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Abstract
Any modality in homotopy type theory gives rise to an orthogonal factorization system of which the left
class is stable under pullbacks. We show that there is a second orthogonal factorization system associated
with any modality, of which the left class is the class of �-equivalences and the right class is the class of �-
étale maps. This factorization system is called the modal reflective factorization system of a modality, and
we give a precise characterization of the orthogonal factorization systems that arise as the modal reflective
factorization system of a modality. In the special case of the n-truncation, the modal reflective factorization
system has a simple description: we show that the n-étalemaps are themaps that are right orthogonal to the
map 1→ Sn+1. We use the �-étale maps to prove a modal descent theorem: a map with modal fibers into�X is the same thing as a �-étale map into a type X. We conclude with an application to real-cohesive
homotopy type theory and remark how �-étale maps relate to the formally etale maps from algebraic
geometry.

Keywords: Homotopy type theory; modal homotopy type theory; cohesive homotopy type theory; algebraic geometry;
factorization systems

1. Introduction
In 2011, Urs Schreiber and Michael Shulman introduced modalities to homotopy type theory,
with the idea to use these extended theories to reason about more specialized (∞, 1)-toposes.
One special application they had in mind was to use homotopy type theory to talk about cohesive
(∞, 1)-toposes (Schreiber and Shulman, 2014). This idea of a cohesive type theory was later devel-
oped in Shulman (2015) for a special case. While the results in this article are about one monadic
modality, these ideas were relevant for the development of our results and we will discuss possible
applications along these lines.

Monadic modalities, which we will just call modalities in this article, were defined in Univalent
Foundations Program (2013, Section 7.7). They were studied extensively in Rijke et al. (2017),
where it was shown that any modality gives rise to an orthogonal factorization system of which
the left class is stable under pullbacks. Hence, we will call this factorization system the stable factor-
ization system of a modality. One of our main results is Theorem 7.2, which shows that there is a
second orthogonal factorization system that can be obtained from a modality: themodal reflective
factorization system. The left maps of the modal reflective factorization system are the maps that
are inverted by the modality and the right maps are those with a cartesian naturality square. In the
case where the modality is lex, those left and right classes coincide with the left and right classes
of the stable orthogonal factorization system. What we call “modal reflective factorization system”
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is known in category theory, for example, in Cassidy et al. (1985) as “semi-lex reflective factoriza-
tion system.” In Theorem 7.5, we give a precise characterization of those orthogonal factorization
systems that arise as the modal reflective factorization system of a modality.

We call right maps of the modal reflective factorization system �-étale, where � is the modal-
ity. This name is inspired by the formally étale maps from algebraic geometry, which are maps
reminiscent of local homeomorphisms in topology. In topology, “local” means that the maps are
trivial over some open subset, while formally étale maps are trivial on formal disks. In the case of
modalities, there is a similar notion of �-disks, and we show that a map is �-étale maps if and
only if it is trivial on �-disks in a sense made precise in Proposition 4.2. The relevant definitions
from algebraic geometry are included in Section A together with proofs that they could be defined
analogous to our definitions of �-étale maps and �-disks.

Another way in which�-étale maps can be seen as locally trivial is the fact that a map p : E→ B
is �-étale if and only if it extends uniquely to a map p̃ : Ẽ→ �B with �-modal fibers. This claim,
which we establish in Theorem 5.4, is the modal descent theorem.

In Theorem 3.10, we use our abstract theory to prove the following characterization of étale
maps for the n-truncations, for n≥ −1: A map f :A→ B is n-étale if and only if it is right
orthogonal to the base point inclusion 1→ Sn+1.

In Section 8, we show how the modal descent theorem (Theorem 5.4) subsumes the classical
fundamental theorem of the theory of covering spaces in real-cohesive homotopy type theory.
This also yields a candidate extension of this classical theorem to topological stacks. In fact, it is es-
sential in this context that the modal descent theorem was already found and proven by Schreiber
(2013, Proposition 5.2.42).

