
Math. Struct. in Comp. Science (2008), vol. 18, pp. 189–204. c© 2008 Cambridge University Press

doi:10.1017/S0960129508006622 Printed in the United Kingdom

Model theory of exponentials on Lie algebras

ANGUS MACINTYRE

Department of Mathematical Sciences, Queen Mary University of London,

Mile End, London E1 4NS, United Kingdom

Email: angus@dcs.qmul.ac.uk

Received 30 July 2007

In Memory of Sauro Tulipani

This paper presents an analysis of definitions and decidability for exponential functions on

various matrix algebras. The main idea is to show that, generically, the entries of the

exponential (or logarithm) of a matrix are Pfaffian functions of the entries of the matrix.

1. Introduction

In the last fifteen years model theorists have reached a very satisfactory understanding

of the exponential function both on � and �. This paper contributes to a more general

study of exponentials on finite-dimensional Lie algebras over � and �, and shows that

most of the earlier results can be widely generalised.

For the classical exponential on �, the model theory is that of the structure

< �,+, ·,−, <, 0, 1, exp > .

The main qualitative result is due to Wilkie (Wilkie 1996), who showed that the

structure is model-complete and o-minimal.The analysis was later constructivised, and

axioms found, leading to the proof of decidability, relative to Schanuel’s Conjecture, in

Macintyre and Wilkie (1996).

For the complex exponential, the model theory is that of

< �,+, ·,−, <, 0, 1, exp > .

Tarski knew in the 1930’s that this is undecidable, using the interpretability of 2πi�. I

observed about fifteen years ago that the theory is not model-complete. A more recent,

deeper understanding contrasts these ‘negative’ results with the fascinating insights of

Zilber (2004), which suggest that one may be able to reach a satisfying analysis of the

definable sets, modulo the basic Godelian clutter coming from 2πi�.

It is particularly striking that Schanuel’s Conjecture is crucial in both the real and

complex cases, though in different ways.

In 2003 I noticed that the Weierstrass ℘-functions on their fundamental domains have

a model-complete theory very similar to that of the real exponential (Macintyre 2005a).
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I developed the basic ideas of Bianconi (Bianconi 1990) to obtain constructive model-

completeness results and (relative) decidability results, assuming André’s Conjecture on

transcendence in the theory of 1-motives (Bertolin 2002).

These recent results are really about the exponential map on the tangent space of

a 1-dimensional complex torus, and suggest that one should now consider the general

setting of model theory for exponentials of finite-dimensional Lie algebras over � and �.

2. Formalism

K will be one of � or � throughout the rest of the paper, and I will specify in context

any restrictions that have to be made.

Serre (1965) will be our basic reference for Lie theory over K .

Our formalism will have to account for at least some of the following:

(1) a Lie group G (a K-analytic group);

(2) a Lie algebra G over K , typically the tangent space Te(G) with the usual Lie algebra

structure;

(3) the exponential map from Te(G) to G, or perhaps its restriction to some natural subset

of Te(G);

(4) a logarithm map from a natural subset of G to Te(G).

From the standpoint of the classical ‘affine’ Tarskian formalism, the Lie algebra G is a

more natural structure than G. If G has dimension n over K , we can simply regard it as

Kn, qua vector space over K (=< K,+, .,− >, with an extra map [ ] from Kn to itself,

satisfying the usual Lie axioms.

G, on the other hand, is simply an n-dimensional analytic group, which is not in general

affine, and so may have to be interpreted via a (possibly infinite) covering by affine pieces.

This does not fit the Tarskian foundations so neatly, especially when G is not compact.

One natural way to obtain an ‘affine’ piece of G is through the following sequence of

ideas (Serre 1965):

(1) From an n-dimensional G over K , construct CH(G), that is, its Campbell–Hausdorff

formal group law (in K[[x1, . . . , xn]]).

(2) Show that CH(G) gives Kn the structure of an analytic group chunk, also denoted

CH(G), whose tangent space at the identity is naturally isomorphic to G.

(3) If G = Te(G), where G is an analytic group chunk, show that there is a unique local

isomorphism exp from CH(G) to G, which induces (via the functor Te) the identity on

G (under the identification of Te(CH(G) with G).

The main point here is that exp is defined on all of CH(G), and is a local isomorphism.

As Serre shows in Serre (1965, Section LG5.35), exp extends to G through

exp(x) = exp
( x

m

)m

for sufficiently large positive integers m.

