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We present results of numerical simulations of leading-edge acoustic receptivity for
acoustic waves impinging on the leading edge of a finite-thickness flat plate. We use
both compressible and incompressible flow solvers fitted with high-order high-accuracy
numerical methods and independent methods of estimating the receptivity coefficient.
The results show that the level of acoustic receptivity in the existing literature
appears to be one order of magnitude too high. Our review of previous numerical
simulations and experiments clearly identifies some contradictory trends. In the limit
of an infinitely thin flat plate, our results are consistent with asymptotic theory and
numerical simulations.
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1. Introduction

An understanding of the laminar–turbulent transition process is crucial for
design and optimisation in numerous aerodynamic applications. The practical and
fundamental importance of the transition process has attracted extensive studies
over several decades; however, all stages of the transition process are not yet fully
understood. A critical one is the so-called receptivity stage, through which the external
perturbations trigger instability waves. Transition often occurs when the amplitude of
the instability waves reaches a certain critical level. Therefore, for a given flow, the
location of transition strongly depends on the initial amplitude of the perturbations,
making an understanding of the receptivity mechanisms a critical part of transition
prediction capability.

† Email address for correspondence: nima@mech.kth.se
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FIGURE 1. Branch I acoustic receptivity coefficient of the current major numerical and
experimental works on the MSE leading-edge geometry with different aspect ratios.

In the present work, we investigate the response of the boundary layer on a
finite-thickness flat plate with an elliptic leading edge to acoustic plane waves.
Acoustic disturbances that enter the boundary layer excite a variety of unsteady
modes, including the Stokes and Tollmien–Schlichting (TS) waves. Measurement of
the amplitude of the TS waves created by the acoustic field is a challenging task
due to the presence of Stokes waves with the same temporal frequency as the TS
waves. This problem has earlier been studied both experimentally (Saric & White
1998; Monschke, Kuester & White 2016) and numerically (Fuciarelli, Reed & Lyttle
2000; Wanderley & Corke 2001). However, the published results present a scattered
picture of the receptivity coefficients. In some cases these results show contradictory
trends with respect to variations of the leading-edge geometry.

We focus on the flow case of a flat plate with modified super-elliptic (MSE)
leading edge. The MSE leading edge has zero curvature at the junction with the flat
plate to minimise the undesired localised receptivity due to geometric discontinuities
(Goldstein & Hultgren 1989). Figure 1 summarises the acoustic receptivity coefficients
of the existing major studies on the MSE geometry with different aspect ratios (ARs)
but constant plate half-thickness Reynolds number of Reb = 2400 and Mach numbers
less than 0.1. Here, one can observe considerable scatter in the reported receptivity
coefficients, i.e. an order of magnitude, in some frequency ranges. It can be noted
from figure 1 that there exists a large amount of scatter in the experimental data,
both within each experiment and between different sets.

Another important observation is the discrepancy in the trends seen in the
direct numerical simulation (DNS) data of Fuciarelli et al. (2000) and Wanderley
& Corke (2001) to changes in AR. The results of the latter simulations show a
decrease of receptivity coefficient with increasing MSE aspect ratio. This trend is in
agreement with that reported in the numerical work by Lin, Reed & Saric (1992)
and experimental work by Wlezien (1994). However, the computed data by Fuciarelli
et al. (2000) show the opposite trend. These data show a reduction of the receptivity
coefficient by an order of magnitude when the leading-edge ratio is reduced from 20
to 6. The wide spread of the data shown in figure 1 demonstrates that the existing
perception of the acoustic receptivity coefficient for geometries with MSE leading
edge is ambiguous and inconclusive.

The objective of this work is to revisit this problem and perform DNS in order
to resolve the abovementioned ambiguities. The simulations are performed using
compressible and incompressible models of the same flow, using different high-order
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Acoustic receptivity of flow past a leading edge

methods for cross-verification. Accurate extraction of the TS wave amplitude is
ensured by using methods proposed by Murdock (1980) and Wlezien (1994).

