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Acoustic fields in a liquid medium can trap and suspend small particles at their
pressure nodes. Recent measurements demonstrate that nanorods immersed in these
fields generate autonomous propulsion, with their direction and speed controlled by
both the particle’s shape and density distribution. Specifically, slender nanorods with
an asymmetric density distribution about their geometric centre are observed to move
steadily with their low density end leading the motion; particle geometry exerts an
equally significant and potentially opposing effect. In this article, we investigate the
physical mechanisms underlying this combined density/shape induced phenomenon by
developing a simple yet rigorous mathematical framework for axisymmetric particles.
This only requires solution of the (linear) unsteady Stokes equations, which can
be performed numerically or analytically. The theory holds for all particle shapes,
particle aspect ratios (length/width) and acoustic frequencies. It is applied to slender
dumbbell-shaped particles and asymmetric nanorods – these provide model systems
to investigate the competing effects governing propulsion. This shows that geometric
and density asymmetries in the particle generate axial jets that can produce motion
in either direction, depending on the relative strengths of these asymmetries and
the acoustic Reynolds number (dimensionless frequency). Strikingly, the propulsion
direction is found to reverse with increasing frequency, an effect that is yet to be
reported experimentally. The general theory and mechanism described here enable the
a priori design and fabrication of nano-motors in fluid for transport of small-scale
payloads and robotic applications.

Key words: acoustics, micro-/nano-fluid dynamics

1. Introduction
Synthetic (non-biological) nanoscale motors have been developed for applications

in the biological sciences, including transport of colloidal cargos (Sundararajan et al.
2008; Ye, Diller & Sitti 2012), chemical analysis of pollutants (Guix et al. 2012;
Orozco et al. 2013) and detection of DNA and other biological molecules (Wu et al.
2010; Campuzano et al. 2011). These motors can also produce emergent dynamics
when gathered in large ensembles. Swarming and hydrodynamic synchronisation are
but a few aspects of the intriguing dynamics that occurs in these systems (Ibele,
Mallouk & Sen 2009; Xu et al. 2015).

† Email address for correspondence: jsader@unimelb.edu.au
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Motion of nanoscale particles can be directed by an external field or can occur
autonomously, i.e. the particle acts as a motor. One example of an autonomous
nano-motor is a colloidal particle that is driven by osmotic propulsion due to
inhomogeneities in its surface properties (Córdova-Figueroa & Brady 2008). Catalytic
motors that operate using fuels such as hydrogen peroxide also lead to autonomous
propulsion – by bubble recoil (Fattah et al. 2011; Loget & Kuhn 2011) or chemical
gradients (Paxton et al. 2004; Howse et al. 2007; Sánchez, Soler & Katuri 2015).
In contrast, optical and magnetic fields can drive the motion of nanoparticles by the
direct forces that these fields impart (Wiel et al. 2005; Saha & Stoddart 2007; Tierno
et al. 2008; Jiang, Yoshinaga & Sano 2010; Fischer & Ghosh 2011). Robotically
manoeuvred nanorods that generate localised hydrodynamic vortex traps have also
been reported (Petit et al. 2011). A review of the many mechanisms leading to
autonomous and directed propulsion of nanoparticles has been conducted by Guix,
Mayorga-Martinez & Merkoçi (2014).

Acoustic fields have been used to directly propel particles, i.e. in a prescribed and
external manner, leading to wide ranging behaviour. This includes the alignment of
elongated rods (Lim, Yao & Chen 2007) and manipulation of particles into a variety
of patterns (Oberti, Neild & Dual 2007; Shi et al. 2011). These directed propulsion
phenomena are driven first by the time-averaged pressure gradient of the acoustic field
which imparts a force on the particles either towards or away from the pressure nodes
– this directionality depends on the properties of the particles (King 1934; Eller 1968).
The particles are then dragged along with the (steady) streaming flow generated by the
geometry of the fluid cell, i.e. the particles are moved directly and passively by this
(external) secondary flow (Barnkob et al. 2012). The particles do not generate their
own propulsion.

Recent measurements show that nano and micrometre-scale rods can produce
autonomous propulsion in acoustic fields (Wang et al. 2012), i.e. the particles
themselves actively generate their propulsive motion rather than being moved passively
by an external steady flow. These rods migrate towards a pressure node in a standing
acoustic wave where they subsequently exhibit a variety of dynamics, including
aggregation, random walks and orbital motion (Ahmed et al. 2014; Wang et al. 2014,
2015; Rao et al. 2015; Ahmed et al. 2016). These motors offer a distinct advantage
over the autonomous motion of catalytic devices because chemical fuels, which are
toxic to many biological systems, are not used. In addition, acoustic fields in the
MHz range have been applied extensively in biologically sensitive environments with
minimal adverse impact (Litvak, Foster & Repacholi 2002).

The synthesis process for these nanorods, composed of metal, ensures one of their
ends is concave while the other is convex. Originally, Wang et al. (2012) suggested
that this shape variation was causing an asymmetry in the acoustic pressure due to the
scattering of the acoustic waves on the surface of the particle, leading to propulsion.
However, this hypothesis was later found to be inconsistent with experiments. It
predicted the opposite direction of motion to that observed by Ahmed et al. (2014,
2016) – measurements show that particles composed of a single metal always move
with their concave end leading. Nadal & Lauga (2014) proposed a mechanism due
to the streaming flow generated by a sphere (composed of a single material) with
a slight shape perturbation to its surface – this ‘near spherical’ approach facilitates
a simple numerical solution. The model, valid in the low acoustic Reynolds number
regime (i.e. low frequency, as defined in § 2), predicts autonomous motion based on
the nature of the shape perturbations on the sphere’s surface.

In a follow up study, Ahmed et al. (2016) demonstrated that the propulsion velocity
of bimetallic nanorods can be substantially faster than nanorods made of a single
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metal; the nanorods are composed of two distinct metals occupying each half-length
of the rod. When the density difference of the two metals is large, the direction of
motion is always observed to be towards the particle’s lighter end. Indeed, motion in
the direction of the convex end of the nanorod is reported, in contrast to the nanorods
composed of a single metal (discussed above). These measurements therefore show
that shape and density asymmetries can produce competing effects, with the particle
tending to propel itself with its low density and concave end leading the motion.
Importantly, the model of Nadal & Lauga (2014) cannot be used to describe these
experimentally reported effects (Ahmed et al. 2016) because the model does not
include the effect of density variations in the solid.

