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Abstract
The Bollobás–Riordan (BR) polynomial [(2002),Math. Ann. 323 81] is a universal polynomial invariant for
ribbon graphs. We find an extension of this polynomial for a particular family of combinatorial objects,
called rank 3 weakly coloured stranded graphs. Stranded graphs arise in the study of tensor models for
quantum gravity in physics, and generalize graphs and ribbon graphs. We present a seven-variable poly-
nomial invariant of these graphs, which obeys a contraction/deletion recursion relation similar to that of
the Tutte and BR polynamials. However, it is defined on a much broader class of objects, and furthermore
captures properties that are not encoded by the Tutte or BR polynomials.
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1. Background andmain results
The Tutte polynomial is a universal polynomial invariant defined on abstract graphs. This invari-
ant obeys a particular recursion relation for the contraction and deletion of the edges of a graph,
see for instance [29]. The Bollobás–Riordan (BR) polynomial, see [9, 10], defines a genuine exten-
sion of the Tutte polynomial to ribbon graphs or neighbourhoods of graphs embedded in surfaces.
Before, in the context of quantum groups, Reshetikhin and Turaev showed in [26] the existence
of a generalized Jones polynomial on graphs embedded in surfaces.

In this work, we investigate families of combinatorial objects generalizing abstract and ribbon
graphs to which both the Tutte and BR polynomial invariants may be extended. These generalized
graphs were identified as Feynman graphs of matrix [15] and tensor models [1]. Such models in
physics aim at defining a quantum spacetime, and their graphs represent discrete geometries. The
study of coloured tensor graphs, i.e. the Feynman graphs of coloured tensor models introduced
in [17] (see also [6, 20, 21]), has acknowledged a growing interest after the recent discovery, by
Gurau in [19], of the main organizing tool of their partition function. The story of coloured tensor
graphs has also been successful from the point of view of combinatorics and graph theory because
of their tractable properties. For instance, well-known combinatorial notions defined on graphs
such as polynomial invariants and Hopf-algebras have been extended to tensor graphs in [5, 20,
27, 28].
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There are twomain works1 addressing a generalization of the BR polynomial to a family of gen-
eralized graphs similar to that presented here: the works by Gurau in [20] and by Tanasa in [28].
For tensor graphs, the vertex is stranded, and the usual way of contracting an edge immediately
leads to a different vertex. As a consequence, the simplest prescriptions of contracting and deleting
edges are not well defined without further considerations. Indeed, the two aforementioned works
undertake the definition of the contraction and deletion of edges in an unusual manner.

There are several layers of difficulties while defining the type of graphs that ought to be con-
sidered. One should also distinguish the type of topological polynomial defined for the family of
graphs, and the type of recursion relations that the invariant polynomial needs to satisfy. Our
method is radically different from that of Tanasa, since we use the Gurau coloured prescription
to keep under control the type of generated graphs. Moreover, and in contrast with the work
by Gurau, we propose to enlarge the family of coloured tensor graphs to what is called weakly
coloured (w-coloured) stranded graphs, for which contraction, and a similar notion of deletion
make sense. These w-coloured stranded graphs are precisely the result of edge contractions of
coloured tensor graphs. This class of graphs is closed under contraction. From this stability, we
can define, for w-coloured graphs, a polynomial which is invariant under a linear recursion rela-
tion. We must mention that there might be room for improvement for the present definition
of w-coloured stranded graphs. Although this is not needed in our analysis, there could be an
equivalent description in terms of its basic constituents. Such a study is left for the future.

Our main result appears in Theorem 4.32 of Section 4. This statement determines the con-
traction and cut (an operation replacing the deletion) recursion relation with respect to an edge,
fulfilled by a new polynomial given in Definition 4.27. The class of graphs on which the polyno-
mial is defined has several components. Some of these components turn out to be well defined for
abstract and ribbon graphs, and therefore, they are introduced step by step in the sequel.

A first component is captured by the notion of half-edge which can be introduced at the abstract
graph level. Half-edges are of crucial importance in Physics, see [23, 24], for instance. The analysis
of half-edged graphs (HEGs) is the purpose of Section 2. The Tutte polynomial for HEGs satis-
fies linear recursion identities similar to those of the Tutte polynomial for abstract graphs (see
Definition 2.9), and so it turns out to be an evaluation of it.

A second key notion we need is that of open and closed faces of a ribbon graph with rib-
bon half-edges. The consequences that open and closed faces in a ribbon graph have on the
related BR polynomial, are addressed in Section 3. Another important result of this work is set
in Theorem 3.11, which establishes a new recursion relation obeyed by the BR polynomial for
ribbon graphs with ribbon half-edges. Then follow the concluding remarks in Section 5.

Finally, a closing appendix provides explicit examples of the polynomial obtained for some
w-coloured graphs.

2. HEGs and the Tutte polynomial
We start by setting up our graph theoretic notation.

2.1. Basic definitions and notation
We useG(V , E), or at times justG, to denote a graph (which allows loops and multiple edges) with
vertex set V and edge set E .

We denote a spanning subgraph A(V , EA) of a graph G(V , E) by A⊂G. Consider two disjoint
graphs G1(V1, E1) and G2(V2, E2). The disjoint union of the graphs G1 and G2 is denoted by G1 �
G2. The one-point join graph G1 ·v1,v2 G2 simply merges the two graphs at the vertices v1 ∈ V1 and

1Note that, while this work was under submission, the present work have been generalized to arbitrary rank [2].
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Figure 1. A half-edge incident to a unique vertex.

Figure 2. A HEG and its set f0 of half-edges in red.

v2 ∈ V2, by removing v1 and v2, and inserting a new vertex v which has all edges incident to v1 and
to v2.

Using the notation of [8], we have the following definition.

Definition 2.1 (Tutte polynomial). Let G(V , E) be a graph, then the Tutte polynomial TG of G is
defined as

TG(x, y)=
∑
A⊂G

(x− 1)r(G)−r(A)(y− 1)n(A), (1)

where k(A) is the number of connected components of the spanning subgraph A, r(A)= |V| −
k(A) its rank, and n(A)= |EA| + k(A)− |V| is its nullity or cyclomatic number.

There is an equivalent definition of this polynomial (in notation of [8]):

Definition 2.2 (Tutte polynomial 2). The Tutte polynomial TG of G is defined as:

a. If G has no edges, then TG(x, y)= 1.
Otherwise, for any edge e ∈ E ,

b. TG(x, y)= TG−e(x, y)+ TG/e(x, y), if e is an ordinary edge (neither a bridge nor a loop).
c. TG(x, y)= xTG−e(x, y)= xTG/e, if e is a bridge.
d. TG(x, y)= yTG−e(x, y)= yTG/e(x, y), if e is a loop.

For a terminal form composed with m bridges and p loops, the Tutte polynomial evaluates as
xmyp. Let G1 and G2 be two disjoint graphs, then we have

TG1�G2 = TG1TG2 = TG1·v1,v2G2 , (2)

for any vertices v1 ∈G1 and v2 ∈G2 (for proofs, see [8]). These relations hold because of the
additivity property of the rank and the nullity with respect to the disjoint union and one-point
join operation for graphs. Note also that the same identities can be also easily derived from the
contraction/deletion relations.

2.2. Half-edged graphs (HEGs)
We now introduce the family of graphs with half-edges, called henceforth HEGs (for half-edged
graphs).

A half-edge is represented by a line incident to a unique vertex and without forming a loop.
(See Figure 1.)

Definition 2.3 (Half-edged graph (HEG)). A HEG G(V , E , f0) or more briefly Gf0 is a graph
G(V , E) with a set f0, whose elements are called half-edges together with a relation which asso-
ciates with each half-edge a unique vertex. (See Figure 2.) The graph G is called the underlying
graph of Gf0 .

From the above definition, it is direct to observe that an abstract graph is a HEG with f0 = ∅.
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Figure 3. Cutting an edge.

Figure 4. A HEG (on the left), its set f0 of half-edges in red, and set f1 in blue obtained by cutting all its edges and
removing f0.

Figure 5. A HEG Gf0 and the spanning c-subgraph A associated with e.

Definition 2.4 (Cut of an edge [24]). Let e ∈ E be an edge of G(V , E , f0). The cut HEG Gf0 ∨ e
is obtained from Gf0 by cutting e, namely by deleting e and attaching a half-edge to each of the
end vertices of e. Two half-edges are attached to the same vertex if e is a loop. (See Figure 3.) We
denote by f1 the set of half-edges that result from cutting all edges in E , and write f for f0∪̇f1. (See
an illustration in Figure 4.)

Definition 2.5 (Spanning c-subgraphs of a HEG). A spanning c-subgraph A of G(V , E , f0) is the
result of taking a spanning subgraph ofG(V , E) viewing it as embedded inG(V , E , f0), then cutting
all the edges of E\EA. More precisely, a spanning c-subgraph A of G(V , E , f0) is defined as a HEG
A(VA, EA, f0A), the edge set EA of which is a subset of E with all vertices and all additional half-edges
ofGf0 . Hence EA ⊆ E , VA = V , and f0A = f0 ∪ f1A(EA), where f1A(EA) is the set of half-edges obtained
by cutting all edges in E\EA. We denote it A�Gf0 . (See A as an illustration in Figure 5.)

The isomorphism class of HEGs follows the same idea of that of abstract graphs. The sets of
half-edges in the same class of HEGsmust be of the same cardinality and satisfy the same incidence
relation onto vertices.

Note that a spanning c-subgraph A�Gf0 , unless A=Gf0 , has always a greater number of half-
edges than Gf0 . The rank and nullity of a HEG Gf0 are defined to be the rank and nullity of the
underlying graph G: r(Gf0 )= r(G), n(Gf0 )= n(G). Deleting an edge e in a HEG Gf0 is deleting it
from its underlying graph while keeping all half-edges and their incidence relation. We denote it
in the standard way Gf0 − e.

Definition 2.6 (Edge contraction of HEG). Let G(V , E , f0) be a HEG.We define the contraction of
a non-loop edge e inGf0 , i.e.Gf0/e to be the HEG obtained fromGf0 by removing e and identifying
the two end vertices into a new vertex having all their additional half-edges and remaining incident
lines. For a loop e, contraction Gf0/e and deletion Gf0 − e coincide.

Noting that the edge contraction does not change the number of additional half-edges in a
HEG, the following proposition is straightforward.

Proposition 2.7. Let Gf0 =G(V , E , f0) be a HEG and e one of its edge. Then Gf0/e= (Gf0/e)(V ′,
E\{e}, f0), whereV ′ is the set of vertices of the underlying abstract graphG/e, andGf0 ∨ e= (Gf0 ∨ e)
(V , E\{e}, f0 ∪ {e1, e2}), where e1 and e2 are the two half-edges obtained by cutting e.
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The disjoint union and one-point join of HEGs are defined as for graphs carrying the half-
edges along. Spanning c-subgraphs of G1f01

�G2f02
and of G1f01

·v1,v2 G2f02
are of the form A1 �A2

and A1 ·v1,v2 A2, respectively, with Ai �Gif0i
, i= 1, 2. The spanning c-subgraphs of G1f01

�G2f02
and of G1f01

·v1,v2 G2f02
are thus in one-to-one correspondence.

2.3 A Tutte polynomial for HEGs
We extend the Tutte polynomial to HEGs and determine some properties of the new function.

Definition 2.8 Let Gf0 be a HEG and G its underlying graph. Then

TGf0
(x, y, t)= t|f

0|+2n
(
Gf0

)
TG

(
X,

Y
t2

)
, (3)

where X = t2(x− 1)+ 1 and Y = y+ t2 − 1.

The particular expressions for X and Y were determined to get a simplified form of the
following properties.

Proposition 2.9. The function T has the following properties for a HEG H =Gf0 , analogous to
those of the Tutte polynomial for graphs.

a. T(En)f0 (x, y, t)= t|f0|, where (En)f0 is the HEG with n vertices, no edges and |f0| half-edges.
b.

TH =

⎧⎪⎪⎨⎪⎪⎩
XTH−e(x, y, t) if e is a bridge,

YTH/e(x, y, t) if e is a loop,

t2TH−e(x, y, t)+ TH/e(x, y, t) if e is ordinary;

(4)

c.

TH = TH∨e(x, y, t)+ TH/e(x, y, t) if e is ordinary; (5)

d.

TH(x, y, t)=
∑
A�H

(x− 1)r(H)−r(A)(y− 1)n(A) t|f0(A)| . (6)

Properties (a) and (b) follow immediately from Definition 2.2, using the usual additive prop-
erties of the rank for bridges, loops and ordinary edges, and noting that |f0(H)| = |f0(H − e)| =
|f0(H/e)|.

For property (c), note that H ∨ e is just H − e with the addition of two half-edges appended to
the end points of e, so that TH∨e(x, y, t)= t2TH−e(x, y, t).

To prove property (d), we use Definition 2.1, substituting the expressions for X and Y given
in (3), and noting that there is a one-to-one correspondence between the spanning subgraphs of
H =Gf0 and G, and that |f0(A)| = |f0| + 2|E | − 2|EA|.

Note that property (c) can replace the third term of property (b) suggesting that cut may be a
more natural operation on HEGs than deletion. The polynomial TGf0

has always a factor of t|f0|
which may be removed by a new normalization. The exponent of t in TGf0

(x, y, t)/t|f0| is always
even since each c-spanning subgraph is defined via successive cut of edges yielding each two half-
edges. The polynomial of the terminal form of a HEG with m bridges, n loops and q additional
half-edges is (

1+ (x− 1)t2
)m (

y− 1+ t2
)n tq = XmYntq . (7)
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For G1f01
and G2f02

two HEGs, then it is immediate to get

TG1f01
�G2f02

= TG1f01
TG2f02

= TG1f01
·v1,v2G2f02

, (8)

for any vertices vi in Gif0i
, i= 1, 2, from the properties (2) and (3), and because the number of

half-edges and nullity are additive on disconnected graphs. Putting t = 1 in TGf0
(x, y, t) yields the

ordinary Tutte polynomial
TGf0

(x, y, 1)= TG(x, y) . (9)

3. Ribbon graphs and the BR polynomial
In this section, we first recall the generalization of the Tutte polynomial to ribbon graphs known
as the BR polynomial for ribbon graphs, following the notation of [9, 10]. Then, we investigate
ribbon graphs with half-edges, or half-ribbons, analogous to the HEGs of Subsection 2.2.

3.1. Ribbon graphs
We recall basics of ribbon graphs and the BR polynomial according to conventions of [10]. Note
that the following axioms are equivalent to those of [26].

Definition 3.1 (Ribbon graphs). A ribbon graph G is a (not necessarily orientable) surface with
boundary represented as the union of two sets of closed topological discs called vertices V and
edges E . These sets satisfy the following:

• vertices and edges intersect in disjoint line segments,
• each such line segment lies on the boundary of precisely one vertex and one edge,
• every edge contains exactly two such line segments.

Defining the class of ribbon graphs we are considering, we follow conventions of [9, 10, 16].
The following description of ribbon graphs, known as rotation systems, is dated back to [22]. A
signed rotation system is a graph G together with a cyclic ordering of the edges at each vertex of G,
and an assignment of a sign+ or minus; to each edge ofG. The flip of a vertex v is an operation on
the signed rotation system which reverses the cyclic order of the edges incident to v and switches
all signs of edges incident to v, except the signs of its loops (edges incident to the same vertex). Two
rotation systems are equivalent if they can be transformed by a sequence of vertex flips composed
by graph isomorphisms.

There is an equivalence between signed rotation systems and ribbon graphs. To make this
equivalence manifest, consider a ribbon graph G, choose an orientation on each vertex, and assign
to each edge an orientation according to the fact that the orientation of its end vertices across the
edge are consistent or not, respectively. The underlying graph G of G with the vertex and edge
orientations is a signed rotation system (the initial choice of orientations for the vertex and edges
of G does not matter in the construction of the signed rotation system because the latter is stable
under vertex flips). Given now a rotation system G, we can construct a ribbon graph from G by
replacing its vertices by discs, giving each disc an orientation, and attaching ribbon edges to these
discs in the order given by the cyclic order of the vertices of G. A ribbon edge has an orientation:
if this orientation is +, the ribbon edge is attached with both the ends in a consistent way with
the orientation of its end vertices, otherwise, if the orientation is minus;, then exactly one end is
attached consistently with one end vertex.We call ribbon edges with a+ sign positive and negative,
otherwise.