2. Flow configuration and numerical approach

2.1. Geometry and flow parameters
The flow around a semi-infinite flat plate with an MSE leading edge is considered for
investigation. This geometry follows the suggestion by Lin et al. (1992) and is defined
as ( y

b

)2 +
(

a− x
a

)m

= 1, with m= 2+
( x

a

)2
, (2.1)

where x and y are the streamwise and wall-normal coordinates respectively. The
parameters a and b are the semi-major and semi-minor axes of the ellipse. The
aspect ratio of the ellipse is defined as AR ≡ a/b, measuring the curvature of the
leading edge.

The semi-minor axis of the ellipse, b, is chosen as the reference length scale in
this study. The reference velocity at the inflow, U∞, and the kinematic viscosity, ν,
are chosen in such a way that the Reynolds number becomes Reb = U∞b/ν = 2400.
The length of the computational domain in the downstream direction is L = 450
units (in terms of the plate half-thickness), which corresponds to a Reynolds number
of ReL = U∞L/ν = 1.08 × 106 at the end of the domain. This length is sufficient
to accommodate the second branch of the neutral stability curve for the considered
frequencies in this study. The extent of the domain in the wall-normal direction
and upstream of the leading edge is 400 units, which is 200 times larger than the
maximum boundary layer thickness in the considered domain.

2.2. Direct numerical simulations
We use two different flow models. Considering first an incompressible model, the
incompressible Navier–Stokes equations are integrated in time using the NEK5000
code developed by Fischer, Lottes & Kerkemeier (2008). NEK5000 is based on the
spectral element method (SEM) to provide geometrical flexibility, spectral accuracy
and efficient parallelisation. The physical domain in the SEM is decomposed into
spectral elements where the local approximation of the flow field is obtained as a sum
of Lagrange interpolants defined by an orthogonal basis of Legendre polynomials up
to degree N. In the main part of this study we have used N = 8. The time integration
is a third-order scheme.

For the baseflow computation using the incompressible fluid solver, no-slip and
no-penetration boundary conditions are imposed on the solid surface. The far-field
boundary conditions are of Dirichlet type, obtained from a potential-flow solution
around a corresponding body thickened by the displacement thickness of the evolving
boundary layer. Along the stagnation streamline, a symmetric boundary condition has
been employed to reduce the computational cost. The outflow boundary condition is
the natural condition derived from the weak form of the Navier–Stokes equations.
More detail on this topic can be found in Schrader et al. (2010).

Our second flow model does not assume incompressibility and solves the
compressible Navier–Stokes equations in curvilinear coordinates using high-order
finite differences. A globally fifth-order explicit summation-by-parts scheme (Strand
1994) is used for spatial discretisation that is fourth-order accurate on the boundary
and eighth-order accurate in the interior. The divergence of the viscous fluxes is
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Simulation AR Nx ×Ny 1Smin 1Smax 1ymin

Incompressible 6 587× 128 3.391× 10−2 2.3817 0.02
Incompressible 20 554× 128 3.304× 10−2 2.3817 0.02
Incompressible 40 526× 128 1.718× 10−2 2.3817 0.02
Compressible 20 809× 257 6.185× 10−4 0.7692 0.002

TABLE 1. The parameters of the computational grids: Nx and Ny denote the numbers of
elements/grid points in the streamwise and wall-normal directions; 1Smin and 1Smax are
the minimum and maximum element sizes/grid spacings along the surface; 1ymin is the
minimum element size/grid spacing normal to the surface.

computed using analytical second derivative operators, which add, in the domain
interior, dissipation at the highest wavenumber. No artificial dissipation is used. The
equations are advanced in time using an explicit fourth-order Runge–Kutta method.

Simultaneous-approximation-term (SAT) boundary conditions are used on all
boundaries except the outflow to enforce isothermal no-slip conditions on the
wall (Svärd & Nordström 2008) and the far-field (Svärd, Carpenter & Nordström
2007) conditions. Non-reflecting boundary conditions are used at the outflow. These
boundary conditions are numerically stable and have been shown by Bodony (2010)
to be accurate in aeroacoustic problems. Sponge regions are located adjacent to the
far-field and outflow boundaries in the baseflow computation to dampen unwanted
acoustic reflections as well as to impose the incident acoustic waves (Bodony 2006).