The aim of this article is to formulate a general theoretical framework for this
phenomenon that can be used to explain its essential physical mechanisms. The
previously used assumptions of a nearly spherical and homogeneous density particle
in a low acoustic Reynolds number flow (Nadal & Lauga 2014) are relaxed – the
developed framework is applicable to arbitrarily shaped axisymmetric solids with
arbitrary density distributions that are being driven at arbitrary finite frequency.
All that is required is solution of the (linear) unsteady Stokes equations, either by
analytical or numerical means. This model is then applied to high aspect ratio
dumbbell-shaped particles (where analytical results are obtained) and nanorods
whose shape mimics the particles reported experimentally (where our framework
is implemented numerically). This sheds light on the interplay between shape and
density asymmetries for this autonomous propulsion, and the effect of frequency. It
is found that the propulsion velocity reverses direction, with increasing frequency,
when the acoustic Reynolds number is of order one. This is precisely where the
reported measurements on nanorods are conducted (Ahmed et al. 2016). Clearly,
such operation complicates theoretical prediction of the propulsion velocity, which
will be sensitive to details of the particle shape and composition – due to operation
near the zero-propulsion point. Away from this frequency region the propulsion
direction is well defined, which in turn, allows for the robust design of nanorods
with specified axial motion.

We begin by deriving the above-described general framework for arbitrarily shaped
axisymmetric particles. This is followed by its application to a simple particle,
a dumbbell consisting of two well-separated spheres, which allows the essential
physical mechanisms underlying propulsion to be explored. The general framework
is then implemented numerically for asymmetric nanorods that resemble the shape of
the particles reported in measurements. The effects of shape and density asymmetries
are illustrated and discussed. Theoretical details are relegated to appendices.

2. General theoretical framework
A schematic of the measurement protocol of Wang et al. (2012) and Ahmed

et al. (2014, 2016) is given in figure 1. While an acoustic field is naturally
compressible, the trapped particle is much smaller than the acoustic wavelength
and it therefore experiences an incompressible uniform flow. The particle also aligns
itself perpendicular to this imposed flow (Ahmed et al. 2016). We therefore consider
an axisymmetric particle aligned with the x-axis (for convenience) in an unbounded,
uniform and small-amplitude oscillatory flow in the z-direction; see figure 1. The
origin of the Cartesian coordinate system is chosen to be the particle’s geometric
centre, not its centre of mass.

The following set of scales is used: all velocities are scaled by the velocity
amplitude of the applied oscillatory flow (at the pressure node), U, time by the
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x
y

z

Pressure node

Transducer

FIGURE 1. (Colour online) Schematic of acoustic chamber, bounded by upper and lower
black panels, that is used to trap particles which then exhibit autonomous propulsion.
Particles migrate to the pressure node/velocity antinode at the centre of the chamber (for
particle densities higher than the fluid). Here, they experience a uniform oscillatory flow in
the far field (in the z-direction) due to their small size relative to the acoustic wavelength.
The axisymmetric particles are aligned in the x-direction for convenience only. Inset:
particle motion is generally decomposed into linear and angular components. Cartesian
coordinate system is indicated, whose origin is at the geometric centre of the (stationary)
particle in the absence of an imposed flow.

reciprocal of the angular frequency of the imposed flow, 1/ω, the hydrodynamic
length scale is R (radius along the particle’s minor axis), pressure is scaled by
µU/R (for convenience only) and hence force by µUR, where µ is the fluid’s shear
viscosity; the Lagrangian displacement amplitude of the fluid is a= U/ω. From this
point forward, all variables shall refer to their dimensionless quantities.

The non-dimensional incompressible Navier–Stokes equations are therefore,

∇ · u = 0, (2.1a)

β
∂u
∂t
+ εβu · ∇u = −∇p+∇2u, (2.1b)

where u is the velocity field of the fluid, p is the fluid pressure, t is time, the acoustic
Reynolds number is

β =
ρR2ω

µ
, (2.2)

the dimensionless oscillation amplitude is ε ≡ a/R� 1 and ρ is the fluid density. We
use the explicit time dependence, exp(−it), for the imposed acoustic velocity, where
i is the imaginary unit; the true velocities of the fluid and particle (as measured) are
specified here by the real part.

The boundary conditions for the fluid are

u→ e−it k̂ as |r|→∞, (2.3a)
u=Up on r ∈ Sp, (2.3b)

where the velocity field, u = (u, v, w), and the position vector, r = (x, y, z), are
specified in the Cartesian frame of figure 1. Sp denotes the surface of the particle
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and Up is the unknown (to be determined) particle velocity; all transport variables
are specified relative to the (fixed) Cartesian frame.

Asymptotic expansions of the fluid and particle motion are performed in the small-
amplitude parameter, ε, which quantifies the difference between the Lagrangian and
Eulerian accelerations (that generates the particle propulsion), giving,

u = u(0) + εu(1) + o(ε), (2.4a)
p = p(0) + εp(1) + o(ε), (2.4b)

Up = U(0)
p + εU

(1)
p + o(ε), (2.4c)

where the superscripts indicate the order of each term. The fluid and particle motion
in the zero-amplitude limit are specified by the leading-order terms in (2.4).

2.1. Leading-order flow and particle motion
The leading-order flow in (2.4), i.e. of O(1), is governed by the unsteady Stokes
equations,

∇ · ū(0) = 0, −iβū(0) =−∇p̄(0) +∇2ū(0), (2.5a,b)

which are to be solved subject to the far-field oscillatory flow specified in (2.3a) and
no slip at the particle’s surface. Fourier components of all variables, which depend
only on the spatial coordinates and acoustic Reynolds number – not time – are
denoted with an over-score, e.g. p(0) = p̄(0)e−it.

