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Abstract We obtain a new theorem for the non-properness set Sf of a non-singular polynomial mapping
f : Cn → Cn. In particular, our result shows that if f is a counterexample to the Jacobian conjecture,
then Sf ∩ Z �= ∅, for every hypersurface Z dominated by Cn−1 on which some non-singular polynomial
h : Cn → C is constant. Also, we present topological approaches to the Jacobian conjecture in Cn. As
applications, we extend bidimensional results of Rabier, Lê and Weber to higher dimensions.
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1. Introduction and statement of the main results

This paper is strongly motivated by the arguments presented in the paper by Krasiński
and Spodzieja [18].
Let g = (g1, g2, . . . , gm) : Cn → C

m be a holomorphic mapping. We denote by Jac(g)(x)
the Jacobian matrix of g at x. When m = 1, we denote this matrix by ∇g(x). When m =
n, we denote by det Jac(g)(x) the determinant of the Jacobian matrix of g at x. A point
y ∈ C

m is a regular value of g if for each x ∈ g−1(y) the matrix Jac(g)(x) has maximum
rank. We say that g is non-singular if its range contains only regular values. Let J =
(i1, i2, . . . , i�), i1 < i2 < · · · < i�, be a sequence of integers in {1, 2, . . . ,m}. We denote by
GJ the mapping GJ = (gi1 , gi2 , . . . , gi�) : C

n → C
�. When J = (1, . . . , k − 1, k + 1, . . .m),

we denote GJ by G
̂k.

A mapping g : Cn → C
m is said to be proper at y ∈ C

m if there exists a neighbourhood
V of y such that g−1(V ) is compact. The set of points at which g is not proper is denoted
by Sg. We say that g is proper if Sg is the empty set ∅. When g is a polynomial mapping,
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the set Sg has been considered in many problems and applications; see, for instance,
[12–14,16,19].

Recall that a mapping φ : X → Y , withX ⊂ C
n and Y ⊂ C

m algebraic sets, is a regular
mapping if φ is the restriction to X of a polynomial mapping defined in C

n. We say that
φ : X → Y is a biregular mapping if φ and φ−1 are regular mappings, and in this case we
say that X is biregular to Y .
Let f : Cn → C

n be a non-singular mapping, that is, det Jacf(x) is a non-zero con-
stant. Our main result is Theorem 1.2 below, which presents a new property of the
non-properness set Sf of f . In order to state the theorem properly, we provide the
following definition, motivated by [9].

Definition 1.1. Let Z ⊂ C
n be a non-singular hypersurface. We say that Z is

dominated by C
n−1 if there exists an onto proper regular mapping ϕ : Cn−1 → Z.

Theorem 1.2. Let f : Cn → C
n be a non-singular polynomial mapping. Then either

Sf is the empty set, or Z ∩ Sf is not empty, for every non-singular hypersurface Z
dominated by C

n−1 on which some non-singular polynomial h : Cn → C is constant.

We remark that sets Z with the properties of Theorem 1.2 include, for instance, graphs
of polynomial functions g : Cn−1 → C.
The claim that a non-singular polynomial mapping f : Cn → C

n is a polynomial auto-
morphism is the very well-known Jacobian conjecture, which hitherto remains unsolved;
see, for instance, [3,8] for details. From Hadamard’s well-known global inversion theorem
and the main result of Cynk and Rusek [5], f is an automorphism if and only if it is non-
singular and Sf is the empty set. So the Jacobian conjecture will be proved if one shows
that Sf is the empty set for any non-singular polynomial mapping f : Cn → C

n.
From Jelonek [12,13], it follows that for non-singular polynomial mappings f : Cn →

C
n, the set Sf is either empty or a hypersurface. Therefore, if there exists a counter-

example f : Cn → C
n to the Jacobian conjecture, then the non-properness set Sf is a

hypersurface such that Sf ∩ Z �= ∅ for every non-singular hypersurface Z ⊂ C
n satisfying

the assumptions of Theorem 1.2.
Theorem 1.2 as well as the reasoning to prove it lead us to discuss results related to

the notion of fibrations. We now turn to explaining these results which will culminate
in generalizations of known bidimensional results to higher dimensions. We recall that a
continuous mapping g : X → Y between topological spaces X and Y is a trivial fibration
if there exist a topological space F and a homeomorphism ϕ : F × Y → X such that pr2 =
g ◦ ϕ is the second projection on Y . We say further that g is a locally trivial fibration at
y ∈ Y if there exists an open neighbourhood U of y in Y such that g|g−1(U) : g