We thank Jonas Frey and Michael Shulman for help in understanding factorization systems in
a long email discussion in early 2018. This was also the time when the second author wrote his
PhD thesis, so some of our results we present here, especially those in Sections 5 and 7 have already
appeared in Rijke (2019). Discussions with and remarks of Jonathan Zachhuber, Tobias Columbus,
Marcelo Fiore, Steve Awodey, Eric Finster, André Joyal, Mathieu Anel, and Dan Christensen were
helpful for this work. The anonymous reviewers greatly improved the article with their comments
and suggestions. This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-17-1-0326, and through MURI grant FA9550-15-1-0053.

2. Preliminaries
We assume that the reader is familiar with the basics of homotopy type theory (Univalent
Foundations Program, 2013) and the basic theory of (idempotent, monadic) modalities, as pre-
sented in Rijke et al. (2017). In this preliminary section, we recall the basic concepts from those
two sources.

Just as in Univalent Foundations Program (2013), we write x= y for the type of identifications
of x and y, provided that both x and y have a common type X. Sometimes we call identifications
equalities. We write

apf : (x= y)→ ( f (x)= f (y))

for the action on identifications of a function f . Concatenation of identifications is written in
diagrammatic order, that is, we write p · q for the concatenation of p : x= y and q : y= z. The
fiber of a map f :A→ B at b : B is defined to be the type

fibf (b) :≡
∑

(x:A) f (x)= b.
Recall that a type X is said to be contractible if it comes equipped with a term of type

is contr(X) :≡ ∑
(x:X)

∏
(y:X)x= y.

A map is an equivalence if and only if all its fibers are contractible.
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We will frequently make use of the concept of proposition in homotopy type theory.
Propositions are types of which all identity types are contractible, that is, a type X is said to be
a proposition if it comes equipped with a term of type

is prop(X) :≡ ∏
(x,y:X)is contr(x= y).

It is important in homotopy type theory to distinguish between properties and structures. A type
P(x) indexed by x : X is said to be a property of X if the type P(x) is a proposition. Otherwise, it is
called a structure on x. The type Prop of all propositions in a universe U is defined by

Prop :≡ ∑
(X:U )is prop(X).

Wemake extensive use of homotopy pullbacks. Themost important property we will be relying
on is the following theorem:

Theorem 2.1. Consider a commuting square

A X

B Y

h

f g

i

with homotopy H : i ◦ f ∼ g ◦ h. Then, the following are equivalent:
(i) The square is a pullback square.
(ii) For each b : B, the induced map on fibers

fibf (b)→ fibg(i(b))

given by (a, p) 	→ (h(a),H(a)−1 · api
(
p
)
), is an equivalence.

For an arbitrary commuting square, the induced map into the pullback is called the gap map.
In other words, the gap map of a commuting square

A X

B Y

h

f g

i

is the unique map A→ B×Y X obtained via the universal property of the pullback. One can show
that the fibers of the gap map are equivalent to the fibers of the induced maps on fibers. This
observation implies the above theorem.

Theorem 2.1 has many nice consequences. We mention two here, both of which can be seen as
descent theorems.

Theorem 2.2. (Descent theorem for �-types). A family of commuting squares

Ai X

Bi Y

fi g

indexed by i : I is a family of pullback squares if and only if the induced square∑
(i:I) Ai X

∑
(i:I) Bi Y

g

is a pullback square.
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Theorem 2.3. (Descent theorem for surjective maps). Consider a diagram of the form

A X V

B Y W,
h

in which the left square is a pullback square, and suppose that the map h : B→ Y is surjective. Then,
the outer rectangle is a pullback if and only if the right square is a pullback.

The main object of study in this article is a modality, of which the canonical examples are the
n-truncations. There are many equivalent ways of saying what a modality is Rijke et al. (2017).

Definition 2.4. A reflective subuniverse consists of a subuniverse P : U → Prop equipped with:

(i) amodal operator � : U → U such that P(�X) holds for any X : U ,
(ii) a modal unit η : X → �X for each X : U that satisfies the universal property of�-localization: the precomposition function

– ◦ η : (�X → Y)→ (X → Y)

is an equivalence for every type Y : U such that P(Y) holds.

Types that satisfy the property P are usually called �-local, and we write U� for the type of all�-local types.

By the universal property of reflective subuniverses, it follows that for every map f :A→ B,
there is a unique map �f : �A→ �B such that the square

A B

�A �B

η

f

η

�f

commutes. This square is called the �-naturality square of f .