Due to linearity, the unsteady Stokes solution is at the same frequency as the far-
field boundary condition in (2.3a). Given the particle’s axisymmetry, the corresponding
leading-order motion of the (unrestrained) particle admits the general form,

U(0)
p = (W̄p k̂+ Ω̄p r × ĵ)e−it, (2.6)

where the symbols W̄p and Ω̄p denote the linear and angular rigid-body velocities
of the particle about its geometric centre. To leading order, i.e. at O(1), the no-slip
condition at the particle’s surface corresponds to imposition of the velocity boundary
condition in (2.6) on a stationary particle, i.e. u(0) =U(0)

p at the particle’s surface.
In accord with (2.6), we first consider the related problems of (i) pure translational

and (ii) pure rotational oscillations of the particle in an unbounded quiescent fluid.
This is performed for motion of unitary scaled magnitude. The resulting velocity
fields in the fluid generated by these independent problems are denoted ū(0)T and ū(0)R ,
respectively. Translation of the geometric centre is in the z-direction, whereas rotation
is specified about the y-axis which coincides with the particle’s geometric centre.
The forces and torques exerted on the particle in these two complementary cases
are denoted by ( fT k̂, τT ĵ) and ( fRk̂, τR ĵ), respectively. Note that fR = −τT , which
is derived by substituting the two unitary flows generated using particle velocities
in the k̂ and r × ĵ directions, in the Lorentz reciprocal theorem (Brenner 1964).
This decomposition of the particle’s motion is illustrated in figure 1. Solution to
these canonical problems facilitates solution of the original flow problem, i.e. an
unrestrained particle, and subsequent calculation of the particle’s propulsion velocity,
as we shall discuss.
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Due to linearity of the leading-order flow, u(0), the force and torque acting on the
particle in the original problem are obtained by linear combination of the above-stated
unitary solutions. Conservation of linear and angular momentum, expressed about the
particle’s geometric centre, then leads to the required governing equations,

(W̄p − 1)fT + Ω̄pfR − iβVp =−iβ

(
W̄p

∫
Vp

γ (x) dV + Ω̄p

∫
Vp

xγ (x) dV

)
, (2.7a)

(W̄p − 1)τT + Ω̄pτR = iβ

(
W̄p

∫
Vp

xγ (x) dV + Ω̄p

∫
Vp

(x2
+ z2)γ (x) dV

)
, (2.7b)

where Vp is the volume of the particle and γ (x)≡ ρp (x) /ρ is its density relative to
that of the surrounding fluid. These equations can be readily solved for W̄p and Ω̄p.
The total velocity field at leading order immediately follows,

ū(0) = k̂+ (W̄p − 1)ū(0)T + Ω̄pū(0)R . (2.8)

2.2. First-order flow and propulsion velocity
The first-order flow, i.e. at O(ε), is governed by the unsteady Stokes equations with
a body force arising from convective inertia at leading order. Due to its quadratic
dependence on the leading-order velocity field, ū(0), this body force has a steady
contribution and one at twice the frequency of the leading-order flow. The steady
body force gives rise to a first-order flow satisfying

∇ · ū(1) = 0, −∇p̄(1) +∇2ū(1) =
β

4
(ū(0) · ∇ū(0)∗ + ū(0)∗ · ∇ū(0)), (2.9a,b)

where starred quantities denote the complex conjugate. The unsteady contribution
to the first-order velocity field, u(1), which occurs at twice the frequency of the
imposed acoustic field, has a time-averaged value of zero. It is ignored because this
contribution does not lead to steady propulsion of the particle (whose analysis is the
primary focus here).

Equation (2.9) is to be solved subject to no flow far from the particle and, via the
no-slip condition, the (to be determined) propulsion velocity, Uprop, at the particle’s
surface; the latter is the steady part of U(1)

p , see (2.4c). Calculation of the required
first-order flow at the particle’s surface is performed using the Lorentz reciprocal
theorem, by employing an auxiliary flow, u′, of the axisymmetric particle translating
with uniform velocity in the x-direction, i.e. the direction its axis is aligned; see
figure 1 and appendix A. This gives the required result for the particle’s propulsion
velocity, Uprop =Uprop î, where

Uprop =
β

4Fp

∫∫∫
V

u′ · (ū(0) · ∇ū(0)∗ + ū(0)∗ · ∇ū(0)) dV, (2.10)

and Fp = Fp î is the hydrodynamic drag force on the particle moving with unitary
velocity along its symmetry axis, i.e. Up= î. For example, Fp=−12π for a dumbbell-
shaped particle consisting of two identical spheres of infinitesimal radius.
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Equation (2.10) can be used directly to calculate the propulsion velocity. However,
to facilitate analytical analysis we make use of the divergence theorem, see
appendix A, to give the equivalent expression,

Uprop =
β

4Fp

[
(W̄pΩ̄

∗

p + W̄∗p Ω̄p)Vp

−

∫∫∫
V

{
ū(0)∗ · (ū(0) · ∇u′)+ ū(0) · (ū(0)∗ · ∇u′)− (ū(0) + ū(0)∗) · ∇w′

}
dV
]
,

(2.11)

where w′ is the z-component of u′. The volume integral now contains derivatives of
the (auxiliary) Stokes flow field, u′, only.

The dimensional propulsion velocity of the particle is (a2ω/R)Uprop î, which
is proportional to the square of the displacement amplitude, a, of the imposed
acoustic field. That is, motion is due to acoustic streaming, as proposed by Nadal &
Lauga (2014) for homogeneous near-spherical particles driven at low frequency. The
results in (2.10) and (2.11) provide the generalisation of that previous result to any
axisymmetric particle operating at arbitrary frequency.

3. Application to a dumbbell-shaped particle
We now apply the general theory of § 2 to a slender axisymmetric particle

and explore the physical mechanisms underlying the particle propulsion observed
experimentally by Wang et al. (2012), Ahmed et al. (2014, 2016). Both density
variations and shape asymmetries in the particle are included. To facilitate analytical
solution, while capturing the dominant features of the reported experiments, a slender
dumbbell consisting of two rigidly connected spheres of (dimensional) radii R1 and
R2 is chosen.

The dumbbell is aligned in the x-direction such that Sphere 2 has a larger
x-coordinate relative to Sphere 1; see insets of figure 2. The chosen length scale
for the problem is the radius of Sphere 1, R1, such that the non-dimensional radius
of Sphere 2 is

κ ≡
R2

R1
. (3.1)

The non-dimensional densities of Spheres 1 and 2 are

γn ≡
ρn

ρ
, (3.2)

with n = 1, 2 corresponding to the two spheres. The radii of the spheres are much
smaller than their separation, i.e. the aspect ratio A ≡ L/R1 � 1, where L is the
separation distance between the centres of the two spheres. This enables independent
calculation of the hydrodynamic loads that they experience, i.e. the spheres do
not interact hydrodynamically. This feature of the slender dumbbell is discussed in
appendix B.

