 1–3 denote different radii a (mm): 0.02, 0.015, and 0.01.
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Fig. 8. Characteristics of nanodipole from ZnO (radius 0.01 mm, L ¼ 0.7 mm) with different thickness of copper layer. Curves 1–4 correspond to thickness of
coating: 5, 10, 15, and 20 nm. Curves 5 and 6, copper nanodipole with radii of 15 and 30 nm.

Fig. 9. Scattering diagram of copper nanodipole with normal incidence, L ¼ 0.7 mm, a ¼ 0.01 mm. Curves 1–4 denote l (mm): 0.5, 1.0, 1.5, and 2.0.
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If the radius increases the moderating ratio increases, as a
result of this l(m)

r increases too.
At the interface between the dielectric (in our case the free

space) and the plasma (electron plasma of metal), the field of
the surface wave (plasmon) exponentially decays with increase
of the distance from the border in both directions (dielectric
and metal). When reducing the thickness of the metal, the
interaction of plasmons, propagating on the opposite sides
of the metal, increases. In this case, the moderating ratio n
and, therefore, l(m)

r , increase with the decrease of the radius.

This relationship n(a) is easily obtained from the analysis of
dispersion equation for the E-wave propagating in the
plasma layer [17].

The field distribution near the OA is similar to the field
near the CNT (Fig. 6). Near the OA, the field is 2–3 orders
of magnitude higher than the external field. The field strength
decays rapidly with the distance from the OA.

The scattering diagram of metal nanodipoles (Fig. 9) is
close to the scattering diagram of perfectly conducting
dipoles with greater length.

Fig. 10. Frequency response of copper nanodipole on substrate with 1 ¼ 4.11 (curves 1–3) and without substrate (curves 4–6), L ¼ 0.7 mm, curves 1, 4 – a ¼
0.02 mm, curves 2, 5 –a ¼ 0.015 mm, curves 3, 6 – a ¼ 0.01 mm.

Fig. 11. Normalized scattering diagram of copper nanodipole on the substrate, l ¼ 1 mm, L ¼ 0.7 mm, a ¼ 0.02 mm, permittivity of substrate defined by curves:
1, 1 ¼ 1; 2, 1 ¼ 4; 3, 1 ¼ 10.
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Resonant wavelengths of nanodipoles on the substrate are
almost independent of its dielectric constant, the main differ-
ence is the change in emission intensity (Fig. 10). The results
are presented for angle of incidence u = 458. The presence of
the substrate leads to a fundamental change in the form of the
scattering diagram (Fig. 11).

Characteristics of planar metal OA (Fig. 12) are qualitat-
ively similar to that of the cylindrical OA.

Figure 13 shows the characteristics of antennas, consist-
ing of several parallel nanodipoles. For comparison, the
curve for a single dipole is also shown. The distance
between the nanodipole d ¼ 0.1 mm is close to
l/ 4

															
(11 + 12)/(2)

√( )
at l = 0.8mm. Therefore, at the

increase of number of nanodipoles, the amplitude of the
scattered field at the short-wavelength resonance becomes

comparable and further exceeds the amplitude of the long-
wavelength resonance.

Maximum of scattering diagram (Fig. 14) comes nearer to
the direction of specular scattering.

V I . C O N C L U S I O N S

(1) Original mathematical methods, algorithms and programs
on C ++ programming language were developed for theor-
etical study of radiophysical properties of nanodipoles.
(a) The solution of the problem of excitation of

CNT-nanodipoles on dielectric substrate was
reduced for solving PIEs. The use of PIEs is more
preferable than IDEs because GF of the problem is
expressed in Fourier integral. By means of the
Galerkin method with Chebyshev basis, the solution
of PIEs was reduced to the solution of SLAE, where
matrix elements are also expressed in the Fourier
integrals. Such an expression of the kernel and
matrix elements allows us to easily overcome difficul-
ties, related to kernels’ singularity. The singularity of
the kernel of IDEs, while solving PIEs appears in
slow convergence of integrals in matrix elements of
the SLAE. The convergence of these integrals was
enhanced. Rapid internal convergence of the solution
has been shown. The software, based on the solution
of PIEs, allows us to calculate faster than the soft-
ware, based on the modified collocation method
[25–27].