Proposition 2.5. Given a reflective subuniverse �, the following two properties are equivalent:

(i) For any family B(x) of �-local types, indexed by x in a �-local type A, the type
∑

(x:A) B(x)
is also �-local. We also say that � is �-closed, if this property holds.

(ii) For any typeX, and any family B : �X → U� of �-local types, the precomposition function

– ◦ η :
(∏

(y:�X)B(y)
)

→
(∏

(x:X)B(η(x))
)

is an equivalence. We also say that � is uniquely eliminating if this property holds.

If either of these equivalent properties holds, then we say that the reflective subuniverse � is a
modality. If � is a modality, we call the �-local types �-modal.

It is not the case, however, that any reflective subuniverse is a modality. For example, the
subuniverse of types X that are p-local in the sense that the precomposition map

deg(p) : XS1 → XS1

is an equivalence, where deg(p) : S1 → S1 is the degree p-map for some prime p, is not a modality
(Christensen et al., 2020).

Any modality determines a stable orthogonal factorization system, which we recall now.
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Definition 2.6. An orthogonal factorization system is a pair (L,R) of classes of maps
L : ∏(X,Y:U )(X → Y)→ Prop

R : ∏(X,Y:U )(X → Y)→ Prop

such that

(i) Both L andR contain all equivalences and are closed under composition.
(ii) Every map f : X → Y factors as a left map (i.e. a map in L) followed by a right map (i.e. a

map inR). More precisely, for every map f : X → Y there is a type im(L,R)( f ) equipped with
maps

fL : X → im(L,R)( f )
fR : im(L,R)( f )→ Y

and a homotopy witnessing that the triangle

X Y

im(L,R)( f )

f

fL fR

commutes.
(iii) Every map in the left class is left orthogonal to every map in the right class (we also say that

every map in R is right orthogonal to every map in L). Following the observations of Anel
et al. (2017), this means that for any map i :A→ B in L and any map f : X → Y in R, the
square

XB YB

XA YA

is a pullback square.

An orthogonal factorization system is said to be stable if the left class is stable under pullbacks. That
is, for any pullback square

A X

B Y

h

f g

i

in which the map g : X → Y is in L, it is required that f is also in L.
Recall from Rijke et al. (2017) that the stable orthogonal factorization system of a modality is

obtained in the following way. First, we say that a map f : X → Y is �-modal if all its fibers are�-modal types. The classR is defined to be the class of �-modal maps. Second, we say that a type
X is �-connected if �X is contractible. Then, we say that a map f : X → Y is �-connected if all
of its fibers are �-connected. The class L is defined to be the class of �-connected maps. The pair
(L,R) is the stable orthogonal factorization system of the modality �.

Conversely, we can obtain a modality from a stable factorization system, in which a type X is
modal if and only if the terminal projection X → 1 is in R. The modal operator of this modality
is defined as

�X :≡ im(L,R)(X → 1)
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and the modal unit is defined to be the left factor X → �X of the map X → 1. The orthogonality
can be used to show that the map η defined in this way is indeed uniquely eliminating in the sense
of Proposition 2.5.

We recall one more useful general fact about modalities.

Theorem 2.7. For any two stable orthogonal factorization systems (L,R) and (L′,R′), the
following are equivalent:

(i) Every (L,R)-modal type is (L′,R′)-modal.
(ii) The modal units of the modality (L′,R′) are in L.

Recall that a map is said to be surjective if all its fibers are merely inhabited. In other words,
f is surjective if it is in the left class of the stable factorization system for the (−1)-truncation.
Therefore, we have the following corollary.

Corollary 2.8. For any modality, every proposition is modal if and only if the modal units are
surjective.

3. �-étale Maps
Definition 3.1. We say that a map f :A→ B is �-étale, if the square

A B

�A �B

f

η η

�f

is a pullback square. We will write is etale( f ) for this proposition. In the special case where the
modality � is the n-truncation, we will say that a map is n-étale if it is �-étale.

Using the fact that � preserves equivalences and composition up to homotopy, it is immediate
from the definition that any equivalence is �-étale, and that the �-étale maps are closed under
composition.