The hydrodynamic loads on each sphere in this high aspect ratio limit are specified
by the usual (unsteady) Stokes formula for (translational) drag (Pozrikidis 1989). This
enables direct calculation of the total drag and torque experienced by the dumbbell-
shaped particle executing unitary motions (see § 2.1),

fT = −6π(1+ κ + (1− i) (1+ κ2)
√
β1/2− i(1+ κ3)β1/9), (3.3a)
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fR = −τ1 =−6πAκ (1− κ)
1+ κ + κ (1− i)

√
β1/2

(1+ κ3)
, (3.3b)

τR = 6πA2κ
1+ κ5

+ κ(1+ κ4) (1− i)
√
β1/2− i(1+ κ3)κ2β1/9

(1+ κ3)2
, (3.3c)

where the acoustic Reynolds number for Sphere 1 is β1 = ρωR2
1/µ, and we retain

only the highest-order terms in the aspect ratio, A (≡ L/R1); for consistency with the
overriding property of non-hydrodynamically interacting spheres. Note that the torque
resulting from the localised rotation of each sphere produces an effect of lower order
in A, and is thus ignored.

The expressions in (3.3) are substituted into (2.7) to determine the linear, W̄p, and
angular, Ω̄p, velocities of the dumbbell,

W̄p =
W̄1 + κ

3W̄2

1+ κ3
, Ω̄p =

W̄2 − W̄1

A
, (3.4a,b)

where

W̄n =
1+ (1− i)

√
βn/2− iβn/3

1+ (1− i)
√
βn/2− iβn (1+ 2γn) /9

, (3.5)

denotes the linear velocities of Spheres 1 and 2 with n = 1, 2, respectively, in the
vertical z-direction; note that β2 = κ

2β1.
The propulsion velocity, Uprop, is then calculated using (2.11), the particle velocity

components as specified in (3.4), the (leading-order) unsteady Stokes flow, ū(0), and
the auxiliary steady Stokes flow, u′; the required expressions for ū(0) and u′ are given
in appendix B. Note that while the hydrodynamic force/torque in (3.3) depend only on
the local (translational) drag on each sphere in the high aspect ratio limit (see above),
ū(0) contains contributions from both the local translation and rotation of each sphere.

The resulting expression for Uprop, while of considerable length, is analytic and
easily evaluated using Mathematica. Equation (2.11) shows that the propulsion
velocity, Uprop, is controlled by several competing effects that arise from fluid/solid
inertia and shape/density asymmetries in the particle. Next, we study this interplay
and explore the physical mechanisms giving rise to propulsion.

3.1. Spheres of identical density
To begin, we consider the case where the dumbbell’s spheres have identical density, i.e.
γ1 = γ2. Figure 2(a) presents numerical results for the propulsion velocity where the
radius of Sphere 1 is held constant and that of Sphere 2 is varied, such that R2 > R1

(i.e. κ > 1). The density of the spheres is 10× greater than that of the fluid in this
example. Results for other density ratios show similar trends.

The dumbbell is observed to move with the smaller Sphere 2 leading the motion
at low acoustic Reynolds numbers, β1, whereas the larger Sphere 1 leads at high
acoustic Reynolds numbers; as illustrated in figure 2(a). That is, the motion reverses
at intermediate acoustic Reynolds number. This behaviour is not unexpected because
propulsion is driven by a streaming flow – where flow in the viscous boundary layer
is typically opposite in sign to that far from the surface, as demonstrated for a sphere
executing translational oscillations (Riley 1966). Increasing β1 decreases the viscous
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FIGURE 2. (Colour online) Propulsion velocity of dumbbell-shaped particles as a function
of acoustic Reynolds number of Sphere 1, β1, where the aspect ratio dependence is
scaled out of the solution, i.e. Uprop = Ûprop/A. In both figures, the density of Sphere 1
is held constant (at 10× the value of the fluid, i.e. γ1 = 10); results for other densities
show similar trends. (a) The densities of the two spheres are constant and identical. The
size ratio, κ ≡ R2/R1, increases from the top to the bottom curve. The larger this shape
asymmetry, i.e. the lower the κ-value, the faster the propulsion. The smaller Sphere 2
leads the motion at low acoustic Reynolds numbers and the larger Sphere 1 leads at
high acoustic Reynolds numbers. (b) The sizes of both spheres are held constant with
κ ≡ R2/R1 = 1. The density of Sphere 2 increases from the top to the bottom curve. We
see again that an increase in the degree of asymmetry between the two spheres – in this
case, a reduction in buoyant density ratio (γ2− 1)/(γ1− 1) – leads to enhanced propulsion.
Here, the lighter Sphere 2 leads the motion at low acoustic Reynolds numbers and the
heavier Sphere 1 leads at high acoustic Reynolds numbers.

penetration depth and confines vorticity closer to the particle’s surface. As such, the
auxiliary Stokes field, u′, in (2.10) samples a different region of the convective body
force. We also observe that decreasing the radius of Sphere 2, i.e. increasing the
amount of asymmetry in the particle, enhances the propulsion velocity.

These effects are evident in the asymptotic forms for the propulsion velocity at low
and high frequency,

Uprop =
(γ1 − 1) (κ − 1)

A


−
(4+ κ2

+ 4κ4)

81
√

2
β

5/2
1 , β1� 1

3
√

2(1− κ + κ2)

(1+ 2γ )3 κ
β

1/2
1 , β1� 1

, (3.6)

which, for the same particle, show that the propulsion direction is reversed in the
high and low acoustic Reynolds number (frequency) limits. Equation (3.6) shows that
Uprop is proportional to (κ − 1) in these asymptotic limits. This property is expected
because the direction of motion must also reverse if the dumbbell’s shape asymmetry
is inverted.

Importantly, this (horizontal) particle propulsion is driven by the applied vertical
oscillatory flow within which the dumbbell lies. Equations (3.4) and (3.5) show that
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increasing the radius of either sphere decreases its vertical oscillatory motion (relative
to the fixed Cartesian frame). This is because a sphere’s inertia scales with its radius
cubed, whereas its drag is of lower order in radius. The smaller Sphere 2 therefore
always exhibits greater vertical oscillations than that of the trailing and larger Sphere
1. This asymmetry in vertical motions of the spheres is fundamental to the propulsion
generated by the dumbbell, as we now explain.

Each sphere executes translational (in the vertical direction) and rotational
oscillations; the latter being generated by the spheres’ rigid-body coupling. The
propulsion mechanism of the dumbbell can be explored by studying each sphere in
isolation. This is because the leading-order flows of the spheres do not interact
hydrodynamically in the large aspect ratio limit considered here, A � 1, and
interaction of their resulting (individual) streaming flows does not lead to propulsion
at O(1/A); which is the leading-order scaling behaviour with aspect ratio, see (3.6)
and appendix B.