−1(U) → U
is a trivial fibration. We denote by B(g) the set of points of Y where g is not a locally
trivial fibration. The set B(g) is usually called the bifurcation (or atypical) set of g. If
B(g) is the empty set we simply say that g is a locally trivial fibration.
In the case where n = 2, as a consequence of Abhyankar and Moh’s embedding theorem

[1], Lê and Weber [20] presented the following result.

Theorem 1.3 (Lê and Weber [20]). Let f = (f1, f2) : C
2 → C

2 be a non-singular
polynomial mapping. If B(f1) = ∅, then f is an automorphism.
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As a consequence, the Jacobian conjecture in C
2 can be reformulated in the following

geometrical-topological way. See also [27, p. 781].

Conjecture 1.4 (Lê and Weber [20]). Let f1 : C
2 → C be a polynomial function.

If B(f1) �= ∅, then for any polynomial function f2 : C
2 → C there exists x ∈ C

2 such that
det Jac(f1, f2)(x) = 0.

Analytical conditions ensuring locally trivial fibrations are known in the literature. So,
in view of Theorem 1.3, for example, the use of such conditions is expected to obtain
particular cases of the Jacobian conjecture. In this context, Rabier [25] considered ana-

lytical conditions to define the set K̃∞(g) for holomorphic mappings g : Cn → C
m (see

Definition 3.1). He then obtained the following result.

Theorem 1.5 (Rabier [25, Theorem 9.1]). Let f = (f1, f2) : C
2 → C

2 be a
polynomial mapping.

(a) If f is an automorphism, then f is non-singular and K̃∞(f1) = K̃∞(f2) = ∅.
(b) If f is non-singular and K̃∞(f1) = ∅, then f is an automorphism.

Rabier also proved the inclusion B(g) ⊂ K̃∞(g) for holomorphic mappings g : Cn →
C

m. Example 3.2 below shows that for n ≥ 3, a polynomial mapping f : C3 → C
3 can

be an automorphism even if K̃∞(F
̂k) �= ∅ for each k = 1, 2, 3; see also Remark 3.3. On

the other hand, if f : Cn → C
n is a polynomial automorphism, then f is clearly non-

singular and B(F
̂k) = ∅ for each k = 1, 2, . . . , n. Moreover, it is known that a locally

trivial fibration g : Cn → C
m has simply connected fibres (see Proposition 2.1). So it

turns out that the next two results generalize Theorems 1.3 and 1.5 in different ways to
higher dimensions.

Theorem 1.6. Let f = (f1, f2, . . . , fn) : C
n → C

n be a non-singular polynomial map-
ping. If the fibres of Fn̂ out of B(Fn̂) are simply connected, then f is an automorphism.
In particular, if B(Fn̂) = ∅ then f is an automorphism.

Theorem 1.7. Let f = (f1, f2, . . . , fn) : C
n → C

n be a non-singular polynomial map-
ping. Assume that the connected components of the fibres of F

̂k : Cn → C
n−1 out of

B(F
̂k) are simply connected, for all k ∈ {2, . . . , n}. Then f is an automorphism.

We point out that it is enough to test the simply-connectedness in the hypotheses of
above theorems over any open set of Cn−1. This is so because B(F

̂k) is always contained
in a hypersurface of Cn−1; see details in the proof of Theorem 2.3.
In § 2, we relate the sets Sf and B(F

̂k) in Theorem 2.3 to each other and apply this
theorem in the proofs of Theorems 1.6 and 1.7.

Now, analogously to Conjecture 1.4, as a direct application of Theorem 1.6, we obtain
the following equivalent statement of the Jacobian conjecture in C

n.