The compressible equations are non-dimensionalised with respect to the ambient
reference variables, density ρ∞, speed of sound a∞, viscosity µ∞ and the plate half-
thickness b as the reference length scale. The free-stream velocity and the plate half-
thickness are chosen to have Reb =U∞b/ν = 2400. We set the Mach number at 0.1.

The computational mesh is designed such that elements/grid points are clustered
towards the wall and the leading edge, using geometric stretching, to resolve the
boundary layer. The mesh is designed to have a minimum of 20 grid points per
instability wavelength (predicted by the local theory) in the streamwise direction.
Table 1 summarises the parameters of the different grids used in this study.

2.3. Perturbed flow
Acoustic wave disturbances within an incompressible framework are modelled by
superposing a periodic fluctuation in the form of u′ = ε cos(ωt), with angular
frequency ω/2π and amplitude ε, on the streamwise velocity component of the
far-field boundary similarly to Fuciarelli et al. (2000) and Wanderley & Corke (2001).
Therefore, the far-field boundary condition would be to enforce u=U∞(1+ ε cos(ωt)).
The ‘acoustic’ waves of such form have zero spatial wavenumber, resulting in an
infinite-wavelength acoustic wave model. We set the acoustic perturbation amplitude
to ε= 10−3 to generate a uniform oscillation with a maximum amplitude of 0.1 %U∞.

In the compressible simulations, planar acoustic waves are generated through the far-
field boundary condition and are enforced by the sponge zone similarly to the work by
Zhang & Bodony (2012). These waves are imposed at the far-field boundary as well
as in the sponge zone, and propagate to the leading edge by the nonlinear equations of
motion. The amplitude of the acoustic waves corresponds to 101 dB, as used by Saric
& White (1998). The length of the sponge zone in the far field can accommodate a
minimum of one acoustic wavelength of the smallest frequency considered.
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FIGURE 2. (a) Pressure coefficient distribution Cp and (b) its chordwise derivative as a
function of the streamwise coordinate. The vertical dashed lines depict the junction of the
leading edge and the flat plate.
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FIGURE 3. Comparison of the streamwise and wall-normal velocity profiles with the
Blasius similarity solution, (a) at the streamwise location x = 50, Rex = 1.2 × 105 and
(b) at the streamwise location x= 200, Rex = 4.8× 105; 20 : 1 MSE leading edge.

3. Results

3.1. Basic state
A steady-state solution resolved in space and converged in time is calculated prior
to performing the simulations with the incident perturbations. The baseflow is used
in the perturbation simulations as the target state in the sponge regions. In addition,
computation of the baseflow enables us to cross-check the results between the codes.
The governing equations are integrated in time until a steady-state baseflow is reached.
We consider the baseflow to be converged in time when the time derivative of the flow
variables is below O(10−11).

Figures 2(a) and 2(b) show the distribution of the surface pressure coefficient Cp

and its chordwise derivative as functions of the streamwise coordinate. As is seen in
these figures, there is a local region of favourable pressure gradient near the leading
edge where the flow accelerates followed by a region of adverse pressure gradient
where the flow decelerates moving downstream. Sufficiently far downstream of the
leading edge, the pressure gradient is small and the flow can be considered to be of
Blasius type. A comparison between the Blasius similarity solution and the velocity
profiles obtained by DNS is shown in figure 3 for streamwise positions of x= 50 and
200. At the former location, a deviation from the Blasius profile is apparent due to
the presence of the pressure gradient. At the latter location both velocity components
closely match the Blasius profile.

800 R2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

43
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.433


N. Shahriari, D. J. Bodony, A. Hanifi and D. S. Henningson

There is a good match between the compressible and incompressible results, as
shown in figures 2 and 3 for the baseflow computation. This close match demonstrates
the correctness of the numerical set-up in both codes and the sufficient resolution
for baseflow computation. A resolution study (p-refinement) was performed for the
incompressible simulation, where the results obtained using polynomial orders of 8
and 10 are on top of each other. Grid convergence of the compressible baseflow was
also demonstrated in this study (not shown).