An affine piece of G can be obtained by considering a restriction of exp giving an

isomorphism of open neighbourhoods U and V of 0 and e in CH(G) and G, respectively.
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In turn, this leads us to consider logarithmic maps from open subsets of G to G. A

major nuisance for systematic first-order work on the Lie group G is the non-explicit

nature of the ‘logarithmic regions’, that is, natural domains for the logarithm.

One particular way of looking at the model theory of G in light of the preceding

discussion is to work with sorts for:

(1) a chunk of G in Kn;

(2) the Lie algebra L(G) = G on Kn;

(3) exp from CH(G) into the chunk of G.

The sorting is not crucial since everything is happening in Kn.

Note that if we restrict to a chunk with compact closure (living on a reasonable set),

the above formulation effectively puts us in an o-minimal situation. For K = � this is

clear by interpretation in �an. For K = � one passes via the interpretation of � as �2,

using the real and imaginary parts of the analytic functions involved.

However, it is much less obvious what one can prove about model-completeness and

decidability. This issue, in full generality, will be addressed in a later paper. In the present

paper, I restrict consideration to matrix groups G, which are explicitely given affinely.

Thus, if G is a closed subgroup of GLm(K), we construe G as a subset of Km2

. Then Te(G)

is naturally construed as a subalgebra of Mm(K), and it is well known that near (the

matrix) 0 exp is given by the standard infinite series, and similarly for log(� + x).

Thus, I now consider G a closed subgroup of GLm(K) and G the corresponding Lie

algebra of matrices, and will subsequently consider formulations involving exp or log on

suitable subsets.

3. Elementary results

I fix n and work with G a subgroup of the units of the ring Mn(K), and the corresponding G
a Lie subalgebra of the usual Lie algebra substructure on the matrix ring. The exponential

function exp is defined by the usual convergent series.

I work in the usual field structure (or ordered field structure in the case of the reals)

on K , and have a primitive for exp.

So for n = 1 and K = � we have the results of Wilkie (1996) and Macintyre and

Wilkie (1996), and for n = 1 and K = � we have the results and perspective of

Zilber (2004).

For n = 2 and K = � we already move out of o-minimality. We identify � inside the

matrix ring as the set of all r.� for r ∈ �, and thus as the centre. Now consider any

matrix A with A2 = −� . Then � + �A is a field, isomorphic to � and is the centraliser

of A. Moreover, it is closed under exp, and thus we have (in terms of A) an interpretation

of the complex exponential, and so of �. Note, too, that < �, exp > is easily interpreted

in < M2(�), exp > using the centre, so again there can be no o-minimality (using the

interpretation of � as �2).

The issue of interpretability the other way is more delicate.

Theorem 3.1.

(a) < M2(�), exp > is interpretable in < �, exp >.
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(b) < M2(�), exp > is not interpretable in < �, exp >.

(c) < M2(�), exp > is not interpretable in < �, exp > if Zilber’s Conjecture (Zilber 2004)

is true.

(d) < M2(�), exp > is interpretable in < �,�, exp >.

Proof.

(a) Let A ∈ M2(�). Then A can be written uniquely (Jordan form) in the form a = B+C ,

with B diagonalisable and C nilpotent (in fact C2 = 0), and BC = CB.

So

exp(A) = exp(B) exp(C) = exp(B)(� + C).

Now, since B is diagonalisable, we have

D−1BD = diag(λ1, λ2)

for some D and λ1, λ2. Then

exp(B) = D diag(exp(λ1), exp(λ2))D
−1.

(b) This is immediate from an earlier remark about o-minimality.

(c) It suffices, by the preceding discussion, to show that < �, exp > is not inter-

pretable. But this follows from the infinitary ω-stability of < �, exp > conjectured

by Zilber.

(d) This is essentially the same argument as in (a). We use the predicate for � to interpret

M2(�) inside M2(�), and the rest of the proof in (a) applies.

4. A remark on the complex logarithm

In the real case, the exponential and the logarithm are bi-interpretable. However, the

situation is quite different for the complex case. Here one may naturally consider the

complex field carrying the extra structure of the branch of the logarithm one gets by

putting log(1) = 0 and having as domain of definition the plane with the non-positive

real axis deleted. Let us write this structure as

< �, log > .

Theorem 4.1. < �, log > is o-minimal and decidable if Schanuel’s Conjecture is true.