Conjecture 1.8. Let Fn̂ = (f1, f2, . . . , fn−1) : C
n → C

n−1 be a polynomial mapping.
If B(Fn̂) �= ∅, then for any polynomial function fn : C

n → C there exists x ∈ C
n such that

det Jac(Fn̂, fn)(x) = 0.
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We remark that from [17, Theorem 1.1] we have complete descriptions for the set
B(Fn̂).
Another application of Theorem 1.6 is a topological proof of the bijectivity of the

non-singular mappings I +H : C4 → C
4, with I the identity and H a homogeneous poly-

nomial of degree three, which appear in Hubbers’s classification [11]; see Remark 2.4 for
details.
We end the paper with a result in C

2.

Proposition 1.9. Let f1 : C2 → C be a non-singular polynomial function. The
following statements are equivalent.

(a) The connected components of a fibre f−1
1 (c) are simply connected.

(b) There exists a polynomial f2 : C2 → C such that the mapping (f1, f2) : C
2 → C

2 is
an automorphism.

Therefore the assumptions on a non-singular polynomial function f1 : C2 → C in The-
orems 1.6, 1.7 and Proposition 1.9 are equivalent. Moreover, these assumptions are
equivalent to B(f1) = ∅. From the results of Krasiński and Spodzieja [18, Theorem 4.1],
it also follows that the above conditions are equivalent to the Hamiltonian vector field of
f1 defined in C[x] to be onto C[x].

2. Proofs of the theorems

We begin by recalling the following well-known property on trivial fibrations; see, for
instance, [28, 11.6].

Proposition 2.1. If g : X → Y is a locally trivial fibration and Y is a contractible
space, then g is a trivial fibration.

The following proposition will be used in the sequel to prove our main results.

Proposition 2.2. Let Y ⊂ C
n be a non-singular simply connected algebraic curve.

Then any locally injective regular function g : Y → C is biregular.

Proof. In this proof we follow the reasoning of [18, p. 310]. From the Riemann map-
ping theorem there is a biholomorphism φ : Y → C, which is biregular, because proper
holomorphic mappings between algebraic curves are regular mappings; see, for instance,
[26, Theorem 4]. The composite function h = g ◦ φ−1 : C → C is a polynomial locally
invertible function, h(z) = az + b, with a, b ∈ C and a �= 0. Therefore, g = h ◦ φ is a
biregular mapping, which completes the proof. �

Let f : Cn → C
n be a non-singular polynomial mapping. Since f is a local homeo-

morphism, it follows that f is a dominant mapping. Then, from [12,13], the non-
properness set Sf is either empty or an algebraic hypersurface. Then C

n \ Sf is a
connected subset of Cn (see, for instance, [14, Lemma 8.1]) and therefore f is an analytic
cover of geometric degree μ(f) on C

n \ Sf . Thus #f−1(y) = μ(f) for any y ∈ C
n \ Sf .
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By using once more that f is a local homeomorphism, it follows that #f−1(z) < μ(f) for
any z ∈ Sf , and hence

Sf =
{
y ∈ C

n | #f−1(y) �= μ(f)
}
. (1)

For any 1 ≤ k ≤ n, we denote by π
̂k : Cn → C

n−1 the projection π
̂k(x1, . . . , xn) =

(x1, . . . , xk−1, xk+1, . . . , xn). With the above notation we have the following theorem.

Theorem 2.3. Let f = (f1, f2, . . . , fn) : C
n → C

n be a non-singular polynomial map-
ping and k ∈ {1, 2, . . . , n}. Assume that the connected components of the fibres of F

̂k out
of B(F

̂k) are simply connected. Then

(a) Sf ⊂ π−1
̂k

(Z) for any algebraic set Z ⊂ C
n−1 such that B(F

̂k) ⊂ Z;

(b) Sf = π−1
̂k

(π
̂k(Sf )).