3.2. Perturbed flow and TS wave extraction
A number of simulations with small-amplitude acoustic perturbations and different
dimensionless frequencies were performed. As a result, the perturbed flow is
harmonic in time with the prescribed acoustic frequency. A fast Fourier transform
in time is applied on the flow-field snapshots to obtain the Fourier amplitude of the
perturbations.

In order to extract the TS wave amplitude from the total perturbation amplitude,
we follow the method proposed by Murdock (1980). He suggests that the magnitude
of the spatial mean of the disturbances is associated with the sound wave and the
magnitude of the envelope about the mean is associated with the TS wave. For our
incompressible flow model, the solution inside the boundary layer is composed of
a Stokes wave with infinite wavelength (αStokes = 0) and a TS wave with a finite
wavelength:

u=Re{AStokes e−iωt + ATS e−iωt+iαTSx}. (3.1)

We have assumed that the Stokes and TS amplitudes are independent or weakly
dependent and that they are functions of the wall-normal direction and slowly varying
functions of the streamwise coordinate. The complex Fourier amplitude of the solution
at the frequency ω is û=AStokes+ATS eiαTSx, and the magnitude of the amplitude reads
as

|û| = (A2
Stokes + A2

TS + 2AStokesATS cos(αTSx))1/2. (3.2)

If the TS wave amplitude is much smaller than the Stokes wave amplitude, AStokes�
ATS, relation (3.2) can be expanded using a Taylor series, which results in

|û| = AStokes + ATS cos(αTSx)+O(A2
TS). (3.3)

Equation (3.3) shows that the Fourier amplitude of the total disturbance oscillates
spatially around a mean value AStokes, with the amplitude and wavelength of the TS
wave.

Figure 4(a) shows the evolution of the total streamwise velocity fluctuations at a
constant distance of 0.2 from the wall, demonstrating that the perturbations oscillate
spatially with the TS wavelength. Furthermore, it is apparent that the amplitude
of the Stokes wave is affected by the strong pressure gradients present up to the
lower-branch region. Therefore, without loss of the generality in the decomposition
method, we only consider streamwise locations downstream of the lower branch
where the Stokes layer has a nearly constant thickness. The TS wave amplitude is
extracted at the upper-branch location and scaled down to the lower branch using the
amplitude ratio computed by the parabolised stability equations (PSE). Figure 5(a)
shows the distribution of the maximum streamwise perturbation velocity normalised
by the free-stream disturbance amplitude for the incompressible data. Following the
extraction method by subtracting the mean of the signal, illustrated with the red line,
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FIGURE 4. The streamwise perturbation amplitude distribution in the streamwise direction
at a constant distance of 0.2 from the surface: (a) the incompressible and (b) the
compressible results. The vertical dashed lines from left to right indicate the junction with
the flat plate, and the lower and upper branches of the neutral curve respectively; 20 : 1
MSE leading edge with dimensionless frequency of F= 100.
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FIGURE 5. The distribution of the maximum streamwise perturbation amplitude,
normalised by the amplitude of the acoustic wave at free stream in (a) the incompressible
and (c) the compressible simulation. The red lines illustrate the global and local means
of the signal shown respectively. Plots of (b) A = |û|/ε − mean(|û|/ε) and (d) A =
|û|/Aac −mean(|û|/Aac), showing the streamwise evolution of the TS wave amplitude in
blue; 20 : 1 MSE leading edge and F= 100.

the envelope of the remainder is the TS wave amplitude shown with the blue line in
figure 5(b). A resolution study using polynomial orders of 8 and 10 has confirmed
these results.