Proof. It is clear that this structure is interpretable in the real exponential field enriched

by primitives for sine and cosine on [0, 2π]. This gives o-minimality via the usual

�an interpretation. The decidability modulo Schanuel can be proved along the lines

of Macintyre and Wilkie (1996), using the fact that sine and cosine are Pfaffian away

from π�. Finally, one uses the complex Schanuel Conjecture, rather than the real one as

in Macintyre and Wilkie (1996). (I will recall the basics of Pfaffian functions later in this

paper).

It is worth noting that Bianconi showed that the restricted trigonometric functions are

not interpretable in < �, exp > (Bianconi 1997).
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5. Some readily accessible positive results beyond < �, exp >

5.1. so(2)

so(2) is the real Lie algebra of skew-symmetric elements of M2(�). The elements are of

the form (
0 x

−x 0

)
, x ∈ �.

exp

(
0 x

−x 0

)
=

(
cos x sin x

− sin x cos x

)
∈ SO(2),

where SO(2) is the special orthogonal group.

So exp : so(2) −→ SO(2) is surjective, by inspection.

In this particular case, the Lie algebra is abelian, and

exp(A + B) = exp(A) · exp(B).

Moreover, the kernel of exp is readily identifiable as the set of all matrices of the form(
0 2nπ

−2nπ 0

)
, n ∈ �,

so the Lie algebra formulation is obviously undecidable. If we pass to a logarithmic

formulation, the situation changes (cf. Section 4).

Note that so(2) and � are isomorphic real Lie algebras, but the following Lie groups,

all with the preceding as Lie algebra, are not isomorphic:

(1) �∗;

(2) �+;

(3) SO(2).

The first is not connected; the second is connected and simply connected, but not

compact; and the third is connected, but not simply connected, and is compact. In each

case, the group chunk CH(G) is � with a fragment of +, and that is all one can say. exp

is onto SO(2), but not in the other cases. Corresponding to the logarithm for �+, defined

on the non-negative elements of the group, we have a logarithm for SO(2) defined as

follows:

log

(
u v

−v u

)
=

(
0 x

−x 0

)
where

x = arg(u + iv) u + iv �= −1

where arg is given by the imaginary part of the branch of the complex logarithm mentioned

in Section 4.

Now, just as the real logarithm is Pfaffian on its domain of definition, the above

logarithm is Pfaffian (as a function of two real variables u, v with u2 + v2 = 1 and

(u, v) �= (1, 0)) except at the four points(
1 0

0 1

) (
−1 0

0 −1

) (
0 1

−1 0

) (
0 −1

1 0

)
.
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From this observation, and the compactness of SO(2), one can use the method of

Macintyre and Wilkie (1996) or Gabrielov and Vorobjov (2004) to prove, just as for the

complex logarithm in Section 4, that the structure of SO(2) with the above logarithm

(interpreted as a function of two variables) is constructively model-complete, and decidable

relative to Schanuel’s Conjecture. One now asks, naturally, if this is true for the higher

orthogonal groups. This is in fact so, but harder to prove. For n = 3, however, we can

begin an analysis along the lines of what we have just done.

5.2. SO(3)

For G = SO(3), we have Te(G) is so(3), the Lie algebra of skew-symmetric elements in

M2(�). G is compact and connected, but not simply connected.

A typical A in so(3) is of the form⎛
⎝ 0 x y

−x 0 z

−y −z 0

⎞
⎠ .

exp : so(3) −→ SO(3) is given by Rodrigues’ formula (Barut et al. 1994):

exp(A) = � +
sin(θ)

θ
A +

1 − cos(θ)

θ2
A2 (1)

where θ =
√
x2 + y2 + z2 (and, for θ = 0, sin(θ)

θ
= 1 and 1−cos(θ)

θ2 = −1).

Since G is compact and connected, exp is surjective. exp is not injective, as one can

easily see by considering exp on the subalgebra of all A as above with x = y = 0. This

observation gives undecidability for the Lie algebra formulation.

Note that exp is clearly Pfaffian, in the sense that its entries are, except on π�.

What about a logarithm? It is not at all obvious what its domain should be, and

whether it is Pfaffian. The main result of this paper (Theorem 6.2) will find a natural

domain, and show that the logarithm is Pfaffian. This will lead to a series of positive

results along the lines of those in the preceding subsection.