If the notions of ordinary ribbon edges and bridges need no comment, that of loops in ribbon
graphs needs careful attention. A loop is a ribbon edge incident to the same vertex. A loop e at a

https://doi.org/10.1017/S096354832100050X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832100050X


Combinatorics, Probability and Computing 513

vertex v is called trivial if there is no cycle in G which can be contracted to form a loop f at v such
that the ends of e and f alternate in the cyclic order at v (see again [10]).

We can address now the notion of contraction and deletion of ribbon edges. The following
operations on ribbon graphs can be found detailed and illustrated in [10]. Let G be a ribbon graph
and e one of its edges. We call G − e the ribbon graph obtained from G by deleting e. If e is not
a loop, consider its end vertices v1 and v2. The graph G/e obtained by contracting e is defined
from G by replacing e, v1 and v2 by a single vertex disc e∪ v1 ∪ v2. We now suppose that e is a
loop and is incident to a unique vertex v. Two situations may occur: either e∪ v forms a Möbius
band (trivial negative loop) with a single boundary cycle, or an annulus (trivial positive loop) with
two boundary cycles. If e∪ v forms a trivial negative loop, the graph G/e is obtained from G by
deleting e and v and adding one new vertex whose boundary is the boundary of e∪ v. If e is a
trivial positive loop, the contraction of e is the deletion of e and v and the addition of two vertices,
the union of whose boundaries is the boundary of e∪ v. In this case, the operation at a vertex v
splits the cyclic order at v into two cycles, which may represent two vertices into which v is split.
We must emphasize that this operation of contraction should preserve the incidence and cyclic
ordering of the remaining edges of the graph.

We use the following terminology:

Definition 3.2 (Faces). Consider G a ribbon graph as a surface with boundary. A face is a
boundary component of G.

Ribbon graphs are known to be equivalent to graphs cellularly embedded in surfaces, see for
instance [16]. A face of a ribbon graph uniquely corresponds to a face of the embedding. In the
next subsections, after introducing more combinatorial definitions, the notion of face might refer
to a combinatorial object different from the usual connected component of the boundary of a
ribbon graph.

Spanning subgraphs in this context are denoted again as A� G. We are in position to define
the BR polynomial.

Definition 3.3 (BR polynomial [10]). Let G be a ribbon graph. The BR polynomial of G is an
element of Z[x, y, z,w] quotiented by the ideal generated by w2 −w, given by:

RG(x, y, z,w)=
∑
A�G

(x− 1)r(G)−r(A)(y− 1)n(A)zk(A)−F(A)+n(A)wo(A), (10)

where F(A) is the number of faces of A, and where o(A)= 0 if A is orientable, and o(A)= 1 if not.

In [10], it is proved that the BR polynomial also obeys a contraction and deletion rule for
ordinary edges as

RG = RG/e + RG−e . (11)
Also, for every bridge e of G, we have

RG = x RG/e , (12)
for a trivial positive loop,

RG = y RG−e , (13)
and for a trivial negative loop, the following relation holds

RG = (1+ (y− 1)zw) RG−e . (14)
The relations (12)–(14) are assimilated to boundary conditions for the contraction deletion recur-
sion relation. These boundary conditions were extended to a larger family of one-vertex ribbon
graphs in [3]. Nevertheless, in contrast with the Tutte polynomial, the relations (11)–(14) and the
like are not sufficient for computing the BR polynomial for arbitrary ribbon graphs after a series
of contractions and deletions.
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Figure 6. A HR h incident to a vertex disc. The two segments of h are s1 intersecting the vertex and s2, the external segment
with end points a and b. The strands of the HR are the segments [aa′] and [bb′].

Take any positive integer valued function h:N3 →N and replace exponent of z in
Definition 3.3 by

h(k(A), F(A), n(A)) . (15)

One can show that (11) still holds for an ordinary edge. The choice k(A)− F(A)+ n(A) for the
exponent of z is interesting because

k(A)− F(A)+ n(A)= 2k(A)− (|V| − |EA| − F(A)) (16)

is nothing but the genus or twice the genus (for oriented surfaces) of the subgraphA. Furthermore,
writing the exponent in this form also helps for the determination of the terminal forms because
k(A)− F(A) and n(A) turn out to be additive quantities with respect to the one-point join of
disjoint graphs. These remarks will be exploited to find a generalization of the BR polynomial to
stranded graphs.

3.2. Half-edged ribbon graphs (HERGs)
We generalize the BR polynomial to ribbon graphs with half-edges or half-ribbons. For conve-
nience, we use an idea by Chmutov in [14] who considers a ribbon edge as a rectangle incident to
the corresponding vertices along a pair of its opposite sides.

Definition 3.4 (Ribbon half-edges and external points). A ribbon half-edge (or simply half-
ribbon, denoted henceforth HR) is a rectangle incident to a unique vertex of a ribbon graph by
a unique line segment s on the boundary and without forming a loop. The segment parallel to s
is called the external segment. The end points of any external segment are called external points
of the HR. The two boundary segments of a ribbon edge or of a HR that are neither external nor
incident to a vertex are called strands. A HR is always oriented consistently with the vertex it
intersects.

A HR incident to a vertex is drawn in Figure 6. The next definition was introduced in [23]. We
reformulate it according to our previous notation and definitions.

Definition 3.5 (Cut of a ribbon edge). Let G be a ribbon graph and let e be a ribbon edge of G. The
cut graph G ∨ e is obtained from G by deleting e and attaching two HRs at the same line segments
where e was incident to the end vertices, one at each of the end vertices of e. If e is a loop, the two
HRs are on the same vertex.

Definition 3.6 A HERG G(V , E , f0) (or simply Gf0 ) is a ribbon graph G(V , E) (or shortly G) with
a set f0 of HRs such that each HR is attached to a unique vertex as in Definition 3.4, and the
segments where the HRs are attached are disjoint from each other and from the segments where
any ribbon edges are attached. The ribbon graph G is called the underlying ribbon graph of the
HERG Gf0 .

The cut of a ribbon edge e in a HERG is the cut of e in its underlying ribbon graph. Using
Definitions 2.5 and 3.6, spanning c-subgraphs of HERGs make sense. A spanning c-subgraph is
then formed by cutting some subset of the ribbon edges.We denote again the spanning c-subgraph
inclusion as A� Gf0 . Note that a ribbon graph is a HERG with f0 = ∅.
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Figure 7. A HERG with a closed face f1 (in red) and open faces f2, f3, f4 (in black, green and blue, resp.).

Figure 8. The boundary graph ∂Gf0 of Gf0 of Figure 7 is the dashed cycle.

Considered as geometric surfaces, cutting an edge in a ribbon graph or in a HERG modifies
the boundary of that surface. There are boundary components following the boundary of the HR.
Combinatorially, we want to distinguish this type of face and those which uniquely follow the
boundary of ribbon edges. This will be also useful in the following section when considering the
case of stranded graphs. The combinatorial objects that are defined below were introduced in [20].
We reformulate them using our conventions.

Definition 3.7 (Closed, open faces). Consider a HERG Gf0 .

• A closed face is a boundary component of Gf0 which never passes through any external
segment of a HR. The set of closed faces is denotedFint. (See the closed face f1 in Figure 7.)

• An open face is a boundary arc leaving an external point of some HR rejoining another
external point without passing through any external segment of a HR. The set of open
faces is denoted Fext. (Examples of open faces are provided in Figure 7.)

• The set of faces F of a HERG is defined by Fint ∪Fext.

Definition 3.8 (Boundary graph [20]). The boundary graph ∂Gf0 of a HERG Gf0 is an abstract
graph ∂Gf0 (V∂ , E∂ ) such that V∂ is in one-to-one correspondence with f0, and E∂ is in one-to-one
correspondence withFext. Consider an edge e of E∂ , its corresponding open face fe ∈Fext, a vertex
v, and its corresponding HR hv. The edge e is incident to v if and only if fe has one end point in
hv, and, if both end points of fe are in hv, then e is a loop. (The boundary of the graph given in
Figure 7 is provided in Figure 8.)

The boundary graph of a ribbon graph is empty. Note that ∂Gf0 is a disjoint union of cycles and
also that the connected components of ∂Gf0 are in one-to-one correspondence with the faces of G
that do not correspond to the closed faces of Gf0 .

The notion of edge contraction and deletion for HERGs can be simply understood as in the
case of ribbon graphs. Let Gf0 be a HERG and G its underlying ribbon graph. In notation of
Definition 3.3, we now define r(Gf0 )= r(G), n(Gf0 )= n(G), o(Gf0 )= o(G).
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Definition 3.9 (BR polynomial for HERGs). Let G(V , E , f0) be a HERG. We define the BR
polynomial of Gf0 to be

RGf0
(x, y, z, s,w, t)=

∑
A�Gf0

(x− 1)r(Gf0 )−r(A)(y− 1)n(A)zk(A)−Fint(A)+n(A) sC∂ (A)wo(A) t f (A), (17)

where Fint(A)= |Fint(A)|, C∂ (A)= |C∂ (A)| is the number of connected components of ∂A, the
boundary graph of A, o(A)= 0 if A is orientable, and 1 otherwise, f (A)= |f0(A)| is the number of
HRs of A, and where w2 =w holds.

The polynomialR (17) generalizes the BR polynomial R (10). R can be recovered fromR using

RGf0
(x, y, z, z−1,w, t = 1)= RG(x, y, z,w) . (18)

The graph operations of disjoint union and one-point join extend to ribbon graphs and to
HERGs. The one-point join G1f01 ·v1,v2 G2f02 of disjoint HERGs G1f01 and G2f02 is obtained by choosing
two vertices v1 and v2 of G1f01 and G2f02 , respectively, and merging v1 and v2 on an arc of each of
these which does not contain any ribbon edges or HRs. Combinatorially, we must respect the
cyclic order of all ribbon edges and HRs on the previous vertices v1 and v2. It is well known that
such a procedure might lead to non isomorphic ribbon graphs, see for instance [10]. The fact that
RG1�G2 = RG1RG2 = RG1·v1,v2G2 holds for ribbon graphs can be extended for HERGs under certain
conditions.

We come to the properties ofRGf0
. The following proposition holds.

Proposition 3.10 (Union of HERGs). Let G1f01 and G2f02 be two disjoint HERGs, then

RG1f01
�G2f02

=RG1f01
RG2f02

. (19)

Proof. It suffices to check the exponents for any A� G1f01 � G2f02 . A spanning c-subgraph A of
such a union of HERGs expresses as A=A1 �A2 � G1f01 � G2f02 with A1 � G1f01 and A2 � G2f02 . It
is straightforward to see that k(A), r(A), Fint(A), n(A), C∂ (A), and f (A) are all additive quantities.
Furthermore, o(A1 �A2)=max{o(A1), o(A2)}, but w2 =w. The result follows.

Theorem 3.11 (Contraction and cut for BR polynomial for HERGs) Let H= G(V , E , f0) be a
HERG. Then, for an ordinary edge e,

RH =RH∨e +RH/e , (20)

for a bridge e, we have

RH = (x− 1)RH∨e +RH/e ; (21)

for a trivial negative loop e, the following holds

RH =RH∨e + (y− 1)zwRH/e , (22)

whereas for a trivial positive loop e, we have

RH =RH∨e + (y− 1)RH/e . (23)

Proof. In the following proof, spanning c-subgraphs are simply called subgraphs because no con-
fusion can arise. Let us make two preliminary remarks. (A) The subgraphs A of H which do not
contain e are precisely the subgraphs of H∨ e. (B) Also, if e is not a loop then the map A 
→A/e
provides a bijection from the subgraphs of H which contain e to the subgraphs of H/e that pre-
serves closed faces as well as components of the boundary graph. Note importantly that, although
A and A/e do not have the same vertices and edges, they do have the same HRs and same faces.
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Let us prove (20). For an ordinary edge e, let A�H∨ e, and let A′ be the corresponding
subgraph in H such that e /∈A′, by remark (A). The fact that the monomial of A in RH∨e and
the monomial corresponding to A′ in RH are identical is simple to check. Then

∑
A�H;e/∈A

(x− 1)r(H)−r(A)(y− 1)n(A)zk(A)−Fint(A)+n(A) sC∂ (A)wo(A) t f (A) =RH∨e.
We now concentrate on the remaining sum related to the contraction of e. In particular, we

focus on the sets of faces during the contraction. Choose A�H with e ∈A and, by remark (B), let
A′ �H/e be its corresponding subgraph. One has

Fint(A)= Fint
(
A′) , C∂ (A)= C∂

(
A′) , o(A)= o

(
A′) , and f (A)= f

(
A′) . (24)

The monomial ofRH/e related to A′ is of the form

(x− 1)r(H/e)− r
(
A′)

(y− 1)n
(
A′)

zk
(
A′)− Fint

(
A′)+ n

(
A′)

sC∂

(
A′)

wo
(
A′)

t f
(
A′)

= (x− 1)r(H)− 1− (r(A)−1)(y− 1)n(A)zk(A)− Fint(A)+ n(A)wo(A) sC∂ (A) t f (A) (25)

which achieves the proof thatRH/e =∑
A�H;e∈A (x− 1)r(H/e)− r(A)(y− 1)n(A)zk(A)− Fint(A)+ n(A)

sC∂ (A)wo(A)t f (A), and then (20) holds.
We now focus on (21). Let e be a bridge inH. DecomposeRH as∑

A�H;e/∈A
(x− 1)r(H)− r(A)(y− 1)n(A)zk(A)−Fint(A)+ n(A) sC∂ (A)wo(A) t f (A) +RH/e . (26)

It remains to prove that the first sum corresponds to (x− 1)RH∨e but this is straightforward from
r(H)= r(H∨ e)+ 1 and since all other terms remain unchanged.

The proofs of relations (22) and (23) are now given. Consider a trivial (positive or negative)
loop e in H, then

∑
A�H;e/∈A (x− 1)r(H)− r(A)(y− 1)n(A)zk(A)− Fint(A)+ n(A) sC∂ (A)wo(A) t f (A) =

RH∨e still holds in any case. The mapping from the subgraphs of H containing e to those of
H− e, or conversely, is just obtained by deleting e or gluing e to the corresponding subgraph.

Consider a trivial negative loop e in H. To each A�H such that e ∈A and its corresponding
A′ �H/e, we find that n(A)= n

(
A′)+ 1, Fint(A)= Fint

(
A′), and C∂ (A)= C∂

(
A′). Therefore, we

get the following relation between the terms:

(x− 1)r(H)− r(A)(y− 1)n(A)zk(A)− Fint(A)+ n(A) sC∂ (A) wo(A) t f (A)

= (x− 1)r(H/e)− r
(
A′)

(y− 1)n
(
A′)+ 1zk

(
A′)− Fint

(
A′)+ n

(
A′)+ 1 sC∂

(
A′)

wo
(
A′)+ 1 t f

(
A′)

.
(27)

Thus (22) is satisfied.
We now suppose that e is a trivial positive loop. With A�H such that e ∈A, we asso-

ciate a unique corresponding element A′ in H/e. We can infer that k(A)= k
(
A′)− 1, n(A)=

n
(
A′)+ 1, Fint(A)= Fint

(
A′), andC∂ (A)= C∂

(
A′). Thus, the following relation between the terms

corresponding to A and A′ holds:

(x− 1)r(H)−r(A)(y− 1)n(A)zk(A)−Fint(A)+n(A) sC∂ (A) wo(A) t f (A)

(x− 1)r(H/e)−r
(
A′)

(y− 1)n
(
A′)+1z(k

(
A′)−1)−Fint

(
A′)+(n

(
A′)+1) sC∂

(
A′)

wo
(
A′)

t f
(
A′)

, (28)
so that (23) is obtained.