We consider two idealised cases for the motion of a single sphere. Problem 1.
First, we study a sphere that is executing rotational oscillations of unitary magnitude
and translating vertically with a velocity equal to that of the applied oscillatory
vertical flow (at the pressure node), i.e. W̄p = Ω̄p = 1. The resulting leading-order
oscillatory flow, ū(0), is trivially determined from the unsteady Stokes equations
(Pozrikidis 1989). This generates a secondary steady body force due to nonlinear
convective inertia, specified by the right-hand side of (2.9b). This body force can be
decomposed into two parts, due to interaction of

(i) sphere’s rotation field with itself (in a quiescent fluid), and
(ii) sphere’s rotation field with the imposed vertical oscillatory flow (of zero

gradient); see (2.9).

The horizontal component of the steady body force (in the x-direction) due to part
(i) is antisymmetric about the vertical plane, x= 0, i.e. the net body force is zero in
the x-direction and no propulsion results; see figure 3(a). However, part (ii) generates
a symmetric body force about x = 0 and thus a finite net force in the x-direction;
see figure 3(b). The resulting streaming flow acts as a jet that propels the particle in
the x-direction with a propulsion velocity specified by (2.10) and (2.11); the complete
body force resulting from parts (i) and (ii) is given in figure 3(c). Reversing the sign
of the rotational velocity relative to that of the vertical flow reverses the propulsion
direction.

Problem 2. Second, we consider a single sphere simultaneously undergoing
rotational and translational oscillations of unitary magnitude in a quiescent flow, i.e.
W̄p= Ω̄p= 1 again, but now there is no applied vertical flow. The body force for this
problem is given in figure 3(d–f ). Again, the body force contains antisymmetric (due
to translation–translation interactions and rotation–rotation interactions) and symmetric
components (due to translation–rotation interactions). The symmetric components lead
to propulsion of the sphere similar to that already discussed for Problem 1 reported
in figure 3(a–c).

The total body force for arbitrary linear and angular velocities of the particle is then
a linear combination of these two canonical problems (modulo sign reversals in W̄p

or Ω̄p). This shows that rotation of a sphere and its translational motion, relative to
either the fixed Cartesian frame or the applied oscillatory flow, are both required for
horizontal propulsion. No propulsion occurs if either motion is absent. The applied
vertical flow’s primary role is to drive this coupled motion of the dumbbell’s spheres.
Since these spheres are hydrodynamically isolated (see appendix B), propulsive motion
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FIGURE 3. (Colour online) The x-component of the convective body force per unit volume
in the x–z plane for β = 10. Arrows indicate the direction of the body force. Problem 1:
(a–c) body force produced by a sphere executing motion with W̄p = Ω̄p = 1, i.e. it is
translating vertically in tandem with the applied oscillatory flow. (a) Self-interaction of
the rotational flow field produces an antisymmetric body force about x = 0 and so does
not contribute to propulsion. (b) Mixing of the applied translational flow with the sphere’s
rotational flow produces a symmetric distribution. This yields a net non-zero contribution
to the body force. (c) Combining these two flows produces a jet that propels the sphere
in the negative x-direction, with Uprop = −0.76. Problem 2: (d–f ) body force produced
by a sphere executing motion with W̄p = Ω̄p = 1 again, but now in a quiescent fluid. (d)
Self-interaction of both the rotational and translational flow field components produces an
antisymmetric body force that does not contribute to propulsion. (e) Mixing of the sphere’s
translational and rotational flow fields produces a symmetric body force, yielding a net
non-zero contribution to the body force. ( f ) Combining these two flows produces a jet
that propels the sphere in the negative x-direction, with Uprop =−0.80; this value differs
from Problem 1.

of the dumbbell is due to two independent and tandem sphere ‘engines’ that work
cooperatively to generate propulsion in the same direction.

Of course, a sphere executing pure translational or rotational motion cannot generate
propulsion – due to its geometric symmetry. Coupled translational–rotational motion is
thus essential to induce a streaming flow that breaks this natural symmetry, as shown
above. In contrast, a particle that is geometrically asymmetric can induce autonomous
propulsion with only translational or rotational motion, e.g. the near-spherical particles
explored by Nadal & Lauga (2014).

3.2. Spheres of identical radii
Next, we study the complementary situation where the spheres of the dumbbell have
identical radii, i.e. κ = 1, but different mass densities. Figure 2(b) presents numerical
results where the density of Sphere 1 is held constant (10× that of the fluid) and
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FIGURE 4. Phase diagrams of a dumbbell-shaped particle’s propulsion direction as a
function of its density asymmetry and the acoustic Reynolds number of Sphere 1, β1.
Results given for γ1 = 10. Sphere radius ratios of (a) κ = 0.4, (b) κ = 0.9. The buoyant
density ratio, (γ2− 1)/(γ1− 1), is used because the relative difference of the solid density
to the fluid density is critical to the resulting propulsion.

the density of Sphere 2 is decreased so that γ1 > γ2; results for other density ratios
(between Sphere 1 and the fluid) show similar trends.

It is observed that Sphere 2 leads the motion for low acoustic Reynolds numbers, β1,
i.e. the sphere of smaller density. In contrast, the sphere of greater density, Sphere 1,
leads at high acoustic Reynolds numbers. The reason for this behaviour is identical to
that provided in § 3.1. Namely, Sphere 2 possesses less inertia than Sphere 1 and thus
exhibits a larger vertical velocity amplitude relative to the fixed Cartesian frame. The
sphere with the larger vertical amplitude leads the propulsion at low acoustic Reynolds
number and the sphere with the smaller vertical amplitude at high acoustic Reynolds
number. Here, the asymptotic solutions for the propulsion velocity at low and high
frequency are

Uprop =
(γ2 − γ1)

A


−

2
√

2
81

β
5/2
1 , β1� 1

2 (1+ γ1 + γ2)

(1+ 2γ1)
2 (1+ 2γ2)

2β1, β1� 1

, (3.7)

highlighting the directional change in motion for high and low acoustic Reynolds
numbers. In these asymptotic limits, the direction is controlled by the particle density
asymmetry, γ1 − γ2. This finding is qualitatively identical to the measurements of
bimetallic nanorods reported by Ahmed et al. (2016) for low acoustic Reynolds
numbers: the lighter end of the nanorod leads the motion.