6. Model theory of eigenvalues

6.1. Going beyond the Rodrigues formula

While it is well known that the computation of exp, even for real matrices, is naturally

approached using a computation of exp of their complex eigenvalues (an idea that has

already been used in this paper in the proof of Theorem 1 (a)), it requires considerable

effort to get from this to formulas (such as that of Rodrigues) for the entries of exp of

an explicitly given matrix. It seems that the needs of physics have been a major incentive

to finding such formulas explicitly. Google led me to the paper Barut et al. (1994), which

contains ideas and calculations very convenient for the modeltheoretic problems I address

in this paper. The calculations in Barut et al. (1994) are done only for n � 6, and I have

not seen explicit formulas for higher n, but the basic ideas (as hinted in Barut et al. (1994))

apply for all n, and the lack of explicitness is not a problem for my purposes.
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6.2. The basics of Pfaffian functions

The basic results are due to Khovanski, but for my purposes, the recent papers by

Gabrielov and Vorobjov are very convenient (Gabrielov and Vorobjov 2004), and I take

the definitions below from them.

A Pfaffian chain of order r � 0 and degree α � 1 on an open set U ⊂ �n (respectively,

U ⊂ �n) is a sequence of real (respectively, analytic) functions f1, . . . , fr on U satisfying

the Pfaffian equations

dfj = dfJ(x) = g1jdx1 + .. + gijdxi + · · · + gnjdxn,

where the gij = gij(x, f1(x), . . . , fj(x)) are polynomials in x = (x1, . . . , xn) of degree not

exceeding α. A function f(x) = P (x, f1(x), . . . , fr(x)) where P (x, y1, . . . , yr) is a polynomial

of degree not exceeding β is a Pfaffian function of order r and degree (α, β).

The basic example of a Pfaffian function (on any U) is exp. sin and cos are not Pfaffian

on the whole space, but are on � with the set π� removed.

The essential difference between the real and complex cases is that in the real case, but

not in the complex case, one has major finiteness theorems for the number of connected

components of zero sets and positivity sets, with bounds uniform in families and depending

only on order and degree. These results of Khovanski have been of immense significance

for model theory, first in the work of Wilkie and then as part of the general theory of

0-minimality.

An important cautionary note is that, in general, the real and imaginary parts of a

complex Pfaffian function need not be Pfaffian in the real sense. An important, though

very restricted, case where one does get real Pfaffian functions in this way is to be found

in Macintyre (2005b).

Algebraic functions (and their real and imaginary parts) are Pfaffian on the appropriate

domains. We will see examples below.

Sums and products of Pfaffian functions are Pfaffian, and the class of Pfaffian functions

is closed under division by non-vanishing Pfaffian functions. These properties will be used

systematically below.

6.3. Around Cayley–Hamilton

I work in Mn(�), though Mn(�) is my primary interest. The topology is that of �n2

or,

equivalently �2n2

. Indeed, the formulation in real terms will be crucial as I aim to prove

that certain functions are Pfaffian. I think of complex numbers as pairs of reals, and

complex functions as pairs of real functions, and so on.

Consider the Zariski open set W consisting of the A with distinct eigenvalues. W is

Zariski open since W can be defined by the non-vanishing of the discriminant of the

characteristic polynomial

det(A − z�)

of A.

Note that W is a dense open set.
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The basic problem is to define on W the functions

λ1, . . . , λn

giving the distinct eigenvalues. Bearing in mind that each complex number is given by a

pair of real numbers, namely its real and imaginary parts, the obvious definition (in the

semi-algebraic category) is to give the induced lexicographic order to the eigenvalues, and

to take the

λ1, . . . , λn

as giving the eigenvalues in this lexicographic order.

These functions are pairs of real-valued functions of 2n2 real variables, but for

convenience I write them as functions of the variable A, that is, as

λ1(A), . . . , λn(A).

The first objective is to find open sets on which these functions are Pfaffian. First

observe that by applying the Implicit Function Theorem (in the analytic category) to

det(A − z�)

at a point (A, λi(A)), one gets that the λi are analytic on W .

We now write det(A − z�) as

det(A − z�) = (−1)n
(
zn + c1(A)zn−1 + · · · + cn(A)

)
,

where the cj are polynomials over � in the entries of A.