Observe that, as in the case of the of the BR polynomial for ribbon graphs, Theorem 3.11 is not
a complete reduction, since one-vertex HERGs with nontrivial loops must still be computed from
(17). Given Gf0 a HERG and G its underlying ribbon graph, we also note the reduction

RGf0
(x, y, z, s= z−1,w, t)= t|f0|+2n(G)RG(X,

Y
t2
, z,w) (29)

where, once again, X = t2(x− 1)+ 1 and Y = y+ t2 − 1.
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4. Rank D half-edged stranded graphs and a generalized polynomial invariant
This section investigates the definition of a new polynomial for particular graphs which aims at
generalizing the BR polynomial R for HERGs. The main notion of graphs discussed below is
combinatorial and can be always pictured in a 3D space. Our main result appears in Theorem 4.32
after defining the generalized graphs we are dealing with.

The notion of rank D coloured tensor graphs considered here has been introduced by Gurau
in [17]. Using a duality, it is well known that ribbon graphs can be mapped onto triangulations
of surfaces. In a similar way, coloured tensor graphs can be interpreted as simplicial complexes
or dual of triangulations of topological spaces in any dimension. They are of particular interest
in certain quantum field theories defined with tensor fields hence the name tensor graphs (rib-
bon graphs are, in this sense, rank 2 or matrix graphs). The importance of these graphs has been
highlighted by Gurau in [18] where that author proved that coloured tensor graphs have a cel-
lular structure which associates each coloured tensor graph with a simplicial pseudo-manifold of
D dimensions. It has been also proved that a coloured tensor graph which is bipartite induces
naturally an orientation of the dual simplicial complex in [13].

Some previous studies have addressed the generalization of the BR polynomial for higher
dimensional objects within the framework of such graphs. Mainly, two authors, Gurau in [20]
and Tanasa in [28], have defined two distinct notions of generalized BR polynomials. Let us give a
brief review of their results and compare these to the one obtained in the present work.

Gurau defined a multivariate polynomial invariant for coloured tensor graphs associated with
simplicial complexes with boundaries in any dimension D. The polynomial that we obtain in the
present work can be put in amultivariate formwhich is related to Gurau’s polynomial restricted to
3D. Our polynomial extends Gurau’s polynomial to a class larger than coloured tensor graphs. We
emphasize that the difficulties encountered by Gurau (as well as Tanasa, see below) for defining
a contraction procedure for such type of graphs without destroying the entire graph structure is
much improved in our scheme.

In a different perspective, the work by Tanasa in [28] deals with tensor graphs without colours
that are equipped with another stranded vertex. The polynomial as worked out by this author is
only valid for graphs triangulating topological objects without boundary. The polynomial that we
define is radically different from that one in several features, since mainly, it relies on a graph
colouring.

In another close related setting dealing with simplicial complexes, Krushkal and Renardy in
[25] identified a 4-variable polynomial invariant for triangulations and handle decompositions
of orientable manifolds reducing to the BR polynomial. This polynomial might agree with the
one that we will define for closed triangulations after specializing to 1 all variables related to the
boundary of the complex. This deserves as well to be fully addressed elsewhere.

4.1. Stranded, tensor, coloured graphs with half-edges
Like ribbon graphs, coloured tensor graphs have both a topological meaning (realized in the dual
triangulation) and a combinatorial formulation that is our main concern here. Before reaching the
definition of coloured tensor graphs, we must introduce the combinatorial concept of stranded
graphs, the true backbone of this theory.

Stranded and tensor graphs.We start by basic notions of stranded objects.

Definition 4.1 (Stranded vertex and edge). Let D be an integer, D≥ 0.

• A stranded pre-vertex of rank D≥ 1 consists of a set S of 2n elements called (vertex) points,
together with two partitions of S: one into non-empty parts of size at most D, called pre-
edges, and one into pairs, called chords. A rankD= 0 stranded vertex consists of a set Swith
a single or no element, and no partition of S (then there are no pre-edges or chords). The

https://doi.org/10.1017/S096354832100050X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832100050X


Combinatorics, Probability and Computing 519

Figure 9. Graphical representation of stranded vertices and edges: a rank 4 stranded vertex v of coordination 6 (left), with
pre-edges (highlighted with different colours) with non intersecting chords; a trivial circle vertex d; a rank 5 stranded edge e
with non parallel strands (right).

case n= 0 is allowed (then there are no pre-edges, or chords), and the resulting stranded
pre-vertex is called a trivial circle which, by convention, we consider of any rank D≥ 0.
The coordination number of v is the number of pre-edges in v. We say that a stranded pre-
vertex v is disconnected if we can partition the set S into non-empty parts S1 and S2 such
that no pre-edge or chord contains elements of both S1 and S2, otherwise, v is connected.
A rank D stranded vertex is a rank D stranded pre-vertex that is connected.

• The vertex graph of a rank D stranded pre-vertex is the graph whose vertex set is the set of
pre-edges and with one edge for each chord. The edge is incident to two vertices (or one
in a loop case), corresponding to the two pre-edges (or one in a loop case) that contain the
two paired points.

• A stranded edge of rank D≥ 1 consists of a set S of 2D elements called (edge) points, together
with two partitions, one into two sets of size D called ends, and one into D sets of size 2
called strands, each strand containing one point from each end.

Note that a stranded vertex is a stranded pre-vertex whose vertex graph is connected.
In the rest of this work, we use a particular realization for drawing stranded vertices and edges

which does not play any important role. The chords of stranded vertices (resp. strands of stranded
edges) are represented line segments that do not intersect and their crossings are irrelevant. The
end points of chords are partitioned into sets representing the pre-edges with 1, 2, . . . orD points.
These points are drawn on a single arc of a fictitious circle, called the vertex frontier, with no other
end points on this arc. Drawn in dash or dots, or as a solid circle when no confusion can arise, the
vertex frontier is used to separate in drawings stranded vertices and edges in the (yet to be defined)
stranded graphs. The cyclic order around the dotted circle does not matter, and this circle plays
a different role from the vertex circles in ribbon graphs. Examples of stranded vertices and edges
with rank D= 4 and D= 5 have been provided in Figure 9.

Definition 4.2 (Stranded and tensor graphs).

• A rankD stranded graph G = G(V , E) consists of a set V of disjoint rankD stranded vertices
(i.e., with all vertex points distinct), a set E of disjoint stranded edges (i.e., with all edge
points distinct) of rank at most D, and an incidence map φ (not usually written in the
notation) from the set of edge points to the set of vertex points satisfying the following
conditions: φ is injective, and on each end of each stranded edge, φ acts as a bijection to
some pre-edge of some stranded vertex in V . In other words, each end of each stranded
edge is attached to a distinct pre-edge of the correct size, with the D strands in each rank
D edge attached bijectively to the D points in the pre-edge.

• A rank D tensor graph G is a rank D stranded graph such that the stranded vertices of G
have a fixed coordination D+ 1 and their pre-edges have a fixed cardinality D. All vertex
graphs are KD+1. The stranded edges of G are of rank D.
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Figure 10. A rank 3 stranded graph.

Figure 11. A rank 3 tensor graph with rank 3 stranded vertices as with fixed coordination 4, pre-edges with 3 points linked
by chords according to the pattern of K4; stranded edges are rank 3.

Some illustrations of a rank 3 stranded and tensor graphs are given in Figures 10 and 11,
respectively.

It should be pointed out that, although the stranded vertices and edges of stranded and tensor
graphs are drawn in a three dimensional space, we do not treat these as embedded graphs.

There are motivations for the introduction of tensor graphs. While stranded graphs can be
treated as generalized graphs, tensor graphs, via a combinatorial duality, actually map to simplicial
spaces. Consider G a rank D> 0 tensor graph. A stranded vertex of G represents a D-simplex and
the pre-edges are precisely their boundary (D− 1)-simplices. A stranded edge of G represents the
gluing of the D-simplex along one of their boundary (D− 1)-simplices. Hence, a tensor graph G
maps to a simplicial complex. As an illustration of the above combinatorial duality, a rank 3 tensor
graph represents a simplicial complex in 3D composed by tetrahedra (3-simplex) which are glued
along their boundary triangles (2-simplex). Such a duality has given a handle on the study of
random simplicial manifolds in physics topics like quantum gravity [1]. The interpretation of the
circle vertices in the definition of tensor graphs can be done in the following convention: a trivial
circle vertex in a rank D≥ 2 tensor graph represents a D dimensional ball.

Underlying graph and connectedness. Given a stranded graph G and collapsing its stranded
vertices to points and its stranded edges to simple lines, one obtains an abstract graph called
underlying graph of G. A stranded graph is connected if and only if its corresponding underly-
ing graph is connected. For instance, both graphs of Figures 10 and 11 are connected since their
underlying graphs coincide with the closed cycle graph C3.

Any rank D stranded graph is a rank D′ stranded graph for any D′ ≥D. This is however not
true for tensor graphs. In the following, the rank of a stranded graph refers to the minimal rank D
for which this stranded graph is well defined.

Equivalence class of stranded graphs. Two stranded graphs are isomorphic if there are two bijec-
tions, one from the vertex points of the first to the vertex points of the second, and one from the
edge points of the first to the edge points of the second, that preserve the structure, meaning the
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Figure 12. Different drawings of the same part of a stranded graph.

grouping into pre-edges, chords, edge ends and strands, as well as respecting the edge point to ver-
tex point incidence maps. Furthermore these two graphs should have the same number of trivial
circles.

Figure 12 illustrates different ways of drawing part of the same stranded graph: the stranded
vertex is defined by the pre-edges {1, 2, 3}, {4, 5, 6}, {7, 8}, {9, 10} and chords {1, 7}, {2, 9}, {3, 4},
{5, 8}, {6, 10} and (in the edges) the strands are {i, i′}; i= 1, · · · , 10.
Low rank stranded graphs. As illustrations, we now discuss the lowest rank stranded graphs.

0. Rank 0 stranded or tensor graphs are abstract graphs made with only vertex points as rank
0 stranded vertices, no stranded edges, and possibly with trivial circles.

1. Rank 1 stranded/tensor graphs have both stranded vertices and edges like segments (pos-
sibly with additional trivial circles). Note that the connectivity condition implies that a
rank 1 stranded vertex can only have n= 0 (hence is a trivial circle) or n= 1 (hence have
two pre-edges of size 1). Such rank 1 stranded graphs cannot be directly identified with
abstract graphs. Hence, neither rank 0 nor rank 1 stranded graphs define abstract graphs
in general. Abstract graphs can be directly obtained from rank D stranded graph through
the collapsing procedure described above, hence using the underlying graph.

2. Ribbon graphs, in the sense of Definition 3.1, are in one-to-one correspondence with cer-
tain rank 2 stranded graphs. In the following, we show (a) how to construct the rank 2
stranded graph corresponding to a ribbon graph and (b) prove that two equivalent ribbon
graphs lead to two equivalent rank 2 stranded graphs in the sense identified above.

a. Let G be a ribbon graph (Definition 3.1) and let e be an edge of G. The ribbon edge
e is incident to its end vertex (loop case) or vertices (ordinary case or bridge) in two
segments s and s′. Consider the two distinct segments on the boundary of e which are
not s and s′ (denoted by s1 and s2 in Figure 13A). These two segments define the two
strands of a rank 2 stranded edge with s and s′ as end segments. By convention, a circle
is a stranded vertex in any rank, in particularD= 2, and so it is a stranded graph with no
incident stranded edge. Consider now a vertex v of G with incident edges e1, e2, . . . , ep,
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Figure 13. Ribbon edge and vertex of a ribbon graph as a rank 2 stranded edge and vertex of a stranded graph (the frontier
vertex appears in dash is fictitious).

p ∈N. We can construct a stranded vertex v′ of rank 2 from the data of v and of its
incident ribbon edges in the following manner. Draw a fictitious circle as the frontier
vertex of v′. Insert on the frontier the end points of end segments of ek, 1≤ k≤ p, which
define the pre-edges (with exactly 2 points) of v′. From these pre-edges, one defines the
chords of v′ as the segments disposed cyclically between the end segments of ek’s which
lie in v. See Figure 13B. We stress again that the vertex frontier is totally virtual and is
useful only for determining the separation between stranded edges and vertices. We can
conclude that a rank 2 stranded graph obtained from a ribbon graph, in this way, is a
combinatorial object defined on the boundary of the ribbon graph.

b. Let us address now the issue of equivalent classes. It is obvious that equivalent ribbon
graphs give rise to equivalent rank 2 stranded graphs. Now suppose that G1 and G2
are equivalent rank 2 stranded graphs arising from ribbon graphs G1 and G2, respec-
tively. We must show that the corresponding ribbon graphs are equivalent. The strands,
chords, and points of G1 describe a 2-regular graph. Now add an edge between each pair
of vertices that belong to the same pre-edge and obtain a 3-regular graph. Introduce a
proper edge colouring of this cubic graph, according to the edge arises from a chord, a
strand or a pre-edge. The resulting object is a description of G1 as a graph encoded map
(see, for instance [11], p. 30, for background on graph encoded maps). Since equiva-
lence of vertex stranded graphs does not change the arising graph encoded map, G1 and
G2 must be equivalent ribbon graphs.

From the above analysis, ribbon graphs map to rank 2 stranded graphs. Nevertheless, it must
be made clear that the converse is not true. To any rank 2 stranded graph, we cannot necessarily
assign a ribbon graph (for several reasons, one of which is that, in rank 2 stranded graphs, pre-
edges with a single point are allowed and this does notmake sense in the context of ribbon graphs).
Still from the previous analysis, we can immediately establish that ribbon graphs with vertices
with fixed coordination equals to 3 are rank 2 tensor graphs. In that case, the converse is also true
because, in any rank 2 tensor graph, we can always make cyclic a rank 2 vertex by a sequence of
point permutations. The cyclic vertex and its incident 3 stranded edges (2 in presence of a loop)
are one-to-one mapped with a disc with three incident ribbon edges (2 in presence of a loop).
Studying in the following sections rank 2 stranded graphs, we will directly treat them as ribbon
graphs.

Definition 4.3 (Half-edged stranded graphs (HESGs) and stranded half-edge (sHE)).

• A rank D half-edged stranded graph (HESG) G(V , E , f0) (or more simply Gf0 ) consists of
a set V of disjoint rank D stranded vertices, a set E ∪ f0, E ∩ f0 = ∅, of disjoint stranded
edges of rank at most D, together with an incidence map φ from the set of edge points to
the set of vertex points satisfying the following conditions: φ is defined on both ends of
every edge in E but only one end of each edge in f0; on this set of edge points φ is injective,
and (as before) on each end of each stranded edge on which φ is defined, it is a bijection
to some pre-edge. Finally, φ is a surjection onto all vertex points so that every pre-edge of
every stranded vertex of has some end of some stranded edge of E ∪ f0 attached to it.
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Figure 14. A rank 3 sHE with its external points a, b and c.

Figure 15. A rank 3 HESG.

Figure 16. Cutting a rank 3 stranded edge.

• A rank d, 0≤ d ≤D, stranded edge in f0 is called rank d stranded half-edge (sHE) since they
are attached at one end. The edge points of the set of segment ends of a sHE which do not
intersect the stranded vertex are called external points of the rank d sHE. (See Figure 14.)

• Removing the set f0 of sHEs of a rank D HESG Gf0 , and using the proper restriction of
φ on the edge points from the ends of E , we define a rank D stranded graph G called the
underlying stranded graph of Gf0 .

We represent a rankD sHE by a set ofD (parallel) line segments (see Figure 14). In a HESG Gf0

with an empty set of sHEs, f0 = ∅, every pre-edge is connected to a certain stranded edge.
It is obvious that a HESG Gf0 may have trivial circles as stranded vertices if the stranded graph G

does have ones. An example of a HESG is given in Figure 15. A half-edged tensor graph is nothing
but a HESG with stranded vertices and edges satisfying also the conditions of a tensor graph, see
Definition 4.2.