The same analogy is valid for extracting the TS wave amplitude from the
compressible data. As shown in figure 4(b), the acoustic wave in the compressible
simulations has a long finite wavelength, contrary to the infinite wavelength in the
incompressible framework. Therefore, in order to remove the acoustic wave from the
total compressible perturbation signal, a local average of the total signal is used in
contrast to the global average (mean) in the incompressible case. The local average
is calculated by taking the convolution of the signal with a spatial Gaussian window,
with a window length that is three times the TS wavelength. Figure 5(c) shows
the maximum amplitude of the total perturbations normalised by the amplitude of
the free-stream acoustic wave, Aac, in black and the local average of the signal
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FIGURE 6. The branch I acoustic receptivity coefficient as a function of the reduced
frequency.

in red. Subtraction of the total amplitude from the local averaged one is shown in
figure 5(d), where the envelope of the remaining signal is the TS wave amplitude.
The independence of the results with regard to the local averaging window size has
been ensured by varying the window length. Grid refinement studies have confirmed
these results.

3.3. Receptivity coefficient
The branch I receptivity coefficient, KI , is defined as the ratio of the TS wave
amplitude and the acoustic wave amplitude,

KI = |ûTS|I
uac
= |ûTS|II

eNuac
, (3.4)

where N is the integrated growth rate from branch I to branch II. This definition
of the receptivity coefficient includes the effects of both the leading edge and the
subsequent pressure distribution at the branch I location. The amplitude of the
acoustic wave, uac, is measured in the free stream. Here, it is equal to ε = 10−3 in
the incompressible simulations and Aac = 2.13 × 10−5 (equivalent to 101 dB) in the
compressible simulations.

Figure 6 shows the branch I acoustic receptivity coefficient as a function of the
dimensionless frequency for three different MSE leading-edge ARs and the infinitely
thin flat-plate geometry. There is an excellent agreement between the results of the
incompressible and compressible simulations, validating the numerical set-up for each
code, the TS wave extraction procedure and, therefore, the results.

It is evident from figure 6 that the receptivity coefficient increases by reducing
the leading-edge aspect ratio. In other words, leading-edge bluntness enhances the
branch I acoustic receptivity. This is due to the fact that a blunter leading edge has
a larger (in magnitude) local adverse pressure gradient in the leading-edge region
(see figure 2), which has a destabilising effect on the evolution of TS waves. This
trend is in agreement with the previous numerical work by Lin et al. (1992) and the
experiment of Wlezien (1994). Moreover, Lin et al. (1992) report that the receptivity
coefficient for AR= 6 is of order 10−1 at a frequency of F= 2πf ν/U2

∞ × 106 = 230,
which is in good agreement with our result, KI = 0.12 for the same frequency
(not shown in figure 6).
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FIGURE 7. The distribution of (——) the TS wave amplitude, extracted using the method
proposed by Wlezien (1994), (– – – –) the N-factor and (E) the TS wave amplitude
extrapolated from the branch II location using PSE: (a) 6 : 1 MSE and (b) 20 : 1 MSE;
F= 85.

In the limit of an infinitely thin flat plate, the receptivity coefficient is in close
agreement with the asymptotic results of Giannetti & Luchini (2006) and the PSE
results of Turner (2012). The numerical set-up for this case includes the leading edge
of the flat plate and the upstream region. Moreover, we observe close agreement with
the DNS result of Murdock (1980), where he reports KI = 5.5± 1.5× 10−5 for F= 56.
The agreement between our results for an infinitely thin flat plate and other works
based on the asymptotic theory, PSE and DNS serves as another validation of the
presented results.

Fuciarelli et al. (2000) use the decomposition method proposed by Wlezien (1994)
to extract the TS wave amplitude. For the sake of comparison, we have used the same
procedure to obtain the TS wave amplitude in our simulations for the incompressible
flow. The results are presented in figure 7 for F = 85, AR = 6 and 20. Here also
the extrapolated amplitude from branch II using PSE is shown. As can be seen, there
is a good match between the extracted TS wave amplitude and the extrapolated one.
The TS wave amplitudes at the branch II location obtained by Wlezien (1994) and
the method of Murdock (1980) are practically the same, which results in the identical
branch I receptivity coefficients presented in figure 6.

4. Discussion and conclusions

The acoustic receptivity coefficients presented in figure 6 for the MSE geometries
are approximately one order of magnitude smaller than the values in the existing
results shown in figure 1. In order to understand the reasons for this mismatch, we
attempt to point out inconsistencies that exist in the literature.