Now let w be a variable for one of the entries of A. We have

λi(A)n + c1(A) · λi(A)n−1 + · · · + cn(A) = 0,

so

nλi(A)n−1 ∂λi

∂w
+ (n − 1)λi(A)n−2ci(A)

∂λi

∂w

+ · · · + cn−1(A)
∂λi

∂w
+

∂c1

∂w
λi(A)n−1 +

∂c2

∂w
λi(A)n−2 + · · · = 0

giving

∂λi

∂w
= −

(∑
j
∂cj
∂w

λi(A)n−j
)

∂
∂z
det(A − z�)(λi)

,

provided the denominator is not 0. But the denominator is not zero on W , precisely

because the discriminant is not zero.

The idea is to write the denominator as a polynomial in w with coefficients rational in

A. This is 19th century algebra, but can also be done by elementary model theory.

Lemma 6.1. For each n there are polynomials

F1, . . . , Fk
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in �[w1, . . . , wn], and polynomials

G0,0, . . . G0,n−1

. . . . .

. . . . .

Gk,0, . . . Gk,n−1

in �[w1, . . . , wn], such that if

H(w1, . . . , wn, z) = zn + w1z
n−1 + · · · + wn

and H ′(w1, . . . , wn, z) is ∂
∂z
H(w1, . . . , wn, z), then, for any algebraically closed field K of

characteristic 0 and β1, . . . , βn ∈ K such that the discriminant of H(β, z) is not 0, then

some Fj(β) �= 0, and in that case(∑
l

Gj,l(β̄)zl

)
H ′(β̄, z) ≡ Fj(β̄)mod H(β̄, z)

in K[z].

Proof. We use a straightforward Herbrand argument for witnessing the fact that H(β, z)

and H ′(β, z) are coprime over any field of characteristic 0 if the discriminant is non-zero.

Now we return to the equation for ∂λ/∂w. Using the preceding result, we see that if

Fj(c1(A), . . . , cn(A)) �= 0, then

∂λ

∂w
= −

(∑ ∂cj

∂w
λ(A)n−j

)
·
(∑

Gj,l (c1(A), . . . , cn(A))wl
)
,

showing (since the cj are polynomials) that each λ is Pfaffian on

W ∩ {A : Fj(c1(A), . . . , cn(A)) �= 0}.

Note: It can certainly happen, for example, for so(n), that all A in the Lie algebra under

consideration satisfy

Fj(c1(A), . . . , cn(A)) = 0

for a fixed j. This could happen if we had chosen Fj(w1, . . . , wn) as w1, which is an entirely

natural choice if one follows the standard procedure for finding the greatest common

divisor of two polynomials.

Nothing difficult has been proved in the preceding. The λ are algebraic on W , and we

have shown that there is a finite cover of W by (explicitly computable) open sets such

that λ is complex Pfaffian on each. Something similar is done in Macintyre (2005b). In

fact, a close look at the proof of Theorem 4.1 of that paper yields the following theorem.

Theorem 6.1. On the open sets of the cover given above, the real and imaginary parts of

the λ are real Pfaffian.

We are still some distance from our goal of finding open sets U where the entries of

exp(A) for A ∈ U are Pfaffian. The preceding Theorem is our starting point.
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6.4. exp is Pfaffian

I will now use the main idea from Barut et al. (1994).

By Cayley–Hamilton, we have that for each n there are polynomials sj,n, for 1 � j � n,

in �[x1, . . . , xn], that are symmetric and homogeneous of degree j and such that for any

element A of Mn(K), with K any field,

An = s1(λ1, . . . , λn) · An−1 + · · · + sn(λ1, . . . , λn),

where λ1, . . . , λn is a list (which may, of course, include repetitions) of the eigenvalues of A.

(Until further notice, this listing has nothing to do with that in the previous subsection).

It is convenient to spell out that sj,n is (−1)j times the usual jth symmetric function of

n variables. Note that, by Cayley–Hamilton, the sj,n(λ1, . . . , λn) are uniformly polynomial

functions of the entries of A. It is convenient for the formulation of Lemma 6.2 and

Theorem 6.2 below to set sj,n = 1 if j = 0.

Now let Δn be the discriminant ∏
i<j

(λi − λj),

which is a square root of a polynomial in the sj,n, for 1 � j � n.

Note that Δn is homogeneous in λ1, . . . , λn of degree n(n−1)
2

.

Consider Δnsr,n, which is homogeneous of degree n(n−1)
2

+ r. A particular formula for

this polynomial will turn out to be crucial for the proofs that exp and log are Pfaffian.