We can define the following edge operations on stranded graphs.

Definition 4.4 (Deletion and cut of a stranded edge). Let Gf0 be a rank D HESG and e one of its
rank d stranded edges, 1≤ d ≤D. The stranded graph Gf0 − e is obtained from Gf0 by deleting e.

The cut stranded graph Gf0 ∨ e is obtained from Gf0 by cutting e that is by deleting e and attach-
ing two rank d sHEs at the same pre-edge of the stranded vertices where e was incident, one at
each of the end vertices of e. (See Figure 16.) If e is incident to a unique stranded vertex, the two
sHEs are on the same vertex.

The notion of spanning c-subgraph for HESGs follows naturally fromDefinition 2.5. The span-
ning c-subgraph inclusion is again denoted by A� Gf0 . In the formulation of [20], the deletion of
a stranded edge is in fact the cut of the stranded edge in the sense precisely described above. Thus,
the cut operation should be the natural operation for HESGs.
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Particular stranded edges as loops, bridges (defined through a cut of a stranded edge which
brings an additional connected component in the stranded graph), ordinary stranded edges and
terminal forms extend in the present context because a HESG has an underlying graph.

Most of the concepts introduced in Definition 3.7 are valid for stranded graphs. We give their
precise definition in the present context. To proceed, we realize that the strands and chords in a
HESGmay be considered as the edges of an abstract graph in which the vertices, namely the vertex
or edges points, have degree 1 (external points of sHEs) or 2. In this sense, a HESG is nothing but
a collection of disjoint cycles and paths.

Definition 4.5 (Faces of a stranded graph). Consider Gf0 a HESG.

• A face of Gf0 is a maximal alternating sequence of chords and strands, so that the end of
one is incident with the end of the next at a pre-edge point.

• A face is closed if it is cycle, otherwise it is called open (the sequence is then a path between
two external points of some sHEs).

• By convention, a trivial circle, as a HESG, has a closed face.
• The set of closed faces is denoted by Fint, the set open faces is denoted by Fext, and the set
of faces by F =Fint ∪Fext.

Note that each open face must start at an external point of a sHE and rejoins another external
point in the HESG. The convention that a trivial circle has a closed face will be useful to make
contact with the rank 2 case, in particular with the contraction of simplest trivial loops in ribbon
graphs. Furthermore, these will stabilize the number of closed faces during stranded edge opera-
tions as explained in the following. Several notions (such as open and closed face) which are totally
combinatorial in the stranded situation bear a true topological content in the tensor graph case.
For instance, a closed face in a rank 3 tensor graph is a 2D surface in the bulk (interior) of the dual
triangulation. An open face is a surface intersecting the boundary of the simplicial complex dual
to the graph.

Structure at the stranded edge/pre-edge connection. In order to introduce the contraction of a
stranded edge, we must detail the connection between stranded edges and pre-edges at a stranded
vertex. Consider a stranded edge e in Gf0 , its set s of strands and the set c of chords that the strands
meet. The set s∪ c can be regarded as a subgraph of the larger graph made by (the connection of)
all strands and chords of Gf0 .

Definition 4.6 (Inner face, -inner edge, outer strand). Consider e, a rank d, stranded edge in a
rank D HESG Gf0 , and consider s∪ c as a subgraph of the graph made of the strands of e and the
chords that they meet. A face is called an inner face of e if it is a cycle of s∪ c. The stranded edge e
is called p–inner if s∪ c contains exactly p inner faces, p≤ d. A strand which is not an edge of an
inner face of e is called outer strand of e.

We use, for short, “inner face” or “outer strand” when there is no confusion about the edge
they refer to. See Figure 17A, B and C for an illustration in the rank 3 situation. In that figure,
A describes a 0–inner edge e1, B a 1–inner edge e2, and C a 2–inner edge e3. The inner faces are
highlighted in red therein, and outer strands are the strands of ei, i= 1, 2, 3, forming paths with
chords highlighted in green and blue.

The notion of stranded edge contraction can be defined at this point. In contracting an edge
e, we look at the subgraph s∪ c of associated with e in the larger graph consisting of all strands
meeting all chords; s∪ c consists of paths and cycles. We replace each cycle by a trivial circle, and
each path by a new chord joining its endpoints. This operation does not affect the face structure,
except that some (inner) faces may be deleted in the former component containing e. However,
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(a) (b) (c)

Figure 17. Some rank 3 p–inner edges: 0–inner e1 (A), 1–inner e2 (B) and 2–inner e3 (C) edges.

(c’)(b’)(a’)

Figure 18. Graphs A, B and C obtained after stranded edge contraction of A, B and C of Figure 17, respectively.

the total number of closed and open faces remains constant: to each inner face of e, we associate a
trivial circle which then introduces back another closed face in the HESG.

Definition 4.7 (Stranded edge contractions). Let Gf0 be a rank DHESG and e be a rank d stranded
edge with s∪ c the subgraph associated with e in the larger graph consisting of all strands meeting
all chords (in the previous notation). Let p≤ d be a positive integer.

If e is a p–inner edge, Gf0/e is the result of contracting e in Gf0 , that is defined from Gf0 by
replacing e and its end vertices v1 and v2 (or its end vertex v, if e is a loop, respectively) by p
trivial circles and a new stranded vertex v′. The new vertex v′ possesses all pre-edges except those
connected to e and all sHEs as they appear on v1 and v2 (respectively, on v), keeping all chords of
v1 and v2 (respectively, of v) except those involved in the cycles of s∪ c, and replacing each open
path of s∪ c by a new chord joining its ends. If the vertex v′ is disconnected, then we split it.

If there is no outer strands left after removing the p inner faces of e, then there is no vertex v′.
Some examples of rank 3 stranded edge contraction are given in Figure 18A and B, and an

example of a rank 3 loop contraction is given in Figure 18C.
A convenient way, though not necessary, to illustrate this type of contraction is to use a cyclic

order for v1 and v2 contract the stranded edge e incident to these vertices and finally draw the
final vertex respecting the cyclic order of the pre-edges on v1 and v2. This choice leads to the
representation given in Figure 18.

One may directly check that contracting a non loop in a ribbon graph can be seen as a rank 2
stranded edge contraction. One may also check that a trivial loop contraction for a ribbon graph
coincides with the notion of contraction of a loop in the sense of Definition 4.7, when the ribbon
graph is viewed as a rank 2 stranded graph. Indeed, in a ribbon graph, a trivial positive loop can
be a 0–, 1– or 2–inner loop. A trivial negative loop can be a 1– or 0–inner loop. Contracting these
trivial loops in a ribbon graph is equivalent of what is described inDefinition 4.7. Discussing loops,
we only focus on trivial ones in the following.
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Figure 19. A rank 3 coloured tensor graph.

The following proposition is straightforward.

Proposition 4.8. Let Gf0 be a rank D HESG and e be one of its stranded edge. Then Gf0/e obtained
by contraction of e is a rank D′ HESG, with D′ ≤D.

At this point, one may wonder if the additional circles obtained after stranded edge contraction
are not inessential features of the HESGs. In fact, they are very useful for the preservation of
number of faces during the edge contraction of the stranded graph, in analogy with the case of
ribbon graphs. In another context related to the topology associated with the stranded graphs,
another type of contraction (without trivial circles involved) can be defined on stranded graphs,
see for instance, in [7].

Coloured tensor graphs. Apart from the stranded structure, the second important feature that
we need is the colouring.

Definition 4.9 (Coloured tensor graph [17, 21]). A rank D≥ 1 properly coloured tensor graph G
is a rank D tensor graph such that the underlying graph is bipartite and the stranded edges of G
are coloured with D+ 1 colours such that no two stranded edges that meet at a stranded vertex
have the same colour. The colouring of stranded edges determines the colouring of pre-edges that
they meet. The chord colouring is the following: in each stranded vertex, each vertex point has an
ordered pair of colours (i, j): i is the colour of the pre-edge it is in, and j is the colour of the pre-
edge containing the other end of its chord. (So for each i, j with j �= i there is one point with colour
(i, j)). The unordered pair {i, j} determined by the colouring of the end points of some chord yields
the chord colouring. In a stranded edge of colour i, the end points of each strand have the same
colour pair (i, j); the unordered pair {i, j} yields the strand colouring.

The colour restriction introduced in Definition 4.9 allows us to control the type of graphs gen-
erated by gluings of stranded vertices and edges. Later, the colouring {i, j} of strands or chords
will be called bi-colouring and we will work with an unordered pair (ij), called colour pair, for
strands or chords. Observe that strands and chords that meet have necessarily the same colour
pair. For simplicity, we will consider that a coloured tensor graph does not have trivial circles
from the beginning. The general case should not be hard to recover with a given assignment of
bi-colouring (a prescription by default) of the closed faces of these trivial vertices.

We denote a rank D coloured tensor graph by G(V , E) as usual. As an illustration, a rank 3
coloured tensor graph is pictured in Figure 19. Each vertex (with vertex graph K4) is the dual
of a tetrahedron and an edge represents a triangle endowed with a colour i ∈ {0, 1, 2, 3}. The
(underlying) graph is also bipartite (white and shaded vertices).

It turns out that, in any rank, the stranded structure of a coloured tensor graph G can be cap-
tured at the level of its underlying bipartite coloured graph. For instance, the graph of Figure 19
can be also drawn in the collapsed form of Figure 20.
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Figure 20. Underlying graph of the graph of Figure 19.

It is worth highlighting that one representation of the graph unambiguously determines the
other. This is not the case for a generic underlying graph of a stranded or tensor graph with-
out colours. In order to render this expansion explicit in the coloured case, one must use the
bi-colouring of chords and strands. This is the way to proceed: consider aD+ 1≥ 2 edge properly
coloured graph G, then replace each vertex by a rank D stranded vertex with coordination D+ 1,
with vertex graph KD+1, and pre-edges with fixed cardinality D. Now replace each coloured edge
in G by a rank D+ 1 coloured edge with the same colour and respecting the same incidence rela-
tion as in G and form G a rank D tensor graph. Assign a colour to each pre-edge according to the
colouring of the edges incident to these. A bi-colouring for chords and strands can be deduced
from that point. This is the rank D coloured tensor graph.

There are certainly more data worthwhile to be discussed in such a coloured graph.

Definition 4.10 (bubbles [17]). Let G be a rank D coloured tensor graph.

• A 0-bubble is a vertex of G.
• A 1-bubble is an edge of G.
• For all p≥ 2, a p-bubble of G with colours i1 < i2 < · · · < ip, p≤D, and ik ∈ {0, . . . ,D} is a
connected rank p− 1 coloured tensor graph the underlying graph of which is a maximal
connected subgraph of the underlying graph of G made of edges of colours {i1, . . . , ip}.

For p≥ 2, a p-bubble can be mapped to a rank p− 1 coloured tensor graph because we can
associate to each p coloured graph a rank p− 1 coloured tensor graph according to the procedure
explained above.

To obtain the set of p-bubbles is actually easy in a coloured tensor graph G. Consider the under-
lying graph of G. Take a subset C of cardinality p of the set of colours {0, 1, . . . ,D}, delete all edges
of colours {0, 1, . . . ,D}\C in the underlying graph. Each connnected component of the result-
ing graph is a p-regular edge coloured graph that determines uniquely a rank p− 1 coloured
tensor graph, a p-bubble. We can alternatively perform the deletion at the level of the stranded
graph: delete all stranded edges of colour {0, 1, . . . ,D}\C, all vertex points, and the chords inci-
dent to those, if their colour pair (i,j) involves i or j in {0, 1, . . . ,D}\C. Each remaining connected
component is a rank p− 1 coloured tensor graph that defines a p-bubble.

Restricting to rankD= 3 coloured tensor graphs, there are two types of p-bubbles that we shall
study in the following: 2-bubbles coincide with the faces (Definition 4.5) of the coloured tensor
graph. Thus, there are alternative ways to observe faces of a coloured tensor graph. Faces can be
read from the underlying coloured graph as cycles with alternating (edge) colours. On the other
hand, faces are cycles made with chords and strands with a given colour pair (see the face f01 (in
red) in Figure 21). The alternating colours are precisely the colour pair of the strands and chords
(in the sense of Definition 4.9) forming the face. They are also rank 1 coloured tensor graphs.
3-bubbles (or simply bubbles in D= 3) are in one-to-one correspondence with maximal con-
nected components of the underlying graph which have three colours (see Figure 21). These are
rank 2 coloured tensor graphs and also coloured ribbon graphs with 3-valent vertices.

As mentioned earlier in this section, a 3-bubble, which is a rank 2 tensor graph, can be seen as
a ribbon graph. In D= 3, the vertices of a bubble are 3-valent vertices obtained by decomposing
the vertex of the graph in the way of Figure 21. The edges of a 3-bubble are coloured ribbon edges
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Figure 21. The face f01 (in red) and bubbles of the graph of Figure 19.

Figure 22. A rank 3 HEcTG and its bubbles; f01 (highlighted in red) is an open face; b012, b013 and b123 are open bubbles and
b023 is closed.

generated by the decomposition of the coloured stranded edges of the rank D coloured graph.
Like ordinary ribbon graphs, 3-bubbles have faces as well. These faces are endowed with a pair of
colours like the faces of the initial graph. Thus, a bubble is simply a rank 2 coloured tensor graph
lying inside the rank 3 coloured tensor graph. The set of 3-bubbles is denoted by B3 and |B3| = B3.
The index 3 is omitted when discussing D= 3.

Rank D half-edged coloured tensor graphs. Rank D sHEs can be considered as well on rank D
coloured tensor graphs, provided these sHEs possess a colour and their gluing respects the graph
colouring at each vertex. For any rankD coloured tensor graph with sHEs, we demand that to each
stranded edge and sHE, one assigns a colour i ∈ {0, 1, . . . ,D} such that no two stranded edges or
sHEs meeting at a vertex share the same colour.

The cut of a stranded edge can be understood in the same sense of Definition 4.4 for coloured
tensor graphs. After cutting a coloured stranded edge, the resulting sHEs possess the same colour
of that edge.

Definition 4.11 (Half-edged coloured tensor graph (HEcTG)). A rank DHEcTG is a rank D half-
edged tensor graph such that its underlying graph is a bipartite HEG, its stranded edges and sHEs
are coloured withD+ 1 colours such that no two stranded edges or half-edges meeting at a vertex
have the same colour. The colouring of pre-edges, vertex points, and chords of stranded vertices,
and the colouring of strands of stranded edges and sHEs are described by Definition 4.9.

An example of a rank D= 3 HEcTG is given on the left in Figure 22 (most left, edges and sHEs
are coloured). Spanning c-subgraphs of a HEcTG follow from the similar notion for HESG and
from Definition 2.5. The only point to be added is the colouring.

The following is straightforward:

Proposition 4.12. Spanning c-subgraphs of a rank D HEcTG are rank D HEcTG.

Let us investigate some properties of a HEcTG Gf0 . The notion of bridge is standard. By
definition of a proper edge colouring, HEcTGs cannot contain loops.
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Figure 23. Boundary graph (in dashed lines) of the graph of Figure 22.

As in the case of HESGs, by introducing sHEs on coloured tensor graphs, we distinguish two
types of faces. Using Definition 4.5, faces can be open or closed connected components if they
pass through external points of sHEs or not (let us recall that these are also cycles and paths in
the abstract graph formed by all strands and chords of the underlying HESG). An open face with
colour pair (01) is highlighted in red in Figure 22. The sets of closed and open faces are denoted
by Fint and Fext, respectively. Hence, for a rank DHEcTG, the set F of faces is the disjoint union
Fint ∪Fext.

To define p-bubbles for HEcTG, we simply replace “edge” by “edge or sHE”, and “underlying
graph” by “underlying HEG” in Definition 4.10. We say that a p-bubble in some HEcTG Gf0 is
open if its underlying graph contains half-edges. Hence, a p-bubble is open if it contains open
faces, otherwise it is closed. Open and closed bubbles for a rank 3 HEcTG have been illustrated in
Figure 22. The sets of closed and open bubbles are denoted by Bint and Bext, respectively.