Employing asymptotic theory, Kerschen, Choudhari & Heinrich (1990) predicted
that the leading-edge receptivity coefficient, KLE, is of order of unity for planar
acoustic waves propagating parallel to the wall surface. This coefficient can be
used to estimate the order of magnitude of the branch I receptivity coefficient
as KI = KLE/eN , where N is the integrated growth rate (N-factor) from the branch I
location to the leading edge. The evolution of the N-factor in the streamwise direction
is computed using PSE and shown in figure 7. At the reduced frequency of F = 85,
the N-factors for the MSE leading edges with AR= 6 and 20 are N = 5 and N = 6.2
respectively. Assuming that the asymptotic leading-edge coefficient is KLE = 1, the
receptivity coefficient at branch I is expected to be KI = 1/eN = 0.0065 for the 6 : 1
MSE leading edge and KI = 0.002 for the 20 : 1 MSE leading edge, an approximate
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magnitude of 10−3. The results of the present study are within this range, while all
of the existing results in the literature for the 20 : 1 MSE leading edge are one order
of magnitude larger than the estimated value.

The reason for the discrepancies within the experimental data of Saric, Wei &
Rasmussen (1995), Saric & White (1998) and Monschke et al. (2016), in which
the same physical model and wind tunnel were used, is unclear. However, those
experiments used three different measurement techniques and were conducted over a
20-year span. Moreover, these measurements are extremely difficult and sensitive to
many factors. This makes it possible that even a small bias could have a significant
impact on the experimental results, with one plausible reason being acoustically
excited leading-edge vibration (private communication, W. S. Saric & E. B. White).

Regarding the computational studies, in the computational work of Fuciarelli
et al. (2000) their domain does not include the branch I location for their frequency
range. Therefore, they extrapolate the TS wave amplitude measured upstream of
branch I to the first neutral point using local stability theory. The report by Fuciarelli
et al. (2000) is concentrated on a leading edge with an aspect ratio of AR = 6.
Their reported results for this geometry are in agreement with our simulations
(KI = 0.0030–0.0034 for F = 80–90). Their results for AR = 20, being one order of
magnitude higher (KI = 0.04), only appear in a table where the data are compared
with the experimental values. Unfortunately, Fuciarelli et al. (2000) do not report
the amplitude decay ratio for the AR= 20 case. Using the amplitude ratio from our
PSE analysis, we find a leading-edge receptivity coefficient of order 10, which is one
order of magnitude higher than the expected value based on the work of Kerschen
et al. (1990). Moreover, in agreement with the DNS of Lin et al. (1992) and the
experiment of Wlezien (1994), the branch I receptivity coefficient in the current
study is found to be larger for blunter leading-edge shapes. Fuciarelli et al. (2000),
however, report a larger receptivity coefficient (one order of magnitude) for the 20 : 1
MSE leading edge compared with the 6 : 1 MSE leading edge. This suggests that
their reported values for AR= 20 are incorrectly tabulated.

The receptivity coefficient reported by Wanderley & Corke (2001) is obtained
by considering the amplitude of the TS wave directly at the branch I location.
However, Turner (2012) shows by replicating their TS wave extraction method that
the amplitude of the TS wave in the lower-branch region is contaminated by the
remnants of the Stokes layer, not removed by their filtering process. Indeed, by
extrapolating the upper-branch TS amplitudes reported in Wanderley (1998) to the
lower branch, the receptivity coefficient KI is found to be at least half of the values
reported in Wanderley & Corke (2001). Furthermore, in the latter study, which is
based on a second-order-accurate numerical method, only 36 grid points have been
used to resolve the whole domain in the wall-normal direction. In contrast, the
numerical resolution in the present study is at least five times that of Wanderley &
Corke (2001). Using the parameters they give, we were unable to obtain a numerically
converged solution using the NEK5000 which has spectral accuracy.

Using cross-verified simulations with different flow models and identifying
numerical explanations for large-KI predictions from previous simulations, we
thus conclude that the current receptivity predictions are accurate and one order
of magnitude smaller than the existing values in the literature.
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