We thus conclude that both density and shape asymmetries can generate propulsion,
potentially in opposing directions. The interplay between these geometric and density
effects is now explored.

3.3. Combination of density and shape asymmetries
Figure 4 explores the behaviour of combining shape and density asymmetries in the
same particle. The curves in these phase space diagrams correspond to a propulsion
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velocity of zero, and delineate regions of different directional motion; these are
henceforth termed ‘zero-propulsion curves’. The interplay between density and shape
asymmetries is highly nonlinear, which may be expected because propulsion is
generated by a streaming flow. We find that particles are able to change direction
either once or twice with increasing acoustic Reynolds number, β1, depending on the
relative strength of the shape and density asymmetries. This feature is not unexpected
because the acoustic Reynolds number where the particle exhibits a zero-propulsion
velocity can be different for density and shape asymmetries; see figure 2.

For large acoustic Reynolds numbers, β1� 1, density asymmetry always determines
the propulsion direction – the dumbbell’s heavier end leads the propulsion. This is
evident from the asymptotic forms in (3.6) and (3.7) where the propulsion velocity,
Uprop, varies as β

1/2
1 for shape asymmetries and β1 for density asymmetries. This

dominant scaling behaviour of the density asymmetry effect is clear in figure 4(a,b)
for large β1, where zero-propulsion approaches a constant density ratio, γ2/γ1 = 1,
regardless of the shape asymmetry, κ; this value of γ2/γ1 is evident in (3.7).

In the low inertia limit, β1�1, both shape and density effects control the propulsion
direction because they are of equal order in β1; see (3.6) and (3.7). This property
manifests itself in the numerical results of figure 4 for small β1, where zero propulsion
occurs at different density ratios, γ2/γ1, as shape asymmetry, κ , is varied.

The propulsion direction of a single particle can thus strongly vary with frequency
(acoustic Reynolds number, β1) and the particle’s density/shape asymmetries; note
that γ1, γ2 > 1 in figure 4, as per the measurements of Ahmed et al. (2016). For
example, consider a dumbbell where the density of Sphere 2 is much smaller than
that of Sphere 1, i.e. the buoyant density ratio, (γ2− 1)/(γ1− 1)� 1. As the acoustic
Reynolds number, β1, is increased from zero, the induced propulsion changes direction
when β1 ∼O(1). A similar effect is obtained for large and small shape asymmetries,
corresponding to κ = 0.4 and κ = 0.9, respectively; albeit with slightly different
values of β1 at the cross-over point. However, choosing the sphere densities to be
comparable, i.e. (γ2− 1)/(γ1− 1)∼O(1), leads to propulsion that depends strongly on
the shape asymmetry, κ . Namely, for large shape asymmetries, κ = 0.4, there exists a
broad band of density asymmetries, (γ2 − 1)/(γ1 − 1), for which propulsion reverses
direction twice as β1 increases. This band of density asymmetries reduces sharply
as the strength of the shape asymmetry is decreased to κ = 0.9; cf. figure 4(a,b).
The same is true if the acoustic Reynolds number is held constant at β1 ∼O(1) and
the density asymmetry is varied. Thus, operation with (γ2 − 1)/(γ1 − 1) ∼ O(1) and
β1 ∼ O(1) can produce propulsion in either direction and is sensitive to details of
both the density and shape asymmetries.

This highlights an important design criterion for robust operation: these nano-motors
should be operated far away from any zero-propulsion curve, i.e. either at low or high
acoustic Reynolds numbers and with either a strong shape or density asymmetry.

4. Nanorod propulsion measurements reported by Ahmed et al. (2016)
With an understanding of the propulsion mechanism in hand, based on analysis of

the dumbbell-shaped particle, we turn our attention to the experimental measurements
reported by Ahmed et al. (2016). These measurements were performed using
bimetallic particles that were chemically synthesised in solution. The synthesis
process intrinsically produces particles with concave and convex ends. The particles
were composed of pure Au, or composites using Ag, Au, Pd, Pt, Rh and Ru to allow
the effect of density asymmetry to be varied. Particles are labelled such that their
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FIGURE 5. (Colour online) Propulsion directions and relative speeds for asymmetric
nanorods operating at β=0.53; results computed numerically as per § 4. Left-hand column:
hemi-spherically capped nanorods. Right-hand column: hemi-spheroidally capped nanorods.
These nanorods are formed by taking a circular cylinder with flat ends of aspect ratio,
length/diameter = 20/3, as per Ahmed et al. (2016), removing a cap from the left-hand
end and adding it to the right-hand end; this elongates the nanorods. The hemi-spheroidal
cap has an aspect ratio of 7 : 1 (major/minor axis). The cross-over position where material
is changed from Au to Ru (and vice versa) coincides with the individual nanorod’s
geometric centre (not centre of mass).

concave end is written first, e.g. an AuRu nanorod has a gold concave end and a
ruthenium convex end. The concave end of the particles could be produced with any
of the metals (heavy or light). As such, the combined effects of density and shape
asymmetries were systematically investigated. The particles had a nominal length of
2 µm (varying in the range of 1.6–2.6 µm and reported to an uncertainty of ±10 %)
and a diameter of 300 ± 30 nm.

Measurements were performed in an acoustic cell that was formed from two flat
plates, separated by a distance of 180 µm. Water was confined between the plates;
temperature was not reported so we choose a nominal value of 20 ◦C. The lower plate
was oscillated vertically using a piezoelectric transducer at a frequency of 3.77 MHz.
The required acoustic Reynolds number is therefore β = 0.53 ± 0.16, based on
the reported nanorod radii. Since β ∼ O(1), we expect the propulsion velocity and
direction of the particles to depend sensitively on the nanorod shape and density
asymmetries; see § 3.3. Namely, all experiments were conducted in a parameter space
close to the theoretically predicted zero-propulsion point, as we demonstrate below.
This property complicates a direct comparison of theory with measurements, since the
precise particle shapes were not characterised. Furthermore, the particle ends are not
well described by simple geometric surfaces, e.g. see Ahmed et al. (2016, figure 2).