The following notion will play a crucial role in our following construction upon HEcTG. That
notion turns out to be defined at the generic level of HESG.

Definition 4.13 (Boundary of an HESG). The boundary graph ∂Gf0 (V∂ , E∂ ) of a rank D HESG
G(V , E , f0) is a graph with vertex set V∂ in one-to-one correspondence with f0, with edge set E∂

in one-to-one correspondence with Fext. Consider an edge e ∈ E∂ , its corresponding open face
fe ∈Fext, a vertex v ∈ V∂ , and its corresponding sHE hv. Then, e is incident to v if and only if fe has
one end point in hv. The boundary graph of a rank D HESG with f0 = ∅ is empty.

There is a procedure for drawing the boundary graph of a rank D HESG described by Gurau
as pinching in [20]. Insert a vertex at each sHE and make them incident to the strands of the sHE
(they become incident to the open faces). In the case of a rank D half-edged tensor graph, the
vertices of the boundary graph must be D-regular vertices. In doing so for the rank 3 HEcTG of
Figure 22 (most left), we associate its boundary depicted in Figure 23. In fact, the colouring of
a HEcTG entails a new colouring on its boundary graph. Both types of colourings will allow us
to enumerate the different constituents (or to find bounds on their number) of these generalized
graphs.

Definition 4.14 (Ve-coloured graphs). A (D+ 1) ve-coloured graph is a graph with a vertex
colouring with colours from {0, . . . ,D} and a proper edge colouring such that each edge is
assigned an unordered pair (ab) of colours, a,b in {0, . . . ,D}, a �= b, and such that the end ver-
tices of an edge with colour (ab) must have colour a or b. The two ends may or may not have
distinct colours.

Some 4 ve-coloured graphs are drawn in Figure 24.
One notices that a (D+ 1) ve-coloured graph is a D(D+ 1)/2 edge coloured graph, with edge

colours chosen in pairs ab, a< b, in {01, 02, . . . , 0D, 12, . . . , (D− 1)D}. Because of the proper
edge colouring, ve-coloured graphs have no loops.
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Figure 24. Examples of 4 ve-coloured graphs.

Definition 4.15 (Ve-coloured tensor graph). A rank D≥ 1 ve-coloured tensor graph G is a rank
D tensor graph in which

1. every stranded vertex has a colour from {0, 1, · · · ,D+ 1}; within a stranded vertex of
colour i, the D+ 1 pre-edges have each a distinct colour pair ij, where 0≤ j≤D+ 1, j �= i
(vertex colouring);

2. every stranded edge has a colour pair i j, where 0≤ i, j≤D+ 1 are distinct, such that no
two stranded edges that meet at a stranded vertex have the same colour pair (proper edge
colouring).

3. If a stranded vertex v is an end of a stranded edge e of colour pair i j, then v must have
colour i or colour j. The colourings of the pre-edges and stranded edges are consistent in
the natural sense: if a pre-edge and a stranded edge meet, they must have the same colour
pair.

4. Every strand and every chord has a colour triple i j k, where 0≤ i, j, k≤D are pairwise
distinct, with the following properties:

i. within a stranded vertex v of colour i, a chord that is incident to two vertex points of two
pre-edges of distinct colour pair ij and ik has colour ijk, k /∈ {i, j};

ii. within a stranded edge ewith colour i j, there are exactlyD strands, withD colour triples
i j k, k /∈ {i, j};

iii. if a strand and a chord meet at a vertex point they must have the same colour triple ijk.

Note that a ve-coloured tensor graph is not a coloured tensor graph. For instance, it may be not
bipartite.

Proposition 4.16 (Underlying graph of a ve-coloured tensor graph). The underlying graph of a rank
D ve-coloured tensor graph is (D+ 2) ve-coloured and D+ 1 regular.

Proof. The proof is fairly straightforward. Let G be a rank D ve-coloured tensor graph and G be
its corresponding underlying graph. The graph G is D+ 1 regular just like G is. G inherits from
G the vertex colouring with colours from {0, · · · ,D+ 1}. Since each edge e of G is in one-to-
one correspondence with a stranded edge e′ of G, we assign to e the colour pair i j of e′ where
0≤ i, j≤D+ 1 are distinct. This also implies that no two edges in G that meet at a vertex have the
same colour pair. The last condition stating that the end vertices of an edge e of Gwith colour pair
ij must have colour i or j is also fulfilled: the third point in Definition 4.15 holds for G and this
reflects on G.

Proposition 4.17. A (D+ 2) ve-coloured graph which is (D+ 1) regular uniquely determines a
rank D ve-coloured tensor graph of which it is the underlying graph.

Proof. Consider G(V ,E) a (D+ 2) ve-coloured graph, with colours {0, 1, . . . ,D+ 1}, that is
(D+ 1) regular. To each vertex v of V , we assign a rank D stranded vertex v′ with coordina-
tion D+ 1 with vertex graph KD+1, and pre-edges with fixed cardinality D. The vertex colouring
is carried along, from the vertices of V to the stranded vertices. In a given stranded vertex v′ of
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Figure 25. Rank 2 ve-coloured stranded structure of the boundary graph of Figure 22.

colour i, all D+ 1 pre-edges can be given a distinct colour pair ij in a way compatible with the
first point of Definition 4.15. This fills the point (1). The point 4(i) of this definition can be also
implemented without ambiguity given the pre-edge bi-colouring. Now replace every edge e in G
of colour pair ij by a rank D coloured edge e′ with the same colour pair ij. We keep the incidence
relation between all corresponding stranded edges and vertices. Hence the proper edge colouring
is carried along. This fulfills condition (2). Note that we have not yet specified the chord-strand
connection. Let us address (3). Since e of colour pair ij in G is incident to vertices of colour i or j,
the same should apply to the corresponding stranded edge e′: it is incident to stranded vertices of
colour i or j. A stranded vertex v′ of colour i has exactly D+ 1 pre-edges with distinct colour pair
ij, on which must end a stranded edge of the same pair ij. There is no ambiguity and therefore (3)
holds. It only remains to specify the connection between strands and chords at the level of a single
stranded edge and vertex connection. Take a rank D stranded edge e′ with colour pair ij incident
to a stranded vertex v′ of colour i. Construct the colouring of the D strands of e′ so that 4(ii) is
obeyed. We immediately see that there is a one-to-one correspondence between the colour triples
ijk of the strands of e′ and the colour triples ijk of the chords at the pre-edge of v′ incident to e′.
There is a single choice for the connection strand-chords so that 4(iii) holds. Finally, it is obvious
that the underlying graph of the constructed stranded graph is our initial graph G.

Proposition 4.18. (Ve-colouring of ∂Gf0). The boundary graph ∂Gf0 (V∂ , E∂ ) of a rank D HEcTG
G(V , E , f0) is (D+ 1) ve-coloured and determines in a unique way a rank (D− 1) ve-coloured tensor
graph.

Proof. The vertex colouring of ∂Gf0 is inherited from the colouring of the sHEs of Gf0 , that is to
each vertex of ∂Gf0 , one assigns the same colour of its corresponding sHE. The edge bi-colouring
in ∂Gf0 coincides with the open face bi-colouring. At a sHE, the colour pairs of all open faces
never coincide. This makes the graph ∂Gf0 (D+ 1) ve-coloured. Furthermore the graph ∂Gf0 is
D-regular as Gf0 is of rank D and so are its sHEs. The existence of a unique (D− 1) ve-coloured
tensor graph associated with ∂Gf0 follows from Proposition 4.17.

With Proposition 4.18, we can identify the boundary graph ∂Gf0 with the rank D− 1
ve-coloured stranded graph associated with it.

A boundary graph does not have sHEs hence all of its faces are closed. We take an example in
rank D= 3, see Figure 25. Each vertex of ∂Gf0 is coloured and is 3 valent. Each edge of ∂Gf0 is
mapped to a bi-coloured ribbon, and each face is closed.

Remark 4.19 Let us discuss a feature in rank D= 3 that will be important for the next compu-
tations. Consider a HEcTG Gf0 , its boundary graph ∂Gf0 , its set of open bubbles, each of them
viewed as a HERG (rank 2), and the set of their boundary graph. As a rank 1 graph, the bound-
ary graph of any open bubble is only made of cycles that are still called faces. A face of ∂Gf0 is
a cycle made of strands and chords coming from open faces of Gf0 . These strands and chords,
respectively, necessarily belong to stranded edges and vertices, respectively, of open bubbles in
Gf0 (remember that we decompose Gf0 in maximal connected 3 coloured graphs, the bubbles).
By taking the boundary graph of such open bubbles, we produce cycles which are in one-to-one
correspondence with the set of (closed) faces of ∂Gf0 .
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Figure 26. A HEcTG, its boundary, and its expansion as a ribbon graph. The face f012 is made from the open faces f01 and f12.
f01 appears in 2 open bubbles, b012 and b013. f012 corresponds to a cycle in ∂b012.

As an illustration of the above remark, consider the HEcTG Gf0 given in Figure 22, with bound-
ary ∂Gf0 drawn in Figure 23. Let us pick the face f102 of ∂Gf0 that is a face (obviously closed) made
of the strands with colour pairs (12) and (10), and chords of the vertex of colour 1. Consider the
unique open bubble b012 of Gf0 as a HERG. The open faces f ′10 and f ′12 of b012 will generate a cycle
in its boundary graph ∂b012 that is corresponding to f102. Furthermore, such a closed face cannot
belong to another bubble by colour exclusion and the fact that each strand of a given stranded
edge is exactly used twice to make two stranded edges of two different bubbles of Gf0 (for instance
the strand of colour (01) making f ′01 is used once in b012 and once in b013). We illustrate this fact
once again in a slightly more involved situation given by Figure 26.

4.2. W-coloured stranded graphs
It has been discussed earlier that the contraction of a stranded edge in a coloured tensor graph
yields another type of graph for which neither proper edge colouring, nor the tensor axioms
(Definition 4.2) apply. In order to circumvent such an odd feature of tensor graphs and thereby
find polynomial invariants on these structure, some proposals have been made to redefine the
notion of contraction of an edge or redefine subgraphs for which the contraction applies [20, 28].
In the following, we use a different scheme.

Using Definition 4.7, we can now contract any rank D edge provided the fact that we are
working in the extended framework of stranded graphs. This definition therefore applies to a
HEcTG. From now on, edge contraction means always stranded edge contraction in the sense
Definition 4.7.

Definition 4.20 (Rank w-coloured graph). A rank D weakly coloured or w-coloured graph is a
rank D HESG obtained by zero or more, successive stranded edge contractions of some rank D
HEcTG.

Few remarks must be made at this point. Any HEcTG is a w-coloured graph of the same rank
when no stranded edge contractions have been performed. For any coloured graph, any edge
contraction breaks the proper edge colouring (see an example, a rank D= 3 edge contraction
in a HEcTG in Figure 27). However, in rank D, there is a colour structure on Gf0/e defined in a
weaker sense. Such a weak colouring, that we plan to investigate, is based on the property that any
stranded edge contraction preserves faces, the colouring of vertex points, and the bi-colouring of
faces.

Finally, several HEcTGs may generate the same w-coloured graph by edge contractions.

Lemma 4.21 (Stability of the boundary graph under stranded edged contraction).

• Contracting a stranded edge in a rank D HESG Gf0 does not change its boundary graph.
• The contraction in arbitrary order of all stranded edges of Gf0 yields a HESG G0

f0
determined

by the boundary graph ∂Gf0 of Gf0 up to additional trivial circles.
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Figure 27. Contraction of an edge in a rank 3 HEcTG.

Proof. Consider a HESG Gf0 with boundary graph ∂Gf0 . After contracting a stranded edge in Gf0 ,
all sHEs remain untouched and all open faces might shrink by loosing strands and chords but
the resulting set of open faces is in one-to-one correspondence with the former. No open face
can be created by such operations (we remove all present inner faces and all remaining faces get
shorter but are never cut). Hence, for the resulting stranded graph Gf0/e, one has ∂(Gf0/e)= ∂Gf0 .
By iteration, contracting all edges of Gf0 in arbitrary order, the resulting graph G0

f0
should contain

∂Gf0 as its boundary. Contracting all edges of Gf0 , one obtains a single stranded vertex graph per
connected component plus trivial circles. Then, necessarily, G0

f0
is nothing but a graph made only

with stranded vertices (without edges) and sHEs attached to these. Then G0
f0
is therefore defined

by ∂G0
f0

= ∂Gf0 up to trivial circles.

First, we observe that the previous lemma restricts to half-edged tensor graphs without colours.
Second, consider Gf0 a connected HEcTG with a nonempty set of sHEs, f0 �= ∅. After a full con-
traction of all edges of Gf0 , Lemma 4.21 tells us that the end result G0

f0
is totally encoded in the

boundary graph ∂Gf0 up to some circles. If f0 = ∅, then there is no boundary in G∅, and G0
∅ consists

of trivial circles, if non empty.
Our next goal is to investigate the properties that the contraction and cut operations have on

w-coloured graphs.

Lemma 4.22. Let e be an ordinary stranded edge or a bridge of a rank 3 w-coloured graph.
Contracting e yields a stranded vertex which is connected.

Proof. An argument on the parity of the number of pre-edge points of a given colour pair and
the fact that two strands of a coloured stranded edge in a w-coloured graph cannot have the same
colour pair achieve this proof. The detail of the proof follows.

Without loss of generality, let us assume that e is of a given colour, say 0. Each of its strands
is of colour pair (0i), i= 1, 2, 3. Let us concentrate on a single stranded vertex v, of vertex graph
v′, where e is incident at a pre-edge fe. If the contraction of e disconnects the resulting stranded
pre-vertex, there are at least two non-empty and distinct sets of pre-edges in v, namely v1 and
v2, that form two disctinct subgraphs s1 and s2 of v′, respectively, that are connected only via the
vertex corresponding to fe in v′. In other words, there are no edge connections between s1 and s2.
Note also that fe does not belong neither to v1 nor to v2.

There are three strands in e. The three of them cannot join the same subset of pre-edges, oth-
erwise it would mean that v was initially disconnected (if v1 and v2 are non empty) or v was made
only with two pre-edges which also trivializes the proof. Thus, at most 2 strands of e could join
one subset of pre-edges and the last should connect the other one.

Consider the strand of colour pair (01) in e. This strand is incident to a chord (at a pre-edge
point) incident itself to another pre-edge called f . The pre-edge f is necessarily of colour 0 or 1.
Without loss of generality, let us assume that f is the unique pre-edge connected to fe and that also
belongs to the set of pre-edges v1. Because we can exchange the role played by the colours 0 and
1, we can fix the colour of f to be 1. Denote Ni the number of pre-edges of colour i in v1.
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Figure 28. Two bubbles graphs b1 and b2 of G1;f0 and G2;f0 , respectively: b1 has a vertex with valence 2 and b2 a vertex with
valence 4.

− There are Ni pre-edge points of colour pair (i,j) in v1, for fixed i= 0, 2, 3, and j ∈ {0, 1, 2, 3}
but j �= i.

− There are N1 pre-edge points of colour pair (1,j) in v1, for fixed j= 2, 3.
− There are N1 − 1 pre-edge points of colour pair (1,0) in v1.

The chords in v1 should connect all these pre-edges points. Denoting kij the number of chords
of colour (ij) in v1, we have

N0 +N1 − 1= 2k01

N0 +N2 = 2k02

N1 +N2 = 2k12 (30)

which entails an inconsistent equation: 2N0 + 2(k02 − k12)− 1= 2k01.

The above lemma should admit an extension to any rank D by partitioning D and analysing
the connection of the strands of e and the chords of the vertices that it meets. We do not need
however such a stronger result for the following.

In contrast, the contraction of a loop may disconnect the vertex. In any case, since loop graphs
are terminal forms, a special treatment is required for them.