Proof. As explained before, it follows by [12,13] that Sf is either empty or an alge-
braic hypersurface. If Sf = ∅, we have nothing to show in items (a) and (b). Therefore,
we assume that Sf is an algebraic hypersurface.
Proof of (a), let Z ⊂ C

n−1 be an algebraic set such that B(F
̂k) ⊂ Z. If Z = C

n−1

there is nothing to prove. So assume Z �= C
n−1. It follows that L := C

n−1 \ Z is an open
connected set (see [14, Lemma 8.1]) such that F

̂k|F−1
̂k

(L) : F
−1
̂k

(L) → L is a locally trivial

fibration, and hence there exists dk ∈ N such that F−1
̂k

(ỹ) has dk connected components

for each ỹ ∈ L.
Now let y ∈ π−1

̂k
(L) and V1 ∪ · · · ∪ Vdk

be the decomposition of F−1
̂k

(π
̂k(y)) into its

connected components. From Proposition 2.2, it follows that fk|Vj
: Vj → C is a biregular

function for each j = 1, . . . , dk. This shows that

#f−1(y) = dk, ∀y ∈ π−1
̂k

(L). (2)

Since Sf is an algebraic hypersurface and π−1
̂k

(L) is open, it follows that π−1
̂k

(L) \ Sf �= ∅,
which by (1) and (2) gives that dk = μ(f). Therefore it follows that π−1

̂k
(L) ⊂ C

n \ Sf ,

proving (a).
Proof of (b). We know that B(F

̂k) is contained in an algebraic hypersurface Z ⊂ C
n−1;

see, for instance, the main result of [15] or [29, Corollaire 5.1]. Let Z1 ∪ . . . ∪ Zl be
the decomposition of Z into its irreducible components. It follows that π−1

̂k
(Z1) ∪ . . . ∪

π−1
̂k

(Zl) is the decomposition of π−1
̂k

(Z) into its irreducible components. By statement

(a), Sf ⊂ π−1
̂k

(Z), and since Sf and π−1
̂k

(Z) are algebraic hypersurfaces, it follows that

there are indices i1, . . . , ij ∈ {1, 2, . . . , l} such that

Sf = π−1
̂k

(Zi1) ∪ · · · ∪ π−1
̂k

(Zij ) = π−1
̂k

(Zi1 ∪ · · · ∪ Zij ).

Since π
̂k is onto, it follows that π−1

̂k
(π

̂k(Sf )) = Sf , proving statement (b). �

We can also give the proof of Theorem 1.2.
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Proof of Theorem 1.2. Suppose that Z ∩ Sf = ∅, with Z ⊂ C
n a non-singular

hypersurface dominated by C
n−1. Let h : Cn → C be the non-singular polynomial which

is constant on Z. We may suppose that Z = h−1(0) and that h is irreducible.
Since Z is dominated by C

n−1, it follows by the main result of [9] that Z is simply
connected.
Let V := f−1(Z) = g−1(0), where g := h ◦ f . From the assumption Z ∩ Sf = ∅ and

(1) it follows that the restricted mapping f |V : V → Z is a cover mapping with degree
μ(f). Since Z is simply connected, V has μ(f) connected components, say V = V1 ∪ · · · ∪
Vμ(f), and f |Vi

are biholomorphisms for each i = 1, . . . , μ(f). Since f |Vi
: Vi → Z ⊂ C

n

are proper regular mappings, it thus follows that f |−1
Vi

: Z → Vi are regular mappings.
This is so because if p, q are mappings of algebraic sets, with p holomorphic, q regular
and proper, and q ◦ p is regular then so is p; see [26, Theorem 3(ii)]. Hence f |Vi

are
biregular mappings for i = 1, . . . , μ(f).
The connected components of V are the irreducible components of V . Let qj be an

irreducible polynomial such that Vj = q−1
j (0), j = 1, . . . , μ(f). Since g is non-singular, it

follows that g = γq1 · · · qμ(f), for a suitable γ ∈ C
∗.

We claim that qj |Vi
: Vi → C is constant for each i �= j in {1, . . . , μ(f)}. Indeed, if this

is not true for some i and j and ψ : Cn−1 → Z is the onto proper regular mapping from
the assumption, the non-constant polynomial qj ◦ f |−1

Vi
◦ ψ : Cn−1 → C has a zero, and

so Vi ∩ Vj �= ∅. This contradiction proves the claim.
So, since g is non-singular, it follows from the Nullstellensatz that qj = βijqi + αij ,

for polynomials βij and constants αij . Thus for i �= j, we have qi = βjiβijqi + βjiαij +
αji, and total degree considerations show that βij ∈ C

∗. Therefore, g = P (q1), with P
a suitable polynomial of degree μ(f). Since ∇g = P ′(q1)∇q1 is nowhere zero in C

n, it
follows that the degree of P must be 1, that is, μ(f) = 1. Then f is injective and hence
it is an automorphism from [5]. Therefore Sf = ∅, which ends the proof. �

Pinchuk [24] presented a non-singular polynomial mapping f : R2 → R
2 that is not

invertible, thus providing a counterexample to the real Jacobian conjecture. In this
example, we have Sf ∩ Zc = ∅, for any line Zc := {(c, y) | y ∈ R} and c < −1; see, for
instance, [4]. Therefore, Theorem 1.2 does not hold for non-singular polynomial mapping
f : Rn → R

n.
We now provide the proof of Theorem 1.6.