Construe the λ1, . . . , λn as independent variables. Note the natural action of Sn on the

ring �[λ1, . . . , λ] in fixing symmetric polynomials. The alternating group An fixes Δn, but

transpositions send Δn to −Δn .

The highest power to which any λj occurs in (a monomial of) Δn is n − 1, and in Δnsr,n
is n. Now, in the expansion of Δnsr,n, consider some

λ
γ̄

(with the obvious multi-index notation).

If at least two γi in γ̄ are zero, then any σ switching exactly two corresponding λ fixes

the above monomial but sends Δnsr,n to −Δnsr,n. It follows that the above monomial does

not occur in the expansion of Δnsr,n.

A similar argument works for a monomial in which two of the exponents are the same.

This leaves us to consider only monomials of one of two forms: those where there are

n non-zero exponents, and those where there are exactly n − 1.

In the first case, the sum of the exponents is n(n+1)
2

, so if the coefficient is non-zero, we

must have
n(n + 1)

2
=

n(n − 1)

2
+ r,

so n = r.

In the second case, just one m with 1 � m � n does not occur as a γi, and the sum of

the exponents is n(n+1)
2

− m, so if the coefficient is non-zero, we get

n(n + 1)

2
− m =

n(n − 1)

2
+ r,

so r + m = n.
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So r = n gives us the first case, and here some λ occurs to power n (the maximum

possible) since otherwise the sum of the exponents is too small. For 1 � m � n, n−m < n,

so in the second case r < n and here again some λ occurs to power n, since otherwise the

sum of the exponents is too small.

Moreover, again by counting sums of exponents, in all cases in a given monomial with

non-vanishing coefficient, just one λ occurs to power n. Now just look for such terms and

one gets a proof of the following lemma.

Lemma 6.2. For[1 � r � n],

Δnsr,n = θ(r)(λn1 · Δn−1(λ2, . . . , λn)sr−1,n−1(λ2, . . . , λn)

− λn2 · Δn−1(λ1, λ3, . . . , λn)sr−1,n−1(λ1, λ3, . . . , λn)

+ λn3 · Δn−1(λ1, λ2, λ4, . . . , λn)sr−1,n−1(λ1, λ2, λ4, . . . , λn) − . . . .

where θ(r) = 1 if r = 1, and θ(r) = −1 if r �= 1 .

Note that Δn−1sr−1,n−1 has degree n(n−1)
2

+ n − r.

Now we extend the above in the style of Barut et al. (1994). We had

An = s1,nA
n−1 + · · · + sn,n�

(here we suppress the λ, as we will do also in the following when convenient).

By recursion, we define sj,k,n for k � 0 using

An+k = s1,k,nA
n−1 + · · · + sn,k,n�,

where sj,0,n = sj,n, 1 � j � n, and

s1,k+1,n = s1,0,n · s1,k,n + s2,k,n

s2,k+1,n = s2,0,n · s1,k,n + s3,k,n

. . .

sn,k+1,n = sn,0,n · s1,k,n.

Note that the sj,k,n are homogeneous of degrees j + k.

I will now prove for the sj,k,n a natural extension of what was just proved for the sj,n.

It will be convenient to use the notation

(λ1, . . . , λ̂j , . . . , λn)

in the calculations below.

We begin with the Δns1,k,n. For k = 0 the preceding lemma gives

Δns1,0,n = λn1Δn−1(λ2, . . . , λn)

− λn2 · Δn−1(λ1, λ3, . . . , λn)

+ λn3 · Δn−1(λ1, λ2, λ4, . . . , λn) − . . . .
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Now

Δns1,1,n = Δn(s1,0,ns1,0,n + s2,0,n) = Δns1,0,ns1,0,n + Δns2,0,n

=
∑
j

(−1)j+1λnjΔn−1(λ1, . . . , λ̂j , . . . λn)(λ1 + · · · + λn)

+ (−1)
∑
j

(−1)j+1λnjΔn−1(λ1, . . . , λ̂j , . . . λn)s1,n(λ1, . . . , λ̂j , . . . λn)

=
∑
j

(−1)j+1λn+1
j Δn−1(λ1, . . . , λ̂j , . . . λn)

+
∑
j

(−1)j+1λn+1
j Δn−1(λ1, . . . , λ̂j , . . . λn)(λ2 + · · · + λn)

−
∑
j

(−1)j+1λnjΔn−1(λ1, . . . , λ̂j , . . . λn)(λ2 + · · · + λn)

=
∑
j

(−1)j+1λn+1
j Δn−1(λ1, . . . , λ̂j , . . . λn).