The whole above construction maintains the consistency of the definition of p-bubbles. In a w-
coloured graph, stranded vertices are still 0-bubbles (connected objects with 0 colour), stranded
edges are 1-bubbles (connected objects with 1 colour), (closed and open) faces are bi-coloured
maximal connected objects, (closed and open) 3-bubbles are maximal connected objects with 3
colours. It should be however noticed that :

1. closed faces of the trivial circle vertices naturally inherit of the bi-colouring of the faces
they are coming from;

2. 3-bubbles are no longer built uniquely with three valent vertices. They can be made with
vertices with lower or greater valence as illustrated in Figure 28. In any case, Definition 4.10
is still valid and we shall focus on this.

From now on, general discussions are always valid at fixed rank D, thus we shall omit to
mention it. Focusing on operations on w-coloured graphs, key notions pertain again to the
cut/contraction rules.

Lemma 4.23. Let Gf0 be a rank D w-coloured graph and e one of its stranded edges. Gf0 ∨ e the cut
graph along e, is a rank D w-coloured graph. Gf0/e, called the contraction of Gf0 along e, is a rank D
w-coloured graph.

Proof. Let Gf0 be the result of a contraction of some HEcTG Gcolor;f0 . We want to show that
both Gf0 ∨ e and Gf0/e come from edge contractions of some HEcTGs. The HEcTG Gcolor;f0 ∨ e
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v1

v2

v1

v2

v3

Figure 29. p–inner loops: a 3–inner (O) and a 2–inner (A) loop with their unique possible configuration; a 1–inner loop with
two potential sectors v1 and v2 (B), and a 0–inner loop with three potential sectors v1, v2 and v3 (C).

obviously contracts to give Gf0 ∨ e. There exists a HEcTG G0
color;f0 contracting to Gf0/e. This is

nothing but Gcolor;f0 on which, before performing all contractions yielding Gf0 , one performs the
contraction along e.

To define spanning c-subgraphs of a w-coloured graph, we follow the same procedure as the
one dealing with HESGs.

Rank 3w-coloured graph.Wehenceforth restrict the rank of stranded graphs toD= 3, and aim at
studying an invariant polynomial satisfying a contraction/cut relation, and generalizing the Tutte
and BR polynomials for these new graphs. The extension for any D should require more work on
the subsequent analysis. From now rank 3 w-coloured graphs are called more simply w-coloured
graphs.

Mostly, we have studied non-loop edges so far and their main properties under contraction
and cut can be guessed in any rank. Loops are more subtle and their behaviour under contraction
is much more involved. Restricting to rank 3 simplifies the analysis.

The contraction of a loop edge may disconnect a stranded vertex and the resulting HESG.
Several cases may be discussed according to the number of connected components into which the
vertex graph decomposes upon contraction and whether there are stranded edges linking these
components.

The contraction of a loop edge e may remove some chords within the stranded vertex v on
which e is incident. From this removal may result a disconnection the vertex graph of v. Let us
study this in details.

Given a strand s of a stranded edge e incident to stranded vertex v. We call sector of s, the union
of the set of chords and set pre-edge points in v that defines a connected component vertex graph
on which is incident s, when e is contracted. If a strand contributes to an inner loop, then its sector
is empty. Stranded edges and sHEs may be incident to some pre-edges of a given sector. A sector
and its incident stranded edges and sHEs will be pictured as a black diagram. Looking at the set of
strands of a fixed stranded edge e incident to v, the sectors associated with the strands are called
sectors of v. For a rank D= 3 HESG, for a given rank D= 3 stranded edge e incident to v, we have
at most three sectors in v.

We now restrict to the case of rank 3 w-coloured graphs. A loop can be at most a 3–inner edge.
A 3–inner edge determines by itself a graph, see Figure 29O. If it is a 2–inner loop, then e should
be of the form illustrated in Figure 29A. Otherwise, e may be a 1–inner loop (Figure 29B), or a
0–inner (Figure 29C).

For a 2–inner loop e, the outer strand of e should be incident to chords linked to pre-edges
meeting sHEs or edges (otherwise e would be a 3–inner edge) : it has a unique sector and we
represent the rest of the stranded vertex possibly with edges and sHEs attached, by a black diagram
in Figure 29A.
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v1

v2

v1 v2

v3

Figure 30. p–inner loop contractions corresponding to O, A, B and C of Figure 29, respectively.

A 1–inner loop e has two outer strands which should be incident to, potentially, two distinct
sectors, v1 and v2 of the vertex, as illustrated in Figure 29B. Any sector, v1 or v2, has at least two
sHEs or edges because two chords with the same colour pair are incident on their pre-edges.

A 0–inner loop e has potentially three such sectors, v1, v2 and v3. Each sector should contain at
least two sHEs or edges.

The notion of trivial loop in HEcTG can be addressed at this point. We call a loop e trivial if
it is a 3–inner or a 2–inner loop, or if it is a 1–inner with exactly 2 sectors (upon contraction of
e leads to 2 connected component vertex graphs) or 0–inner loop with exactly 3 sectors (upon
contraction of e leads to 3 connected component vertex graphs) such that there are no stranded
edges linking different sectors.

For a 3–inner loop, the contraction gives three trivial circles, see Figure 30O. The contrac-
tion of a trivial 2–inner loop is again straightforward and yields Figure 30A. For a 1–inner loop
contraction (see Figure 30B), one gets one additional trivial circle, and has two possible configu-
rations: either the stranded vertex remains connected or it gets disconnected with two (possibly
non-trivial) stranded vertices in both situations. Concerning the contraction of a trivial 1–inner
loop, it is immediate that the vertex gets disconnected in two non-trivial vertices. For a 0–inner
loop contraction (see Figure 30C), we have no additional circles but three types of configurations
with up to three disconnected (and possibly non-trivial) stranded vertices. The contraction of a
trivial 0–inner loop yields three disconnected and non-trivial stranded vertices.

Lemma 4.24 (Rank 3 trivial loop contraction). Let Gf0 be a w-coloured graph with boundary
graph ∂Gf0 , e be a trivial loop of Gf0 , G ′

f0
= Gf0/e and its boundary graph denoted by ∂G ′

f0
. Let k

denote the number of connected components of Gf0 , V its number of stranded vertices, E its num-
ber of stranded edges, Fint its number of closed faces, Bint its number of closed bubbles, and Bext
its number of open bubbles, C∂ the number of connected components of ∂Gf0 , f =V∂ its num-
ber of sHEs, E∂ = Fext the number of edges, and F∂ the number of (closed) faces of ∂Gf0 , and let
k′,V ′, E′, Fint, C′

∂ , B
′
int, B′

ext, C′
∂ , f

′, E′
∂ , and F

′
∂ denote the analog numbers for G ′

f0
and ∂G ′

f0
.

If e is a 3–inner loop, then
k′ = k+ 2 , V ′ =V + 2 , E′ = E− 1 , F′

int = Fint ,
C′

∂ = C∂ , f ′ = f , E′
∂ = E∂ , F′

∂ = F∂ ,
B′
int = Bint − 3 , B′

ext = Bext . (31)
If e is a 2–inner loop, then

k′ = k+ 2 , V ′ =V + 2 , E′ = E− 1 , F′
int = Fint ,

C′
∂ = C∂ , f ′ = f , E′

∂ = E∂ , F′
∂ = F∂ ,

B′
int = Bint − 1 , B′

ext = Bext . (32)
If e is a trivial p–inner loop such that p= 0, 1, then

k′ = k+ 2 , V ′ =V + 2 , E′ = E− 1 , F′
int = Fint ,

C′
∂ = C∂ , f ′ = f , E′

∂ = E∂ , F′
∂ = F∂ ,

B′
int + B′

ext = Bint + Bext + αp , (33)
where αp = 3− 2p.
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The first situation of a 3–inner loop defines a particular graph without sHEs made of a single
vertex with a unique loop. The contraction removes the vertex and the three closed bubbles, and
generate three trivial circles. The result (31) follows.

For p–inner loops, p≤ 2, there should be other sHEs or edges on the same end vertex. The first
lines of (32)–(33) should not cause any difficulty using the definition of the contraction which
preserve (open and closed) strands. Let us focus on the variations of the number of bubbles of the
graph.

Consider that e is 2–inner. One first should notice that there is a closed bubble formed by the
two inner faces of e and that contracting e destroys this bubble. In addition, the other (open or
closed) bubbles, which are made of strands of e and containing one of the two inner faces, are
simply deformed. They loose one face (the inner) but remain in the contracted graph. The second
line of (32) follows.

Let us assume now that e is trivial and 1– or 0–inner, and of colour a. Consider in the initial
vertex v, the two or three distinct sectors v1, v2 and v3, respectively, determined by the strands of
e. We recall that v1, v2, and v3 should contain each at least two sHEs or edges. Consider as well the
three bubbles labelled by colours (aa1a2), (aa1a3) and (aa2a3) containing strands of e.

We treat the case of e trivial 1–inner loop, and let us assume that the face (aa3) is the one which
is inner, without loss of generality. The edge e decomposes in three ribbon edges each determined
by a couple of pairs (aai;aaj), i< j, such that the strand (aa1) connects to the sector v1 and the
strand (aa2) connects to v2. If e is trivial and 1–inner, its contraction yields two connected vertices
plus one circle. Consider the bubbles baa1a3 and baa2a3 (in the whole graph) which are the only
ones containing the face (aa3). Contracting e, the bubbles baa1a3 and baa2a3 just loose that face
and get deformed. They are still present since, in v1 and v2, there are still faces that are included
in baa1a3 and baa2a3 . Meanwhile, the last bubble baa1a2 splits in two parts: these parts are disjoint
bubbles with the same triple of colours since there are no edges in the stranded graph that relate
them. These bubbles can be open or closed depending on the nature of baa1a3 in v1 and v2. Hence,
B′
int + B′

ext = Bint + Bext + 1.
Finally, let us discuss the trivial 0–inner loop situation with its three distinct sectors v1, v2

and v3. The discussion is somehow similar to the 1–inner case. The contraction of e yields three
connected vertices. Using the similar routine explained above, one finds that each of the bubbles
baaiaj , i< j, gets split into two parts after the contraction. Each of these pairs of parts are not
related at all by any stranded edge. Thus each bubble produces two bubbles. The resulting bubbles
may be open or closed depending on the nature of baaiaj in each sector. We have B′

int + B′
ext =

Bint + Bext + 3.
It is clear that the contraction of a 2–inner loop also obeys (33) as well for p= 2. In fact (32) is

a stronger result because it mainly distinguishes the variation of the numbers of closed and open
bubbles. For a general 1–inner loop contraction, it turns out that the number Bint + Bext may vary
of 1 or not. Similarly, for a non-necessarily trivial 0–inner loop contraction, the same number of
bubbles vary from 0, 1, 2, up to 3.

Lemma 4.25 (Faces of a bridge). The faces passing through a bridge of any rank 3 w-coloured graph
are necessarily open. These faces belong to the same connected component of the boundary graph of
the w-coloured graph.

Proof. A bridge e with colour a has three strands of colour pairs (aa1), (aa2) and (aa3) defining
three different faces passing through e. Clearly, the strand colouring in any stranded edge prevents
a face to pass twice through e, and so the three faces using strands of e are all open. The next
statement follows from the fact that the boundary graph is 3-regular made with an even number
of vertices and has a proper edge colouring.

Lemma 4.26 (Cut/contraction of special edges). Let Gf0 be a rank 3 w-coloured graph and e a
stranded edge in Gf0 . Then, in the above notation,

https://doi.org/10.1017/S096354832100050X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832100050X


538 R. C. Avohou, J. Ben Geloun and M. N. Hounkonnou

if e is a bridge, we have
k(Gf0 ∨ e)= k(Gf0/e)+ 1, V(Gf0 ∨ e)=V(Gf0/e)+ 1,

E(Gf0 ∨ e)= E(Gf0/e), f (Gf0 ∨ e)= f (Gf0/e)+ 2, (34)

Fint(Gf0 ∨ e)= Fint(Gf0/e) , Bint(Gf0 ∨ e)= Bint(Gf0/e) , (35)

C∂ (Gf0 ∨ e)= C∂ (Gf0/e)+ 1 , E∂ (Gf0 ∨ e)= E∂ (Gf0/e)+ 3 ,

F∂ (Gf0 ∨ e)= F∂ (Gf0/e)+ 3 , (36)

Bext(Gf0 ∨ e)= Bext(Gf0/e)+ 3 ; (37)
if e is a trivial p–inner loop, p= 0, 1, 2, we have

k(Gf0 ∨ e)= k(Gf0/e)− 2, V(Gf0 ∨ e)=V(Gf0/e)− 2,

E(Gf0 ∨ e)= E(Gf0/e), f (Gf0 ∨ e)= f (Gf0/e)+ 2, (38)

Fint(Gf0 ∨ e)+ C∂ (Gf0 ∨ e)= Fint(Gf0/e)+ C∂ (Gf0/e)− 2 ,

E∂ (Gf0 ∨ e)= E∂ (Gf0/e)+ 3 , (39)

Bint(Gf0 ∨ e)+ Bext(Gf0 ∨ e)= Bint(Gf0/e)+ Bext(Gf0/e)− (3− 2p) . (40)

Moreover, given ∂Gf0 the boundary of Gf0 and a bridge or a trivial p–inner loop e, p= 0, 1, 2, 3,
2C∂ (Gf0 ∨ e)− χ(∂(Gf0 ∨ e))= 2C∂ (Gf0 )− χ(Gf0 )= 2C∂ (Gf0/e)− χ(∂(Gf0/e)) , (41)

where χ(∂Gf0 ) denote the Euler characteristics of the boundary of Gf0 .

Proof. We start by the bridge case. The equations in (34) are easily found. Let us focus on (35).
By Lemma 4.25, we know that, necessarily, the faces passing through e are open. All closed faces
on each side of the bridge are conserved after cutting e. The same are still conserved after edge
contraction. Hence Fint(Gf0 ∨ e)= Fint(Gf0/e) and Bint(Gf0 ∨ e)= Bint(Gf0/e). We now prove (36).
By the second point of Lemma 4.25, the three open faces belong to the same boundary com-
ponent. After cutting e, this unique component yields two boundary components. It is direct
to get C∂ (Gf0 ∨ e)= C∂ (Gf0/e)+ 1, E∂ (Gf0 ∨ e)= E∂ (Gf0/e)+ 3 (the cut of e divides each open
face into two different open faces) and F∂ (Gf0 ∨ e)= F∂ (Gf0/e)+ 3 because C∂ (Gf0/e)= C∂ (Gf0 ),
E∂ (Gf0/e)= E∂ (Gf0 ) and F∂ (Gf0/e)= F∂ (Gf0 ) which are immediate from Lemma 4.21. Concerning
the number of open bubbles, there are three bubbles in Gf0 , each with an edge made of strands of
the bridge. Each of these is associated with two colour pairs (aai;aaj), i< j. These bubbles are
clearly in Gf0/e. Cutting the bridge, each of these bubbles splits in two. This yields (37).

We now deal with a trivial p–inner loop e. The relations (38) can be determined without dif-
ficulty and so we concentrate on the rest of the equations. Consider the faces fi made with outer
strands of e. For p= 0, 1, 2, we have fi, 1≤ i≤ 3− p. These faces can be open or closed. We do a
case by case study according to the number of open or closed faces among the fi’s.