Proof of Theorem 1.6. Since B(Fn̂) is contained in a hypersurface Z ⊂ C
n−1 ([15]

or [29, Corollaire 5.1]), it follows from statement (a) of Theorem 2.3 that Sf ⊂ π−1
n̂ (Z).

Let y /∈ π−1
n̂ (Z). From (1) and [5], it is enough to prove that #f−1(y) = 1.

From the hypothesis, the fibre F−1
n̂ (πn̂(y)) is simply connected. It thus follows by

Proposition 2.2 that fn is injective in this fibre. So #f−1(y) = 1, and we are done. �

In the following remark we present an application of Theorem 1.6.

Remark 2.4. An important result on the Jacobian conjecture given by Bass, Connel
and Wright in [3] is that the Jacobian conjecture in all dimensions follows if one proves
that for all n ≥ 2, non-singular polynomial mappings of the form f = I +H : Cn → C

n,
where I is the identity mapping and H is a homogeneous polynomial of degree three, are
injective. In [11], Hubbers classified the non-singular polynomial mappings I +H, for
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n = 4, up to linear conjugations, obtaining eight families of mappings. Then he proved the
bijectivity of each family by applying a criterion described by van den Essen in [7], which
is based on the calculation of the Gröbner basis of an ideal defined from the components of
f . Here we give a new and topological proof of the bijectivity of each mapping in Hubbers’s
classification, using Theorem 1.6. Indeed, with the enumeration of [11, Theorem 2.7] or
[8, Theorem 7.1.2], it is straightforward to check the simply-connectedness of the fibres of:

F
̂4 = (f1, f2, f3) : C

4 → C
3 for families 1, 2, 7 and 8,

F
̂2 = (f1, f3, f4) : C

4 → C
3 for family 3,

F
̂3 = (f1, f2, f4) : C

4 → C
3 for families 4, 5 and 6.

Thus each family is an automorphism by Theorem 1.6.

We can now also present the proof of Theorem 1.7.

Proof of Theorem 1.7. By applying statement (b) of Theorem 2.3 for each k, it
follows that there is a set B ⊂ C such that Sf = B × C

n−1. Since Sf is either empty or
a hypersurface, it then follows that there exists z ∈ C such that the affine hyperplane
Z = {z} × C

n−1 is disjoint of Sf . The result thus follows by Theorem 1.2. �

It is well known that analytic and geometric conditions can be used to estimate B(F
̂k);

see, for instance, [6,15,17,19,25]. Thus, we may use these conditions to ensure the
topological hypothesis related to B(F

̂k) in Theorems 1.6, 1.7 and 2.3.

Remark 2.5. Splitting a complex mapping f : Cn → C
n into real and imaginary parts,

we obtain an associated real mapping fR : R2n → R
2n. In [21, Corollary 2] it was proved

that the (complex) Jacobian conjecture is equivalent to the simply-connectedness of all
connected components of fibres of fRi1...i2n−2

, for all combinations (i1 < . . . < i2n−2) of

{1, . . . , 2n}. Note that this requires this topological condition to be verified for 2n2 − n
mappings from R

2n → R
2n−2 for mixing real and imaginary parts. Our Theorem 1.7

improves this equivalence by proving that it is enough to check the same topological
condition just for n− 1 mappings instead of the 2n2 − n cases of [21].

3. On the Rabier condition

In this section we recall the definition of the set K̃∞(g), for holomorphic mappings g :
C

n → C
m. We also present the example of a polynomial automorphism f in C

3 such that
K̃∞(F

̂k) �= ∅ for k = 1, 2, 3, as mentioned in the introduction. We end this section with a
discussion of our contributions related to already known results.