Example 3.2. We claim that a map f :A→ B is (−1)-étale if and only if it satisfies the condition
A→ is equiv( f ).

Examples of maps that satisfy this condition include equivalences, maps between propositions,
and any map of the form ∅ → B.

To see that if f :A→ B is �-étale, then A→ is equiv( f ), consider the pullback square

A ‖A‖

B ‖B‖,
f ‖ f ‖

and let a :A. Then both ‖A‖ and ‖B‖ are contractible, so ‖ f ‖ : ‖A‖ → ‖B‖ is an equivalence.
Since equivalences are stable under pullback it follows that f is an equivalence.

Now suppose that A→ is equiv( f ). Since is equiv( f ) is a proposition, we also have ‖A‖ →
is equiv( f ). To see that the gap map

A→ B×‖B‖ ‖A‖
is an equivalence, we will show that its fibers are contractible. Let b : B, x : ‖A‖ and p : ∣∣b∣∣ = ‖ f ‖(x).
Since ‖A‖ → is equiv( f ), it follows that f is an equivalence. Then ‖ f ‖ is also an equivalence, from
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which it follows that the naturality square is a pullback square. We conclude that the fibers of the
gap map are contractible.

We saw in the above example that any map between propositions is ‖–‖-étale. This fact
generalizes to all modalities.

Lemma 3.3. Any map between �-modal types is �-étale.

Proof. Suppose f : X → Y is a map between �-modal types. Then the top and bottommaps in the
square

X �X

Y �Y

are equivalences. Therefore, this square is a pullback square, so f is �-étale.

Remark 3.4. If the modality � is lex, then it follows from property (viii) in Theorem 3.1 of Rijke
et al. (2017) that for any �-modal map f :A→ B, the evident map

fibf (b)→ fib�f (η(b))
is an equivalence, because it is a �-connected map between �-modal types. Therefore, we
conclude by Theorem 2.1 that the square

A �A

B �B

f

η

�f

η

is a pullback square. In other words, if the modality � is lex, then any �-modal map is �-étale.
The converse holds without assuming that the modality � is lex: if f is a base change of �f , then
the fibers of f are because the fibers of �f are �-modal.

Our goal in this section is to show that a map is n-étale, that is, étale for the n-truncation, if and
only if it is right orthogonal to the point inclusion 1→ Sn+1. We will use �-disks in our proof,
which we recall fromWellen (2017).

Definition 3.5. Let � be a modality, and let a :A. The �-disk D�(A, a) of A at a is defined by
D�(A, a) :≡ ∑

(x:A)η(a)= η(x).
In the special case where � is the n-truncation, we write Dn(A, a) for the ‖–‖n-disk at a and if the
modality is clear from the context, we allow ourselves to drop “�” from the notation and write just
D(A, a).

Note that the �-disk fits in a fiber sequence

D�(A, a) A �(A).

Moreover, we observe that the �-disk is �-connected, since the modal unit η :A→ �(A) is a�-connected map. Therefore, the �-disk is also known as the �-connected cover of A at a.
We also recall the notion of �-disk bundle fromWellen (2017).

Definition 3.6. For any type A, we define the �-disk bundle
T�A :≡ ∑

(x:A)D�(A, x).
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Note that the �-disk bundle fits in a pullback square

T�A A

A �A.

Note thatD� and T� act functorially: given a map f :A→ B and a point a :A, we obtain a map

D�( f , a) :D�(A, a)→D�(B, f (a)).

This family of maps induces a map T�f : T�A→ T�B for which the square

T�A T�B

A B

T�f

pr1 pr1

f

commutes.

Proposition 3.7. Let � be a modality and f :A→ B any map, and consider the following two
statements:

(i) The map f is �-étale.
(ii) The square

T�A T�B

A B

T�f

pr1 pr1

f

is a pullback square.

We have (i) implies (ii). Moreover, if ηA :A→ �A is surjective, then (ii) implies (i).