• Assume that 3− p of fi’s are closed. Cutting e entails
Fint(Gf0 ∨ e)= Fint(Gf0 )− 3 , C∂ (Gf0 ∨ e)= C∂ (Gf0 )+ 1 , E∂ (Gf0 ∨ e)= E∂ (Gf0 )+ 3 ,

Bint(Gf0 ∨ e)+ Bext(Gf0 ∨ e)= Bint(Gf0 )+ Bext(Gf0 ) , (42)

F∂ (Gf0 ∨ e)= F∂ (Gf0 )+ 3 . (43)
Note that in this situation only the variation of the total number of bubbles can be known.
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• Assume that 3− p− 1 of the fi’s are closed and one is open. Cutting e gives
Fint(Gf0 ∨ e)= Fint(Gf0 )− 2 , C∂ (Gf0 ∨ e)= C∂ (Gf0 ) , E∂ (Gf0 ∨ e)= E∂ (Gf0 )+ 3 ,

Bint(Gf0 ∨ e)= Bint(Gf0 )− 1 , Bext(Gf0 ∨ e)= Bext(Gf0 )+ 1 , (44)

F∂ (Gf0 ∨ e)= F∂ (Gf0 )+ 1 . (45)

• Assume that 3− p− 2 of the fi’s are closed and two are open. Cutting e gives
Fint(Gf0 ∨ e)= Fint(Gf0 )− 1 , C∂ (Gf0 ∨ e)= C∂ (Gf0 )− 1 , E∂ (Gf0 ∨ e)= E∂ (Gf0 )+ 3 ,

Bint(Gf0 ∨ e)= Bint(Gf0 ) , Bext(Gf0 ∨ e)= Bext(Gf0 ) , (46)

F∂ (Gf0 ∨ e)= F∂ (Gf0 )− 1 . (47)

Note that this case does not apply for p= 2.
• For p= 0 an additional situation applies: assume that all three fi’s are open. Cutting e gives

Fint(Gf0 ∨ e)= Fint(Gf0 ) , C∂ (Gf0 ∨ e)= C∂ (Gf0 )− 2 , E∂ (Gf0 ∨ e)= E∂ (Gf0 )+ 3 ,

Bint(Gf0 ∨ e)= Bint(Gf0 ) , Bext(Gf0 ∨ e)= Bext(Gf0 ) , (48)

F∂ (Gf0 ∨ e)= F∂ (Gf0 )− 3 . (49)

Lemma 4.24 relates the same numbers for Gf0/e and Gf0 , and from this, we can prove (39)
and (40).

Last, we prove (41) on the Euler characteristics of the boundary graphs.We first note that, from
(34), (36), (38) and (39), for any special (bridge or trivial p–inner, p= 0, 1, 2) edge,
f (Gf0 ∨ e)= f (Gf0 )+ 2= f (Gf0/e)+ 2 , E∂ (Gf0 ∨ e)= E∂ (Gf0 )+ 3= E∂ (Gf0/e)+ 3 . (50)

For the bridge case, (41) follows from the relations F∂ (Gf0 ∨ e)= F∂ (Gf0 )+ 3= F∂ (Gf0/e)+ 3 and
C∂ (Gf0 ∨ e)= C∂ (Gf0 )+ 1= C∂ (Gf0/e)+ 1 in (36). The result holds also for trivial 0,1,2–inner
loops, after the case by case study giving (42)–(49). Last, for the 3–inner loop, in addition to (50)
which still holds, the following relations are valid

C∂ (Gf0 ∨ e)= C∂ (Gf0 )+ 1= C∂ (Gf0/e)+ 1 , F∂ (Gf0 ∨ e)= F∂ (Gf0 )+ 3= F∂ (Gf0/e)+ 3 ,
(51)

and allow us to conclude.

4.3. Polynomial invariant for 3D w-coloured graphs
We shall define first an invariant for rank 3 w-coloured graphs, check its consistency and then
state our main result.

Definition 4.27 (Topological invariant for rank 3 w-coloured graph). Let Gf0 be a rank
3 w-coloured graph. The generalized topological invariant associated with Gf0 is given by the
following function

TGf0
(x, y, z, s,w, q, t)=

∑
A�Gf0

(x− 1)r(Gf0 )−r(A)(y− 1)n(A)z5k(A)−[3(V−E(A))+2(Fint(A)−Bint(A)−Bext(A))]

× sC∂ (A) wF∂ (A)qE∂ (A)t f (A) . (52)

A crucial point is to show that the exponent of z in (52) is always a non-negative integer.
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Proposition 4.28. Let Gf0 be a rank 3 w-coloured graph without trivial circles. Then

ζ (Gf0 )= 3(E(Gf0 )−V(Gf0 ))+ 2[Bint(Gf0 )+ Bext(Gf0 )− Fint(Gf0 )]≥ 0 . (53)

Proof. Let us consider Bint and Bext, the sets of closed and open bubbles of Gf0 , respectively. (In
this proof, we drop the notation Gf0 in all quantities depending on the w-coloured graph.) Let Bint
and Bext be their respective cardinality. Each open or closed bubble b is an HERGwithVb number
of vertices, Eb number of edges, Fint;b number of closed faces, and C∂ (b) number of cycles of the
boundary of b. We write bi for a closed bubble and bx for an open bubble. The Euler characteristics
of bi and bx refer to the same notion for their underlying ribbon graphs.

Any bi ∈ Bint being a ribbon graph, its Euler characteristics writes

2− κbi =Vbi − Ebi + Fint;bi , (54)

where κbi refers to the genus of bi or twice its genus if bi is oriented. Summing over all closed
bubbles, we get

2Bint −
∑

bi∈Bint

κbi =
∑

bi∈Bint

[
Vbi − Ebi + Fint;bi

]
. (55)

Using the colours, one observes that each edge of Gf0 splits into three ribbon edges belonging
either to an open or a closed bubble, and each closed face of Gf0 belongs to two bubbles which
might be open or closed. Thus we have∑

bi∈Bint

Ebi +
∑

bx∈Bext

Ebx = 3E ,
∑

bi∈Bint

Fint;bi +
∑

bx∈Bext

Fint;bx = 2Fint . (56)

In addition, each vertex of the graph can be decomposed, at least, in three vertices (3 vertices is
the minimum given by the simplest vertex of the form G1;f0 in Figure 28) which could belong to
an open or a closed bubble giving then∑

bi∈Bint

Vbi +
∑

bx∈Bext

Vbx ≥ 3V . (57)

Combining (56) and (57), we re-write (55) as

3V − 3E+ 2Fint − 2Bint −
∑

bx∈Bext

[
Vbx − Ebx + Fint;bx

]≤ −
∑

bi∈Bint

κbi . (58)

We complete the last sum involving Bext by adding C∂ (bx) in order to get∑
bx∈Bext

[
Vbx − Ebx + Fint;bx + C∂ (bx)

]= ∑
bx∈Bext

(2− κbx ) , (59)

which, substituted in (58), leads us to

3V − 3E+ 2Fint − 2Bint − 2Bext ≤ −
∑

bi∈Bint

κbi −
∑

bx∈Bext

(
C∂ (bx)+ κbx

)
(60)

that proves the lemma.

In fact,
∑

bx∈Bext C∂ (bx)= F∂ (Gf0 ) is the number of faces of the boundary graph of Gf0 (see
Remark 4.19). The above bound can be refined since F∂ (Gf0 )≥ Bext(Gf0 ) which merely follows
from the fact that each bx ∈ Bext has at least a boundary component contributing to F∂ (Gf0 ) such
that

Bext(Gf0 )≤
∑
bx

C∂ (bx)= F∂ (Gf0 ) . (61)
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Thus we also have

3V − 3E+ 2Fint − 2Bint − Bext ≤ −
∑

bi∈Bint

κbi −
∑

bx∈Bext

κbx . (62)

This may lead as well to yet another well defined invariant. However, we do not use this relation
in the following due to some rich relations that −ζ (A)≥ 0 entails. We do have other positive
combinations.

Proposition 4.29. Let Gf0 be a rank 3 w-coloured graph without trivial circles. Then

ζ ′(Gf0 )= 3[E(Gf0 )−V(Gf0 )]+ 2[Bint(Gf0 )+ Bext(Gf0 )− Fint(Gf0 )− C∂ (Gf0 )]≥ 0 ,

ζ ′′(Gf0 )= 3[E(Gf0 )−V(Gf0 )− C∂ (Gf0 )]+ 2[Bint(Gf0 )+ Bext(Gf0 )− Fint(Gf0 )]≥ 0 . (63)

Proof. By the colour prescription, each connected component of the boundary of Gf0 has at least
three faces. Therefore

3C∂ ≤ F∂ . (64)

Then we also have −F∂ + 2C∂ ≤ 0. The proposition follows from (60) and the fact that F∂ =∑
bx C∂ (bx) in the proof of Proposition 4.28.

Proposition 4.30. Let Gf0 be a rank 3 w-coloured graph with D(Gf0 )≥ 0 trivial circles. Then

ζ̃ (Gf0 )= 3(E(Gf0 )−V(Gf0 ))+ 2[Bint(Gf0 )+ Bext(Gf0 )− Fint(Gf0 )]+ 5D(Gf0 )≥ 0 . (65)

Proof. Consider Gf0 a rank 3 w-coloured graph with D(Gf0 )≥ 0 trivial circles. Some steps in
the proof of Proposition 4.28 should be modified as follows: in the relation (56), we replace
Fint(Gf0 ) by Fint(Gf0 )−D(Gf0 ), and in (57), V(Gf0 ) by V(Gf0 )−D(Gf0 ). Then, we obtain the
desired inequation obeyed by ζ̃ (Gf0 ).

Of course, there exist some modified ζ ′(Gf0 ) and ζ ′′(Gf0 ) that handle the generic case of a rank
3 w-coloured graph with trivial circles by simply adding to them 5D(Gf0 ). A second remark is
that, as k(Gf0 )≥D(Gf0 ), then another choice of a positive quantity is still given by (65) but trading
D(Gf0 ) for k(Gf0 ), the total number of connected components of the w-coloured graph. From the
combinatorial perspective, although the choice of ζ̃ (Gf0 )≥ 0 would have been enough to conduct
the analysis, we will use instead the number of connected components of the w-coloured graph
which is a global topological quantity.

Proposition 4.30 ensures us that the following statement holds.

Proposition 4.31 (Polynomial invariant). TGf0
is a polynomial.

The quantity V − E(A)+ Fint(A)− Bint(A) is nothing but the Euler characteristics for a
coloured tensor graph A without sHEs understood as a cellular complex [17]. This quantity is
bounded by−∑

bi κbi . In the case of a HEcTG, the same cellular complex has a boundary bearing
itself a cellular decomposition. We interpret ζ (A), in the present situation, as a weighted notion
of a Euler characteristics of the cellular complex corresponding to A which also takes into account
its boundary.

As a result of the excess k(Gf0 )−D(Gf0 ), TGf0
factors by an overall monomial that we can keep

track. The c-spanning subgraphs A� Gf0 have the same number of trivial circles as Gf0 . Using
k(A)≥ k(Gf0 ), we write k(A)−D(Gf0 )+D(Gf0 )= (k(Gf0 )−D(Gf0 ))+ (k(A)− k(Gf0 ))+D(Gf0 )
and learn that the monomial in z factors as z5(k(Gf0 )−D(Gf0 ))z5(k(A)−k(Gf0 )+D(Gf0 )). Therefore, TGf0

can be factored out by z5(k(Gf0 )−D(Gf0 )). This allows us to cover the case of an invariant based on ζ̃ .
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At an evenmore general level, we should emphasize that any combination ξα(Gf0 )= 5D(Gf0 )+
α(k(Gf0 )−D(Gf0 )), for any α ≥ 0, in the exponent zξα(Gf0 )+ζ̃ (Gf0 )−5D(Gf0 ) will determine a valid
polynomial invariant. In this work, we restrict to the case α = 1.

Let us call G0
f0
a w-coloured graphmade only with a finite set of stranded vertices with sHEs and

no stranded edges, and possibly with trivial circles. Then E(G0
f0
)= Bint(G0

f0
)= 0, Fint(G0

f0
)=D, D

being the number of trivial circles in G0
f0
, k(G0

f0
)=V(G0

f0
), k(G0

f0
)−D= C∂ (G0

f0
)≥ 0, we can check

the consistency of (52) as the following makes still sense:

TG0
f0
(x, y, z, s,w, q, t)= z2[k(G

0
f0
)−D+Bext(G0

f0
)]sk(G

0
f0
)−DwF∂ (G0

f0
)qE∂ (G0

f0
) t f (G

0
f0
). (66)

It may exist several possible reductions of the above polynomial. We will focus on the
following:

TGf0
(x, y, z, z−2,w, q, t)=T′

Gf0
(x, y, z,w, q, t) ,

TGf0
(x, y, z, z−2s2, s−1, s, s−1)=T′′

Gf0
(x, y, z, s) ,

TGf0
(x, y, z, z2z−2, z−1, z, z−1)=T′′′

Gf0
(x, y, z) . (67)

Proposition 4.29 ensures that T′
Gf0

is a polynomial. Meanwhile, T′′
Gf0

is also a polynomial with
exponent of s the Euler characteristics of the boundary ∂Gf0 .T′′′

Gf0
(x, y, z) combines both invariants

in a single exponent. These polynomials will be relevant in the next analysis. Note that we could
have introduced another polynomial expressed as TGf0

(x, y, z, s2, s−1, s, s−1)=T0
Gf0

(x, y, z, s). But
this reduction turns out to satisfy the same properties as T and thus does not provide anything
new.

We are now in position to prove our main theorem.

Theorem 4.32 (Contraction/cut rule for w-coloured graphs) Let Gf0 be a rank 3 w-coloured graph.
Then, for an ordinary edge e of Gf0 , we have

TGf0
=TGf0∨e +TGf0/e , (68)

for a bridge e, we have TGf0∨e = z8s(wq)3t2TGf0/e and

TGf0
= [(x− 1)z8s(wq)3t2 + 1]TGf0/e ; (69)

for a trivial p–inner loop e, p= 0, 1, 2, we have

TGf0
=TGf0∨e + (y− 1)z4p−7 TGf0/e . (70)

Proof. Let Gf0 be a rank 3 w-coloured graph. The same preliminary remarks of the proof of
Theorem 3.11 hold also here for Gf0 , with adapted consideration, e.g. sHEs replace HRs. Our
main concern is the change in the number of closed and open bubbles.

We concentrate first on (68). Consider an ordinary edge e of Gf0 of colour a, the set of spanning
c-subgraphs which do not contain e being the same as the set of spanning c-subgraphs of Gf0 ∨ e,
the number of open and closed bubbles on each subgraph is the same, it is direct to get∑

A�Gf0 ;e/∈A
(x− 1)r(Gf0 )−r(A)(y− 1)n(A)z5k(A)−[3(V−E(A))+2(Fint(A)−Bint(A)−Bext(A))]

×sC∂ (A) wF∂ (A)qE∂ (A)t f (A) =TGf0∨e. (71)

https://doi.org/10.1017/S096354832100050X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832100050X


Combinatorics, Probability and Computing 543

Let us focus on the second term of (68). Consider e, its end vertices v1 and v2 and its 3 strands
with colour pairs (aa1), (aa2) and (aa3) and consider the set of bubbles in Gf0 . Some bubbles do
not use any strand of e and three bubbles can be formed using these strands (these bubbles are of
colours (aaiaj), i< j). Contracting e, the vertex obtained is connected by Lemma 4.22. The cycles
and paths made of strands of e are clearly preserved after the contraction. The bubbles which use
no strands of e are not affected at all by the procedure. The three bubbles using 2 strands of e are
also preserved since the contraction does not delete faces. The faces passing through e getting only
shortened, the result from the point of view of the bubbles passing through e is simply an ordinary
ribbon edge contraction in the sense of HERGs. Using this, we write∑

A�Gf0 ;e∈A
(x− 1)r(Gf0 )−r(A)(y− 1)n(A)z5k(A)−[3(V−E(A))+2(Fint(A)−Bint(A)−Bext(A))]

×sC∂ (A) wF∂ (A)qE∂ (A)t f (A) =TGf0/e. (72)

Let us focus now on the bridge case and (69). Cutting a bridge yields, as in the ordinary case,
from the sum

∑
A�Gf0 ;e/∈A the product (x− 1)TGf0∨e. The second sum remains as it is using the

mapping between {A� Gf0 ;e ∈A} and {A� Gf0/e} and provided the fact that the resulting vertex
is still connected. That is, once again, ensured by Lemma 4.22. The last stage relates TGf0∨e and
TGf0/e. This can be achieved by using the bijection betweenA� Gf0 ∨ e andA′ � Gf0/ewhere each
A and A′ are both uniquely related to some A0 � Gf0 as A=A0 ∨ e and A′ =A0/e. Using Lemma
4.26, the relation (69) follows.