Definition 3.1 (Rabier [25]). Let g : Cn → C
m be a polynomial mapping, with n ≥

m. We set

K̃∞(g) :={t ∈ C
m | ∃{xj}j∈N ⊂ C

n, lim
j→∞

‖xj‖ = ∞,

lim
j→∞

g(xj) = t and lim
j→∞

ν(Jac(g)(xj)) = 0}, (3)
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where ν(A) := inf‖ϕ‖=1 ‖A∗(ϕ)‖, for a linear mapping A : Cn → C
m and its adjoint

A∗ : (Cm)∗ → (Cn)∗. We say that g satisfies the Rabier condition if K̃∞(g) = ∅.

For g : Cn → C, we have ν(∇g(x)) = ‖∇g(x)‖, and if g is non-singular, Definition 3.1
recovers the classical Palais–Smale condition.

We observe that different functions instead of ν produce the same set K̃∞(g); see, for

instance,[15,19]. Other conditions related to K̃∞(g) can be found, for instance, in [6,19].
The next example, taken from the class presented in [23], shows that for f : Cn → C

n,
n ≥ 3, a version of Theorem 1.5 (a) does not hold if we use the Rabier condition on the
mappings F

̂k : Cn → C
n−1.

Example 3.2 (see [23]). Let f = (f1, f2, f3) : C
3 → C

3 be defined by

f1(x, y, z) = x+ yh(x, y, z), f2(x, y, z) = y, f3(x, y, z) = h(x, y, z).

where h(x, y, z) = z − 3x5y + 2x7y2. We have that det Jac(f) ≡ 1, and that f is an
automorphism whose inverse is

f−1(p, q, r) = (p− qr, q, r + 3q(p− qr)5 − 2q2(p− qr)7).

We also have that F
̂3 = (f1, f2) : C

3 → C
2, F

̂2 = (f1, f3) : C
3 → C

2 and F
̂1 = (f1, f3) :

C
3 → C

2 do not satisfy the Rabier condition; see Definition 3.1. In fact, to prove that
K̃∞(F

̂3) �= ∅, we may use the sequence λ(n) = (n, 1/n2, 0). For F
̂2 and F

̂1, we may use
the sequences γ(n) = (1/n, n2, 1/n3) and δ(n) = (n, 1/n2, n3), respectively.

Remark 3.3. The proof from [20] of Theorem 1.3 depends on Abhyankar and Moh’s
result. On the other hand, the proof of Theorem 1.5 (b) presented in [25] depends on
a formula by Adjamagbo and van den Essen [2, Corollary 1.4]. It is known that a non-

singular polynomial function f : C2 → C satisfies the Rabier condition (i.e. K̃∞(f) = ∅)
if and only if f is a locally trivial fibration; see [10,22,27]. Thus, the proof of Theorem
1.6 also gives different proofs of Theorems 1.3 and 1.5.

4. The bidimensional case

Proof of Proposition 1.9. Clearly (b) implies (a).
Assume (a). Without loss of generality we assume that c = 0 and write f−1

1 (0) =
V1 ∪ · · · ∪ Vd for the decomposition of f−1

1 (0) into its connected components. Each Vj
is an irreducible component of f−1

1 (0), and so Vj = q−1
j (0), where qj is an irreducible

polynomial. From Proposition 2.2, each connected component of f−1
1 (c) is biregular to

C. Since f1 is non-singular, it follows that f1 = γq1 · · · qd with γ ∈ C. As in the proof
of Theorem 1.2, we conclude that d = 1, and so f−1

1 (0) is biregular to C. Now, from
[1], it follows that there exists an automorphism h : C2 → C

2 such that g1(x1, x2) =
f1 ◦ h(x1, x2) = x1. Let g2(x1, x2) = x2 and define f2(x1, x2) = g2 ◦ h−1(x1, x2). Then
(f1, f2) is an automorphism. �

As we said in the introduction section, the assumptions in Theorems 1.6 and 1.7 on a
non-singular polynomial function f1 : C2 → C are equivalent. An open question is whether
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a non-singular polynomial mapping F
̂k : Cn → C

n−1 whose connected components of the
fibres are simply connected necessarily has connected fibres.
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