Proof. By Theorem 2.1, the square

A B

�A �B

f

ηA ηB

�f

is a pullback square if and only if the induced map on fibers

fibηA(x)→ fibηB(�f (x))

is an equivalence for each x : �A. Thus, we see that if f is �-étale, then the map

D�( f , x) :D�(A, x)→D�(B, f (x))

is an equivalence for each x :A. By Theorem 2.1, it follows that (ii) is equivalent to the property
that each D�( f , x) is an equivalence. This proves that (i) implies (ii). Furthermore, if ηA is surjec-
tive, then the property that each D�( f , x) is an equivalence is equivalent to the property that each
fibηA(x)→ fibηB(�f (x)) is an equivalence. This proves that (ii) implies (i) in the case where ηA is
surjective.
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Example 3.8. In the special case of (−1)-truncation, the characterization of Proposition 3.7 (ii)
asserts that a map f :A→ B is (−1)-étale if and only if the square

A×A B× B

A B

pr1

f×f

pr1

f

is a pullback square. Phrased differently, we see that a map is (−1)-étale if and only if the square

AS0 BS0

A B

ev∗

f S0

ev∗

f

is a pullback square. In other words, f is (−1)-étale if and only if f is right orthogonal to the base
point inclusion 1→ S0.

Example 3.9. By Proposition 3.7 and the fact that (|a|0 = |x|0)
 ‖a= x‖, it follows that f is
0-étale if and only if the square

∑
(a,x:A)‖a= x‖ ∑

(b,y:B)‖b= y‖

A B

pr1

tot(‖apf ‖)

pr1

f

is a pullback square. Furthermore, by Theorem 2.1 this square is a pullback if and only if the
induced map (∑

(x:A)‖a= x‖
)

→
(∑

(y:B)
∥∥ f (a)= y

∥∥)
is an equivalence, for each a :A.

We note that a map f :A→ B between pointed connected types is an equivalence if and only
if it is an embedding, which happens if and only if f S1 :AS1 → BS1 is an equivalence. We can use
this fact to conclude that a map is 0-connected if and only if the square

AS1 BS1

A B

is a pullback square. Therefore, we see that a map f is 0-étale if and only if it is right orthogonal
to the base point inclusion 1→ S1.

These examples suggest the following theorem.

Theorem 3.10. For any map f :A→ B and any n≥ −1, the following are equivalent:

(i) The map f is n-étale.
(ii) The map f is right orthogonal to the base point inclusion 1→ Sn+1.
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Remark 3.11. For n≡ −2, the statement does not make sense, since there is no base point inclu-
sion 1→ S−1. On the other hand, the (−2)-étale maps are easily characterized: a map is (−2)-étale
if and only if it is an equivalence.

Proof. The case of n≡ −1 is already covered in Example 3.8, so we assume that n is at least 0.
Furthermore, recall that f is right orthogonal to 1→ Sn+1 if and only if the commuting square

ASn+1 BSn+1

A B

(1)

is a pullback square.
For the forward direction, suppose f :A→ B is n-étale, and consider the commuting cube

ASn+1

‖A‖nSn+1 BSn+1 A

‖B‖nSn+1 ‖A‖n B

‖B‖n
In this cube, the front right square is a pullback square by the assumption that f is n-étale. The
back-left square is an exponent of this pullback square, so it is again a pullback. The front-left
square is a pullback square because its top and bottom map are both equivalences. Therefore, we
conclude that the back-right square is a pullback square, which shows that f is right orthogonal to
the map 1→ Sn+1.

For the converse, suppose that the square in Eq. (1) is a pullback square. This square is
equivalent to the square∑

(x:A) Map∗(Sn,�(A, x))
∑

(y:B) Map∗(Sn,�(B, y))

A B,

so we see that this is a pullback square, and by Theorem 2.1 it follows that the map

Map∗(Sn,�( f , x)) :Map∗(Sn,�(A, x))→Map∗(Sn,�(B, f (x)))

of pointed mapping spaces is an equivalence, for each x :A.
Our goal is to show that f is n-étale. By Proposition 3.7, it is equivalent to show that the square

A×‖A‖n A B×‖B‖n B

A B

is a pullback square. By Theorem 2.1, this is equivalent to showing that the induced map

Dn( f , x) :Dn(A, x)→Dn(B, f (x))
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on �-disks is an equivalence for each x :A. We note that the �-disks are fibers of the unit η :A→
‖A‖n, so they are n-connected. It follows immediately that the map Dn( f , x) is (n− 1)-connected.
Therefore, it suffices to show that Dn( f , x) is an (n− 1)-truncated map.