Next, we discuss the trivial p–inner loop case and prove (70). The property (71) should be
direct. The second term in (70) is now studied.

The question is whether or not e being a trivial p–inner loop in Gf0 remains as such in A. The
answer for that question is yes because A contains the end vertex of e. We may cut some edges in
each sectors vi (see Figure 29) for defining A but the resulting sectors are distinct in A.

Contracting a trivial p–inner loop generates p circles and 3− p non-trivial vertices. Now, from
Lemma 4.24, we know how all numbers of components in the graph evolve: the nullity is again
n(A)= n

(
A′)+ 1, and the exponent of z becomes

5k(A)− (3(V(Gf0 )− E(A))+ 2(Fint(A)− Bint(A)− Bext(A))=

5(k
(
A′)− 2)−

[
3[V(Gf0/e)− 2)− (E

(
A′)+ 1)]+ 2(Fint

(
A′)− Bint

(
A′)− Bext

(
A′)+ αp)

]
= 5k

(
A′)− (3(V(Gf0/e)− E

(
A′))+ 2(Fint

(
A′)− Bint

(
A′)− Bext

(
A′))− 7+ 4p , (73)

where αp = 3− 2p, A and A′ refer to the subgraphs related by bijection the usual between span-
ning c-subgraphs of {A� Gf0 ;e ∈A} and {A′ � Gf0/e}. At the end, one gets (y− 1)z4p−7TGf0/e.

We realize again that the relations of Theorem 4.32 are not complete reduction rules. General
boundary conditions as generalized bouquets must be explicitly computed using Definition 4.27.

Corollary 4.33 (Cut/contraction relations for T′) Let Gf0 be a rank 3 w-coloured graph. Then, for
a bridge e, we have T′

Gf0∨e = z6(wq)3t2T′
Gf0/e

and

T′
Gf0

(x, y, z,w, q, t)= [(x− 1)z6(qw)3t2 + 1]T′
Gf0/e

(x, y, z,w, q, t) ; (74)

for a trivial p–inner loop e in Gf0 , 0≤ p≤ 2, we have

T′
Gf0

(x, y, z, 1, q, t)= z4p−6[q3t2 + (y− 1)z−1]T′
Gf0/e

(x, y, z, 1, q, t) ; (75)
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Proof. Theorem 4.32 implies naturally (74) after the setting s= z−2 in TGf0
. We now work out the

contraction/cut of the trivial loops.
Same arguments as in the proof of Theorem 4.32 should be invoked here. The difference now

is that, by changing s→ z−2, using

1. the one-to-one mapping between {A� Gf0 ∨ e} and {A′ � Gf0/e} such that with each A�
Gf0 ∨ e one associates A′ � Gf0/e defined by A′ = Ã/e, Ã� Gf0 , and Ã∨ e=A and

2. the relations (38)–(40) of Lemma 4.26,

we can map, for a trivial 0, 1, 2–inner loop e, TGf0∨e on TGf0/e. We compute the variation of the
exponent of z between A and A′ as

5k(A)− (3(V(Gf0 )− E(A))+ 2[Fint(A)+ C∂ (A)− Bint(A)− Bext(A)])=
5(k
(
A′)− 2)− (3(V(G ′

f0 )− 2− E
(
A′))+ 2[Fint

(
A′)+ C∂

(
A′)− 2− Bint

(
A′)− Bext

(
A′)+ αp])

= 5k
(
A′)− (3(V(Gf0/e)− E

(
A′))+ 2[Fint

(
A′)− Bint

(
A′)− Bext

(
A′)])− 2αp . (76)

The rest of the variations can be easily identified using the same lemma.

Corollary 4.34 (Cut/contraction rules for T′′ (and T′′′)) Let Gf0 be a rank 3 w-coloured graph.
Then, for a bridge e, we have T′′

Gf0∨e = z6T′′
Gf0/e

and

T′′
Gf0

= [(x− 1)z6 + 1]T′′
Gf0/e

; (77)

for a trivial p–inner loop e in Gf0 , 0≤ p≤ 2, we have T′′
Gf0∨e = z4p−6T′′

Gf0/e
and

T′′
Gf0

= z4p−6[1+ (y− 1)z−1]T′′
Gf0/e

. (78)

The same contraction and cut rules applies for T′′′
Gf0

.

Proof. The new ingredient to achieve the proof of this statement is (41) of Lemma 4.26.

The exponents of z4p−7 or of z4p−6 can be negative in some cases. This simply implies that,
in the polynomial T′

Gf0/e
or T′′

Gf0/e
, all monomials should contain an enough large power of z to

make the overall exponent of z positive.
The disjoint union operation on graph extends naturally in the present formulation.

Lemma 4.35 (Disjoint union). Let Gf0 and G ′
f0
two disjoint rank 3 w-coloured graphs, then

TGf0�G ′
f0

=TGf0
TG ′

f0
. (79)

Proof. This is totally standard as in the ordinary procedure using additive properties of exponents
in TGf0

.

Corollary 4.36 (3–inner loop contraction) Given a rank 3 w-coloured graph Gf0 containing a
3–inner loop e then

TGf0
= z5

(
z3s(wq)3t2 + y− 1

)
TGf0/e . (80)

Proof. We use the fact that e is a 3–inner and so it forms a separate subgraph g. In order to
compute the polynomial of Gf0 , Lemma 4.35 can be applied and a direct evaluation of g yields the
desired factor.
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Definition 4.37 (Multivariate form). The multivariate form associated with (52) is defined by:

T̃Gf0
(x, {βe}, {zi}i=1,2,3, s,w, q, t)=

∑
A�Gf0

xr(A)
(∏
e∈A

βe

)
zFint(A)1 zBint(A)2 zBext(A)3 sC∂ (A) wF∂ (A)qE∂ (A)t f (A) , (81)

for {βe}e∈E labelling the edges of the graph Gf0 .

It is direct to prove the following statement by ordinary techniques.

Proposition 4.38. For any ordinary edge e,
T̃Gf0

= T̃Gf0∨e + xβe T̃Gf0/e . (82)

Remark 4.39 We can compare T̃ with the Gurau polynomial denoted in the following by G [20].
Note that we will not use the full form of GGf0

, denoted PGf0
in [20], but will instead introduce

two improvements: (1) a normalization form PGf0
({βex1}, . . . ) of PGf0

, where x1 is the variable
associated with the number of edges which brings an inessential overall factor of xE(A)1 consistently
absorbed by the βe, and (2) a rank formulation of GGf0

({βe}, . . . )= PGf0
({βex1}, . . . ), i.e. rather

then using two variables x0 for the vertices and x4 for the number of connected components of
the rank 3 coloured tensor graph, we simply use xr(A), A� Gf0 .

For a rank 3 coloured tensor graph Gf0 , the polynomials T̃ and G are related by

T̃Gf0
(x, {βe}, z1, z2, z3 = 1, s,w, q, t)=GGf0

(x, {βe}, z1, z2, s, q,w, t) , (83)

with, according to the convention in [20], we have

C∂ = |B3
∂ |, F∂ = |B2

∂ |, E∂ = |B1
∂ |, f = |B0

∂ |, Bint = |B3|, Fint = |B2|. (84)

As expected, for this set of graphs the polynomial T̃ is more general because it contains one addi-
tional variable (z3 fixed to 1) associated with the number of open bubbles. This variable can be
introduced by hand in G making it a bit more general. This additional variable does not lead
to any new features for the multivariate form however, as seen in our developments, it plays an
important role in the non-multivariate form T.

5. Conclusion
We have generalized the Tutte and BR polynomials to rank 3 w-coloured graphs. The rank
D w-coloured graphs are new combinatorial objects obtained from the (stranded) edge contrac-
tion of rank D half-edged, coloured and stranded graphs. Coloured stranded and tensor graphs
have appeared in several contexts in physics, in particular, as Feynman graphs of field theories
describing quantum geometry and gravity. The new polynomial invariantT presented in this work
satisfies a contraction/cut recursion relation on rank 3 w-coloured graphs, with the cut operation
which seems natural in this context. We have evaluated some boundary cases or terminal forms
of the contraction/cut recursion relation for these graphs. The multivariate form of the invariant
has been given, and its relation with the Gurau polynomial, see [20], has been established.

Studying the limit cases, the invariant T reduces to the Tutte polynomial on its underly-
ing graph. The connection with the BR polynomial on half-edged ribbon graphs might be also
achieved after reduction of the present analysis to rank 2.

The perspectives of this work are numerous. First, we must mention that it is not excluded that
rank D w-coloured graphs and all other graph species studied in this work find other definitions.
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For instance, there is another interesting underlying graph of an HESG Gf0 . The string graph
S(Gf0 ) of Gf0 is the graph whose vertex set is the set of vertex points and SHe external points of
Gf0 , and whose edge set is the set of strands and chords in Gf0 , the incidence relation between
the vertices and edges of S(Gf0 ) being obvious. Appearing as a watermark in Definition 4.6, such
a graph that might reveal a new point of view and perhaps brings simplification of the present
results. This is certainly worth investigating.

For instance, the universality property of T must be addressed, once the notion of the one-
vertex w-coloured graphs is well mastered. The introduction of colours might help in classifying
the bouquets of w-coloured graphs needed in this proof. In fact, before addressing the universality
issue on stranded structures, one first needs to understand to how the universality property can be
extended for the extension of the BR polynomial to HERGs. This will amount to generalizing the
notion of chord diagrams D, their equivalence relation under rotations about chords, and finally
their associated basic canonical diagrams Dijk (counting the nullity i, genus j of the diagram, k is
associated with the orientation of the surface associated with diagram) [8, 10] to chord diagrams
with half-edges. Such a preliminary task will certainly imply the existence of a new canonical dia-
gram Dijkl, where i, j, k keep their meaning, and l defines the number of connected components
associated with the boundary of the HERG. It is also known that the Tutte and BR polynomials
can be expressed in terms of spanning tree expansions and enumerate specific trees. We may ask:
what type of tree expansion does T satisfy, and which objects does it enumerate? These new lines
of investigation will certain yield interesting results relating combinatorics and topology in higher
dimension [4].

Finally, the study of tensor graphs have been motivated by their importance in quantum grav-
ity. A natural follow up question might be what are the new information brought by the new
class of w-coloured graphs or the new polynomial invariant T in that context? An answer of this
question is not obvious. However, in the search of new tools for classifying the Feynman graphs
which are viewed as random manifolds, the following investigation tracks might be relevant to
address. First, each colour in the field theoretic setting represents a different field, and the path
integral in a field theory integrates over field configurations. Integrating over a colour makes the
resulting Feynman graph independent of it. Practically, we use an edge contraction to represent
the new Feynman graph. This procedure has been used by Bonzom et al. [12] to reveal a new class
of objects called uncoloured graphs. Uncoloured Feynman graphs are coloured tensor graphs on
which we perform edge contractions, for all edge colours except for one. It could be therefore
timely to investigate in which sense w-coloured graphs are interpolating configurations between
a fully coloured tensor theory by Gurau and an uncoloured one in the sense of Bonzom et al., and
making perhaps the formalism developed therein a bit more general. Furthermore, to find a prac-
tical use of the new invariant ζ (Gf0 ) found in the present work, one must first interpret, at the level
of the dual simplicial complex, the meaning of the contraction, and the cut procedure performed
at the level of the w-coloured graph. Thus, another possible investigation is to understand dualities
at the level of graphs and simplicial complexes (with boundaries), and consequently dualities sat-
isfied by the polynomial T itself. This hopefully could lead to a better understanding of simplicial
complexes generated by path integrals.
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Appendix: Examples
We carry out explicitly two examples in order to illustrate our results in the present appendix.

Example 1: A coloured graph. Consider the graph G given by Figure A.1. Computing the multi-
variate form of the polynomial by the spanning c-subgraph summation in (81) with βi is associated
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Figure A.1. A rank 3 coloured tensor graph G and its cut G ∨ e and contraction G/e for an ordinary edge e of colour 2.

with the edge of colour i, we obtain A.

TG(x, {βe}, z, s, q, t)= β0β1β2β3 xz61z
4
2

+ (β0β1β2 + β0β2β3 + β1β2β3 + β0β1β3) xz31z2z
3
3sw

3q3t2

+ (β0β1 + β0β2 + β0β3 + β1β2 + β1β3 + β2β3) xz1z43sw
4q6t4

+ (β0 + β1 + β2 + β3) xz53sw
5q9t6 + z83s

2w8q12t8 . (A.1)

Then this polynomial coincides exactly with the normalized Gurau polynomial GG after setting
to 1 the variable z3 associated with open bubbles. Note that reversely, introducing a new variable
associated with the same component in GG, we infer that both polynomials match for the present
example. Note also that the exponents of z3 and w always coincide. It is, however, not always true
that each open bubble would have a unique boundary component.

Cutting one edge, say the one of colour 0, yields G ∨ e, so that we evaluate

TG∨e(x, {βe}, z, s, q, t)= β1β2β3 xz31z2z
3
3sw

3q3t2

+ (β1β2 + β1β3 + β2β3)xz1z43sw
4q6t4

+ (β1 + β2 + β3)xz53sw
5q9t6 + z83s

2w8q12t8 (A.2)

and contracting the same edge gives

TG/e(x, {βe}, z, s, q, t)= β1β2β3 z61z
4
2

+ (β1β2 + β2β3 + β1β3)z31z2z
3
3sw

3q3t2

+ (β1 + β2 + β3)z1z43sw
4q6t4 + z53sw

5q9t6 . (A.3)

Thus, we get

TG =TG∨e + xβ0TG/e . (A.4)

It should be also emphasized that the contraction of an edge is performed in the sense of
Definition 4.7. This definition allows us to improve the active/passive contraction scheme as used
in [20].

Example 2: A “planar” w-coloured graph. We can compute T for other types of graphs which
are not coloured tensor graphs. In a specific instance, consider the graph Gf0 of Figure 32. It com-
bines both one coloured vertex and another type vertex. For simplicity, we change the variables
(x− 1)→ x and (y− 1)→ y.
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Figure A.2. A w-coloured graph Gf0 , the cut graph Gf0 ∨ e2 and the contracted graph Gf0/e2 with respect to e2.

By the spanning c-subgraph summation, we get

TGf0
(x, y, z, s, q, t)= [xz10sw5q9t6 + xyz9sw4q6t4 + 2z2w2q6t4 + 3yzwq3t2 + y2]z14sw5q9t6 .

(A.5)

We want to compare (A.5) with the result obtained by contraction and cut procedure using a
much as possible results on terminal forms. Using the notation of Figure A.2, we must check that

TGf0
=TGf0∨e2 +TGf0/e2 . (A.6)

Evaluating TGf0∨e2 and TGf0/e2 , one finds

TGf0∨e2 = [xz8s(wq)3t2 + 1]T(Gf0∨e2)/e0 , T(Gf0∨e2)/e0 =T((Gf0∨e2)/e0)∨e1 + yz T((Gf0∨e2)/e0)/e1 ,
(A.7)

TGf0/e2 =T(Gf0/e2)∨e1 + yz T(Gf0/e2)/e1 . (A.8)

We used in (A.7) the fact that e0 is a bridge in Gf0 ∨ e2 and that e1 is a 2–inner loop in (Gf0 ∨ e2)/e0.
Meanwhile, in (A.8), we used the fact that e1 is a 2–inner loop in Gf0/e2.

A straightforward calculation yields

T((Gf0∨e2)/e0)∨e1 = z16sw7q15t10 , T((Gf0∨e2)/e0)/e1 = z14sw6q12t8 ,
T(Gf0/e2)∨e1 = z16sw7q15t10 + yz15sw6q12t8 , T(Gf0/e2)/e1 = z14sw6q12t8 + yz13sw5q9t6 .

(A.9)

Plugging these results on (A.7) and (A.8), and summing their contributions in (A.6), allow us to
recover (A.5).
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