I have given this example purely to illustrate the inductive technique used to prove the

following important theorem.

Theorem 6.2.

Δnsl,k,n =
∑
j

(−1)j+1λn+k
j Δn−1(λ1, . . . , λ̂j , . . .)sl−1,k,n(λ1, . . . , λ̂j , . . .).

Proof. We have it for k = 0, and l, n. So, if l < n

Δnsl,k+1,n = Δn(sl,0,n · s1,k,n + sl+1,k,n)

while

Δnsn,k+1,n = Δnsn,0,n · s1,k,n.
In the first case, for l = 1

Δns1,k+1,n = Δn

(
s1,0,n · s1,k,n + s2,k,n

)

= s1,0,n

⎛
⎝∑

j

(−1)j+1λn+k
j Δn−1(λ1, . . . , λ̂j , . . . , λn)

⎞
⎠

−
∑
j

(−1)j+1λn+k
j (Δn−1 · s1)(λ1, . . . , λ̂j , . . . , λn)

=
∑
j

(−1)j+1λn+k+1
j Δn−1(λ1, . . . , λ̂j , . . . , λn).
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If 1 < l < n − 1,

Δnsl,k+1,n = Δn(sl,0,ns1,k,n + sl+1,k,n)

= sl,0,n

⎛
⎝∑

j

(−1)j+1λn+k
j Δn−1(λ1, . . . , λ̂j , . . . , λn)

⎞
⎠

−
∑
j

(−1)j+1λn+k
j (Δn−1 · sl)(λ1, . . . , λ̂j , . . . , λn)

= −
∑
j

(−1)j+1λn+k+1
j (Δn−1 · sl)(λ1, . . . , λ̂j , . . . , λn)

by the usual cancellation.

If l = n − 1,

Δnsn−1,k+1,n = Δn(sn−1,0,ns1,k,n + sn,k,n)

= sn−1,0,n

⎛
⎝∑

j

(−1)j+1λn+k
j Δn−1(λ1, . . . , λ̂j , . . . , λn)

⎞
⎠ + sn,0,nΔns1,k,n

= −
∑
j

(−1)j+1λn+k+1
j (Δn−1 · sn−2)(λ1, . . . , λ̂j , . . . , λn)

+
∑
j

(−1)j+1λn+k
j (Δn−1 · sn−1)(λ1, . . . , λ̂j , . . . , λn)

+ sn

⎛
⎝∑

j

(−1)j+1λn+k+1
j Δn−1

⎞
⎠ .

For the final case (l = n) we have

Δn · sn = (−1)
∑
j

(−1)j+1λnj sn−1(λ1, . . . , λ̂j , . . . , λn),

and

Δn · sn,1,n = Δn · sn · s1,k,n
= sn

∑
j

(−1)j+1λn+k
j Δn−1(λ1, . . . , λ̂j , . . . , λn)

= −
∑
j

(−1)j+1λn+k+1
j Δn−1(λ1, . . . , λ̂j , . . . , λn).

6.5. The applications

The preceding result is very useful in getting explicit representations of exp(A) and, more

generally, f(A) for certain analytic functions.

We will shortly have to revert to the special choice (lexicographic ordering) of the

eigenvalues (λ1, . . . , λ̂j , . . . , λn), and restrict our matrices A to be in the set Wn where

these eigenvalues are distinct. Note that this assumption was not made in the preceding
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computations. Our perspective will be that the A are parametrised by their entries, and

the eigenvalues are (Pfaffian) functions of these entries.

The role of the discriminant (as a function of the eigenvalues, or of the entries) is a bit

mysterious. Only in its presence will we have intelligible formulas for the powers of A and

thus for the entries of power series in A. We do this simply by adding up the products

of the discriminant with the powers of A, and then, if possible, rearranging to obtain a

Pfaffian representation.

In particular, for A ∈ Mn(�)

Δn exp(A) = Δn

(
� + A +

A2

2!
+ · · · +

An−1

(n − 1)!

)

+
∑
k�0

1

(n + k)!

⎛
⎝∑

j

(−1)j+1λn+k
j (Δn−1 · ŝl−1)(λ1, . . . , λ̂j , . . . , λn)

⎞
⎠ ,

giving

Δn(A) exp(A) = Δn

(
� + A +

A2

2!
+ · · · +

An−1

(n − 1)!