Recall that a map ϕ between (0-)connected types is (n− 1)-truncated if and only if ϕSn+1 is an
equivalence. Using our assumption that n≥ 0 we know that the �-disks under consideration are
at least connected. Therefore, it suffices to show that (Dn( f , x))Sn+1 is an equivalence. Now we
observe that the square

Map∗(Sn+1,Dn(A, x)) Map∗(Sn+1,Dn(B, f (x)))

Map∗(Sn+1, (A, x)) Map∗(Sn+1, (B, f (x)))

commutes. In this square, the bottommap is an equivalence by the suspension-loop space adjunc-
tion, and the fact thatMap∗(Sn,�( f , x)) is an equivalence. Therefore, it suffices to show that both
vertical maps are equivalences, that is, that any map of the form

pr1 ◦ – :Map∗(Sn+1,Dn(A, x))→Map∗(Sn+1, (A, x))
is an equivalence. To see this, we use that Dn(A, x) is equivalent to the type

∑
(y:A)‖x= y‖n−1.

Therefore, it follows that the fiber of the above post-compositionmap at (h, α) :Map∗(Sn+1, (A, x))
is equivalent to the type ∑

(g:∏(t:Sn+1)‖h(t)=x‖n−1)g( ∗ )= η(α).

Here, α is the identification h( ∗ )= x witnessing that h is a base point preserving map. However,
since g is a dependent function from the (n+ 1)-sphere into a family of (n− 1)-types, it follows
by the dependent universal property of Sn+1 that the type above is equivalent to the type∑

(β:‖h(∗)=x‖n−1)β = η(α),

which is clearly contractible. Therefore, we see that the post-composition map pr1 ◦ – has
contractible fibers, so we conclude that it is an equivalence.

The proof of Theorem 3.10 uses the suspension-loop space adjunction, so it does not seem to
be directly generalizable to arbitrary accessible modalities. For instance, it would be interesting
to know whether a étale maps for the nullification modality at an arbitrary pointed type can be
characterized in a similar way.

4. Locally Trivial Maps
In this section, we consider a map f :A→ B and write

Fy :≡ fib�f (y)
Dy :≡ fibη(y)

for any y : �B. The type Dy can be thought of as a �-disk, except that it is not centered at a point
in B.

Recall that f can be seen as a fibration, of which the fiber at b : B is the type fibf (b). We will
show that the condition of being �-étale is related to the condition that the fibration f is trivial on
the types Dy. We define this condition more precisely as follows.

Definition 4.1. We say that f is�-locally trivial if for each y : �B there is a map ϕy : Fy ×Dy →A
such that the cube

https://doi.org/10.1017/S0960129520000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000201


374 F. Cherubini and E. Rijke

Fy ×Dy

Fy A Dy

�A 1 B

�B

pr1 ϕy
pr2

y

commutes, and the back-right square is a pullback square.

By the assumption that the square

Fy ×Dy A

Dy B

pr2

ϕy

f

i

is a pullback square, we see that a �-locally trivial map is a map that becomes a trivial fibration
when it is restricted to a �-disk. Indeed, with Theorem 2.1 we obtain from this pullback square a
family of equivalences

Fy 
 fibf (i(z))

indexed by z :Dy, where i :Dy → B is the fiber inclusion of the (unpointed) fiber sequence Dy ↪→
B→→ �B. The commutativity of the cube implies that the map ϕy is uniquely determined, as we
will soon see.

Proposition 4.2. The following are equivalent:

(i) The map f is �-étale.
(ii) The map f is �-locally trivial.

Proof. Suppose that f is �-étale, and for arbitrary y : �B consider the cube

Fy ×Dy

Fy A Dy

�A 1 B

�B.