We therefore resort to a qualitative comparison, where the particle ends are
modelled as hemi-spheroids (both concave and convex ends) and a nominal value of
β= 0.53 is used in all calculations. See the captions of figure 5 and table 1 for details
of the particle geometry and density distribution. To explore the expected sensitivity
to particle shape, we systematically vary the concavity of the ends and change the
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End shape Material γ1 γ2 Uprop (×10−4)

Hemi-spherical Au 19.3 19.3 2.7
RuAu 12.5 19.3 9.9
AuRu 19.3 12.5 −5.3

Hemi-spheroidal Au 19.3 19.3 −2.1
RuAu 12.5 19.3 −6.3
AuRu 19.3 12.5 −4.9

TABLE 1. Numerical results for the propulsion velocity, Uprop, of nanorods being excited
at an acoustic Reynolds number, β = 0.53; γ1 is the density ratio for material on the left
half of the nanorod and γ2 its right half. Two particle shapes are used: hemi-spherically
and hemi-spheroidally capped circular cylinders; see figure 5 for details.

nature of the density asymmetries. All calculations are performed numerically in
COMSOL. This is achieved by first calculating the leading-order unsteady Stokes
flow of the unitary translational and rotational particle motions (as specified in § 2),
following which the particle’s propulsion velocity is determined using (2.10).

The numerical procedure is validated using analytical results for the dumbbell-
shaped particles in § 3. This is performed in the appropriate large aspect ratio limit
(for which the analytical solution is derived), where A is systematically increased to
A= 100 for the shape and density asymmetries studied in § 3. The mesh is refined to
achieve a convergence of 99.9 % for a given fluid domain. The required fluid domain
size for convergence increases with decreasing β and increasing A, as expected. For
β > 10, convergence in the numerical results for Ûprop ≡ AUprop (see figure 2) is
achieved where agreement with the analytical solution to within 98 % is observed;
data not shown. For lower values of β, computational limitations on the fluid domain
and mesh size do not allow convergence in Ûprop to be achieved at the 98 % level
with increasing A. Comparison with the dumbbell’s analytical solution for low values
of β in the high A limit is therefore not possible.

We first simulate a nanorod with a shape asymmetry defined by hemi-spherical caps
(both convex and concave ends) and composed only of Au (γ = 19.3); see upper left
schematic of particle in figure 5. The propulsion velocity of this particle is given
in the first row of table 1. While Ahmed et al. (2016) report that the concave end
always leads the propulsion of a particle composed of a single material, we find the
opposite behaviour: the convex end leads. Since the acoustic Reynolds number is of
order one, β = 0.53, changes in particle shape can potentially affect the propulsion
direction; as observed for the dumbbell-shaped particles in figure 4. This is borne
out in simulations, where increasing the concavity of the ends reverses the propulsion
direction; see upper right schematic in figure 5. The magnitude of the propulsion
velocities of these two particles are comparable, as detailed in table 1. These results
highlight the sensitivity of particle shape to the propulsion direction when operating
homogenous nanorods at β ∼ O(1); as performed experimentally by Ahmed et al.
(2016).

To assess the general trends reported by Ahmed et al. (2016), density asymmetries
are introduced to the homogenous density nanorods studied above. We remind
the reader that a primary finding of that study is that the concave and light end
will predominantly lead the nanorod propulsion. Replacing the material of the
hemi-spherically capped nanorod with RuAu strongly increases its propulsion velocity,
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but with the opposite trend to that reported by Ahmed et al. (2016). Namely, the
heavy end of the nanorod increases the propulsion velocity by a factor of 4: the
convex and heavy end lead the motion. Reversing the composition to AuRu reverses
the motion. As such, the heavy end of the nanorod leads the propulsion direction
rather than the light end. The calculated propulsion velocities are provided in
table 1.

In contrast, the nanorod with large concavity (hemi-spheroidal caps) exhibits the
opposite behaviour. Replacing its material with RuAu leads to enhanced propulsion
with the concave end leading, whereas AuRu reduces the propulsion velocity; see
right-hand column of figure 5. This is somewhat similar to the general trends
described by Ahmed et al. (2016), though the enhanced propulsion velocity of
the AuRu nanorod relative to the single material Au nanorod is not anticipated from
experiments.

Together, these numerical calculations show that the trends reported by Ahmed et al.
(2016) provide a small glimpse into the complex behaviour of these nanorods. Further
measurements on nanorods, for a range of different shape and density asymmetries,
certainly provides an interesting avenue for future work. This should be performed
in both the low and high acoustic Reynolds number regimes where the propulsion
direction and speed are less sensitive to small changes in the shape and density
asymmetries. Such an analysis would also need to be coupled with measurement of
the fluid’s oscillation amplitude (which is yet to be reported) to enable a full and
direct quantitative comparison with theory.

5. Conclusions

We have studied the steady autonomous propulsion generated by nanorods trapped
in an acoustic field. A general theoretical framework for an arbitrary axisymmetric
particle was developed (in § 2) that enables its propulsion velocity to be calculated
from the unsteady Stokes flow generated by the particle. The particle can possess both
geometric and density asymmetries of an arbitrary nature and the acoustic field can be
operated at any frequency. This generalises previous work by Nadal & Lauga (2014)
who studied nearly spherical particles with shape asymmetries only that are driven at
low frequency.

This general framework was applied to slender dumbbell-shaped particles (to
facilitate analytical solution) in § 3, from which the physical mechanisms leading to
propulsion in the presence of both density and shape asymmetries were uncovered.
Steady propulsion is generated by the coupling of translational and rotational
oscillations of each sphere of the dumbbell due to nonlinear convective inertia;
the applied acoustic field’s primary role is to generate this particle motion. Generally,
the lighter/smaller end of the particle leads the propelled motion for small acoustic
Reynolds numbers (dimensionless frequency). At high acoustic Reynolds number, this
motion reverses with the heavier/larger end leading. A phase diagram was reported
for the combined effect of density and shape asymmetries where, unlike particles with
a single source of asymmetry (either density or shape), a particle with both types
of asymmetry may exhibit two points of zero propulsion as frequency is increased.
This shows that operation at intermediate acoustic Reynolds number, i.e. β ∼ O(1),
can lead to propulsion in either direction which depends sensitively on the particle
details. This finding is yet to be reported in measurements.

Finally, this general framework was applied to investigate the nanorod system
studied experimentally by Ahmed et al. (2016). Strikingly, this system operates at an
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intermediate acoustic Reynolds number, β = 0.53 ± 0.16, which is precisely in the
regime of zero propulsion – complicating a direct comparison with theory. Simulations
show that changing the concavity of the model particles that mimic the structure of
the experimental system can dramatically alter the particle motion. These results
motivate further measurements on particles at low and high frequency to investigate
the theoretically predicted presence of a cross-over in propulsion direction.