)

+
∑
k�0

∑
j

(−1)j+1λn+k
j

(n + k)!

n∑
l=1

θ(l)(Δn−1 · ŝl−1)(λ1, . . . , λ̂j , . . . , λn),

where θ(l) = 1 for l = 1, and θ(l) = −1 otherwise.

But this gives us Δn(A) exp(A) as a polynomial in A,Δn(A), the exponentials of the

eigenvalues, Δn−1, and the ŝl−1. We already know that most of these ingredients are

Pfaffian. The exceptions are the exponentials of the eigenvalues. But we showed earlier

that the eigenvalues are Pfaffian, and it is a trivial calculation to show that the exponential

of a Pfaffian function is Pfaffian. So Δn(A) exp(A) is Pfaffian, and it follows that exp(A) is

also on the open set where the discriminant does not vanish.

This is true for A real or complex, and it provides a very general method for showing

that the entries of exp(A), for A in certain Lie algebras G of matrices, are Pfaffian on

certain natural open sets (for example, where Δn �= 0).

Earlier we showed that on the open where the discriminant does not vanish the

eigenvalues are complex Pfaffian functions of the entries, and then, by Macintyre (2005b),

their real and imaginary parts are Pfaffian. However, as A ranges in G, the Im(λ) may

have non-compact range, so that neither the real nor imaginary parts of exp(λ) may be

Pfaffian. If we restrict A so that the range is compact, there will only be finitely many

values of Imλ where exp(λ) fails to be Pfaffian, and we will get the entries of exp(A) to

have real and imaginary parts Pfaffian. For this we need the trivial exercise that sin or cos

of a real Pfaffian function f are Pfaffian at points where the value of f is not an integer

multiple of π.

Note that the zero matrix is a point where the discriminant vanishes, which is a mild

nuisance since we would like to work with exp on an open neighbourhood of 0.

What about a logarithm? Consider log(� +B) for ||B|| < 1. If (� +B) ∈ SO(n) and λ is

an eigenvalue of B, then 1+ λ = exp(iθ) for some θ ∈ �. This time we apply Theorem 6.2
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to the Taylor series for log(� + B), for ||B|| < 1, to get that log(� + B) is Pfaffian in any

open subset U of W where |λ| < 1 for all eigenvalues of B in U. Now we apply this to

SO(n) to get the following theorem.

Theorem 6.3. On the open subset W of SO(n) consisting of the C whose eigenvalues are

of the form exp(iθ) for − π
3
< θ < π

3
, the usual series for log(z) = log(1+(z−1)) converges

to a Pfaffian function of the entries of the matrix C . Moreover, the real and imaginary

parts of the entries of log(C) are Pfaffian in the real and imaginary parts of the entries

of C .

I have not tried to extend this ‘logarithmic domain’ yet, and expect to tackle this

problem in a subsequent, lengthier paper. In any case, the above is a natural domain for

a logarithm.

I now state a satisfactory decidability result for the orthogonal groups with this

logarithm.

Theorem 6.4. Fix n, and consider the structure M on � given by the semi-algebraic

structure together with the partial logarithm on SO(n) given in Theorem 6.3. Then,

assuming Schanuel’s Conjecture, M is decidable. Moreover, there is a constructive model-

completeness in terms of the preceding Pfaffian primitives.

Proof (sketch). We sketch a proof – it is a special case of a very general result whose

proof will be given elsewhere (but see Macintyre (2005a)). That proof depends on the

work in Macintyre and Wilkie (1996) and/or Gabrielov and Vorobjov (2004). The real

Pfaffian property of log is crucial.

The main idea of the proof is to show that the structure is constructively model-complete

(this does not need Schanuel) and then to use the idea of Macintyre and Wilkie (1996)

to give an algorithm for deciding existential formulas. One should pass constructively

to the connected components (these are semi-algebraic) of the domain of the above

partial logarithm, and work in the system having the Pfaffian primitives on each of the

components.

Note: In later work I will show how to adapt the above to prove the decidability of

suitable logarithms on arbitrary compact linear groups.

7. Concluding remarks

I consider the evidence from the above, and from my work on elliptic functions, as very

strongly in favour of a conjecture that all Lie groups have some kind of decidability result

for a natural logarithm, modulo a plausible conjecture in transcendence theory. On the

other hand, the evidence for the corresponding exponentials on the Lie algebras points to

analogues of Zilber’s Conjectures on the complex exponential.
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