(b) The solution of the boundary problem of optical fre-
quency electromagnetic waves diffraction on the
metallo-dielectric dipoles–nanocrystals was reduced
to a solution of IDEs for inhomogeneous dielectric
cylinder. Kernels of equations were expressed in the
form of Fourier integral. IDEs were solved by combin-
ing the Galerkin and the collocation methods.

Fig. 12. Comparison of characteristics of planar metal nanodipole; l ¼
0.35 mm, solid curves denote a ¼ 0.025 mm, dash curves a ¼ 0.035 mm.
Curves: 1, ideal conducting dipole; 2, copper nanodipole, t ¼ 0.01 mm; 3,
gold nanodipole, t ¼ 0.01 mm; 4, copper nanodipole, t ¼ 0.02 mm.

Fig. 13. Characteristics of system of metal nanodipoles. Captions near the curves designate the number of nanodipoles in the system N, a ¼ 0.03 mm, t ¼ 0.01 mm,
l ¼ 0.25 mm, d ¼ 0.1 mm.
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(c) By means of the method of ABCs for the thin dielectric
layer (taking into account the finite value of metals’ per-
mittivity in the optical range), the solution of the bound-
ary problem of diffraction on metallic nanodipole was
reduced to the solution of PIEs. PIEs were solved by
the collocation method. The matrix elements of obtained
SLAE are expressed in the form of the Fourier integrals.
To verify results and estimate the accuracy, the IE for
dielectric elliptical cylinder of finite length was obtained
and solved by means of the method, combining the
Galerkin and the collocation method.

(2) The results of investigation of CNT-nanodipoles in milli-
meter and submillimeter wavelength ranges.
(a) In millimeter and submillimeter wavelength range, there

are resonances on amplitude–frequency characteristic at
dipole length much less than wavelength in a vacuum. An
increase of nanoantenna’s length leads to an increase in
the number of resonances in the frequency range under
investigation and to an efficiency drop. CNT-nanoanten-
na’s parameters come nearer to the parameters of con-
ventional metallic dipole. Thus, simple increase of
nanotube’s length does not allow us to obtain efficient
radiation in centimeter wavelength range.

(b) The influence of substrate on amplitude–frequency
characteristics of CNT-nanoantenna was investigated. It
was shown that these characteristics could be described
by the introduction of effective dielectric permittivity
1ef = (11 + 12)/2 only at low frequencies and low
values of substrate’s dielectric constant. The distinctions
between radiation pattern of nanodipoles over the sub-
strate and isolated nanodipoles have been mentioned.

(c) The properties of finite grating of the nanodipoles have
been investigated. Getting the CNTs closer leads to an
increase in resonant frequency and amplitude of the dif-
fracted field. The dependence of amplitude on the
number of nanodipoles is nonlinear. It was shown that in
centimeter and millimeter frequency ranges it is impossible
to create the grating of CNTs, which has nanoscale sizes.

(d) The investigations of the frequency-selective surface
based on the doubly periodic grating of CNT–nanodipoles

have shown the possibility of obtaining high values of the
reflection coefficient.

(3) The properties of metallic nanodipoles and nanocrystals–
dipoles coated with metallic film were theoretically
investigated.
(a) The dependence of scattered field on the frequency has

a resonant character. Resonant wavelengths of nanodi-
poles are greater than resonant wavelength for per-
fectly conducting dipole of the same dimension. The
resonances are observed even if the thickness of the
metallic film, coating the nanocrystal, is about 3–5 nm.

(b) The possibility of creation of directional OA, consist-
ing of grating of planar nanodipoles, has been shown.
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