The findings of this study provide insight into the interplay of density and shape
asymmetries and enable the a priori design and characterisation of these autonomous
acoustic motors.
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Appendix A. Propulsion velocity via the Lorentz reciprocal theorem

The generalised Lorentz reciprocal theorem for two steady or unsteady Stokes
flows in the same spatial domain, with velocity and stress tensors (u, σ ) and (u′, σ ′),
respectively, is∫∫

S
(u′ · σ − u · σ ′) · n̂ dS=

∫∫∫
V
(u · ∇ · σ ′ − u′ · ∇ · σ ) dV, (A 1)

where n̂ is the unit vector into the fluid domain, V , and S is the surface of this domain.
Here, we use (A 1) to calculate the propulsion velocity of the particle, Uprop =Uprop î,
which is formally given by solution to (2.9).

We choose (u, p, σ ) to be the steady streaming first-order flow in (2.9), which
contains a body force specified by the leading-order unsteady Stokes flow due to
convective inertia. The second (auxiliary) flow (u′, p′, σ ′) is selected to be the steady
Stokes flow generated by the same particle moving with unitary velocity, î, in a
quiescent fluid. This ensures that contributions from the bounding surface far from
the particle vanish. Note that no body force is present in this auxiliary flow, i.e.
∇ · σ ′= 0. As such, the form of the streaming flow does not appear on the right-hand
side of (A 1). Substituting (2.9b) for the first-order flow into (A 1) then gives∫∫

Sp

î · (σ̄ (1)
−Upropσ

′) · n̂ dS=−
β

4

∫∫∫
V

u′ · (ū(0) · ∇ū(0)∗ + ū(0)∗ · ∇ū(0)) dV, (A 2)

where Sp is the particle surface and V is the entire fluid volume.
Importantly, (u, p, σ ) is the steady Stokes flow generated by the (convective) body

force in (2.9b). The propulsion velocity, Uprop, is then specified by force equilibrium
with the net force exerted by the fluid on the particle being zero, i.e. the resulting
hydrodynamic drag on the particle balances the drive due to the convective body force.
This eliminates the term in (A 2) containing the stress tensor, σ̄ (1), giving

Uprop

∫∫
Sp

î · σ ′ · n̂ dS=
β

4

∫∫∫
V

u′ · (ū(0) · ∇ū(0)∗ + ū(0)∗ · ∇ū(0)) dV. (A 3)
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The surface integral on the left-hand side of (A 3) is formally the Stokes drag on
the particle with translational velocity (in the x-direction) of unitary magnitude in a
quiescent fluid, denoted by Fp; note that Fp < 0. Equation (A 3) then becomes

Uprop =
β

4Fp

∫∫∫
V

u′ · (ū(0) · ∇ū(0)∗ + ū(0)∗ · ∇ū(0)) dV. (A 4)

Equation (A 4) can be used directly to calculate the propulsion velocity of the
particle. However, it involves derivatives of the leading-order unsteady Stokes flow,
ū(0), which will in general have a more complicated form relative to the auxiliary
Stokes flow, u′ – this can complicate analysis (as for the dumbbell). This property
can be removed by application of the continuity equation and the product rule for
the divergence operator, to express the propulsion velocity identically as,

Uprop =
β

4Fp

[
(W̄pΩ̄

∗

p + W̄∗p Ω̄p)Vp

−

∫∫∫
V

{
ū(0)∗ · (ū(0) · ∇u′)+ ū(0) ·

(
ū(0)∗ · ∇u′

)
−
(
ū(0) + ū(0)∗

)
· ∇w′

}
dV
]
,

(A 5)

where Vp is the particle volume and w′ is the z-component of u′. Equation (A 5)
contains gradients of the auxiliary Stokes field, u′, only.

Appendix B. Hydrodynamic interaction of the dumbbell’s spheres

The flow fields in (2.11), ū(0) and u′, for a dumbbell are calculated here to leading
order in the required high aspect ratio asymptotic limit, A� 1. This is performed by
first superimposing flows due to the two spheres in isolation (Pozrikidis 1989), i.e.

ū(0) = k̂+ ū(0)1 + ū(0)2 , u′ = u′1 + u′2, (B 1a,b)

where the subscripts 1 and 2 again refer to the two spheres. Specifically, ū(0)1 and
ū(0)2 are the velocity fields in the fluid generated individually by Spheres 1 and 2,
respectively, considering the other sphere to be absent, with the dumbbell executing
the motion specified in (2.6), (3.4) and (3.5). The auxiliary velocity fields, u′1 and u′2,
are those due to uniform translation of the dumbbell in the propulsion direction, î,
with unitary speed, again considering the other sphere to be absent. We now show that
(B 1) provides the required leading-order velocity field of the dumbbell and examine
the hydrodynamic interaction between the two spheres.

We first examine the effect of higher-order corrections to (B 1) on the propulsion
velocity, Uprop. Note that ū(0)n and u′n decay as 1/r3 and 1/r, respectively, far from
each sphere. Here, r is the distance from each sphere and n = 1, 2 denotes Spheres
1 and 2, respectively. Including reflection velocities (Happel & Brenner 1983) to
correct for violation of the no-slip conditions on the two spheres in (B 1), and using
the above-specified decay rates, gives corrections of O(1/A3) and O(1/A) for ū(0)
and u′, respectively. Equation (2.11) then shows that contributions to the propulsion
velocity, Uprop, arising from these (higher-order) reflection terms are O(1/A) smaller
than the leading-order result arising from (B 1). As such, these reflection velocities
do not contribute to the leading-order result for Uprop of a slender dumbbell (A� 1),
and are ignored.
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Next, the interaction of each sphere’s flow field in (B 1) is studied. Equation (B 1)
gives terms in the volume integral of (2.11) due to (i) self-interaction of the spheres’
individual velocity fields, e.g. ū(0)∗1 · ([k̂ + ū(0)1 ] · ∇u′1), and (ii) those due to mixing
of the two flow fields, e.g. ū(0)∗1 · ([k̂+ ū(0)1 ] · ∇u′2). Using the above-mentioned fluid
velocity decay rates, scaling analysis then shows that this self-interaction contributes
terms of O(1/A) to Uprop, whereas contributions from the mixed terms are of O(1/A2).

As such, the dumbbell’s two spheres are hydrodynamically isolated in the large
aspect ratio limit, A� 1, and (B 1) gives the required leading-order asymptotic result
for the fluid’s velocity field generated by the dumbbell.
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