ϕy

In this cube, the map ϕy is the unique map such that the cube commutes, obtained from the
assumption that the bottom square is a pullback square. Now observe that the bottom, front-left,
front-right, and top squares are all pullback squares. Therefore, it follows immediately that the
remaining squares are pullback squares. Hence, f is �-locally trivial.
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Now assume that f is �-locally trivial, and consider the commuting cube∑
(y:�B) Fy ×Dy

∑
(y:�B) Fy A

∑
(y:�B) Dy

�A
∑

(y:�B) 1 B

�B

Using the descent theorem of�-types (Theorem 2.2) and the assumption that f is�-locally trivial,
we see that the back-right square is a pullback square. We also note that the vertical maps on the
left, right, and in the front are equivalences. Moreover, we observe that the top square and the
front-left square are pullback squares. Therefore, it follows that the rectangle∑

(y:�B) Fy ×Dy A �A

∑
(y:�B) Dy B �B

f �f

consisting of the back-right square and the bottom square in the cube is a pullback square. Since
the map

∑
(y:�B) Dy → B is an equivalence, and in particular surjective, we use the descent the-

orem for surjective maps (Theorem 2.3) to conclude that the square on the right is a pullback
square, that is, that f is �-étale.

Corollary 4.3. Being �-locally trivial is a property.

Proof. Since a map is �-étale whenever it is �-locally trivial, it follows that the type of maps
ϕy : Fy ×Dy →A such that the cube commutes is contractible, whenever f is�-locally trivial.

5. Modal Descent
Proposition 5.1. Consider a pullback square

E′ E

B′ B

p′

g

p

f

in which we assume that E and B are modal types. Then the square

�E′ E

�B′ B,

g̃

�p′ p

f̃

where f̃ and g̃ are the unique extensions of f and g along the modal units of B′ and E′, is also a
pullback square.
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Proof. Consider the diagram

E′ �B′ ×B E E

B′ �B′ B

h

p′

pr2

pr1 p

η f̃

In this diagram, the square on the right is a pullback by definition, and the outer rectangle is a
pullback by assumption, so the square on the left is also a pullback. Therefore, the map h : E′ →�B′ ×B E is �-connected. Moreover, since the modal types are closed under pullbacks it follows
that �B′ ×B E is modal. Therefore, we obtain a commuting diagram of the form

�E′ �B′ ×B E

E

�B′ �B′

B.

h̃

The map h̃ is the unique extension of h along η : E′ → �E′. Note that h̃ is an equivalence, since it
extends a�-connected map. The bottommap in the back square is also an equivalence. Therefore,
it follows that the square on the left is equivalent to the square on the right, which is a pullback
square. Hence, the claim follows.

Corollary 5.2. Consider a pullback square

E′ E

B′ B,

p′ p

where p is assumed to be �-étale. We make two claims:

(i) The square

�E′ �E

�B′ �B,

�p′ �p

is again a pullback square.
(ii) The map p′ is �-étale.

Proof. Consider the commuting cube
E′

�E′ B′ E

�B′ �E B

�B.
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Since f is assumed to be �-étale, the front-right square is a pullback square. Moreover, the back-
right square is also a pullback square by assumption. Therefore, the front-left square is a pullback
by Proposition 5.1, so the first claim follows. Moreover, we conclude that the back-left square is a
pullback, so the second claim follows.

Definition 5.3. Let X be a type in a universe U , and define the type
et/X :≡ ∑

(Y:U )
∑

(g:Y→X)is etale(g)

Now we note that for any map f :A→ �X with a �-modal domain, the pullback of f along
η : X → �X

X ×�X A A

X �X.

pr1

pr2

f

η

is a �-étale map by Lemma 3.3 and Corollary 5.2. Thus, we obtain an operation

η∗ :
(∑

(A:U�)A→ �X
)

→ et/X.

The following is a descent theorem for �-étale maps.

Theorem 5.4. (Modal descent). For any modality �, and any type X, the operation

η∗ :
(∑

(A:U�)A→ �X
)

→ et/X

is an equivalence.

Proof. If g : Y → X is �-étale, then the square

Y �Y

X �X

g

η

�g

η

is a pullback square. Therefore, we see that the map �g : �Y → �X is in the fiber of η∗ at
g : Y → X.

It remains to show that for any map f :A→ �X with modal domain, there is an equivalence
A
 �(X ×�X A) such that the triangle

A �(X ×�X A)

�X
f




�(η∗( f ))

commutes. To see this, note that both f ◦ pr2 and �(η∗( f )) ◦ η factor the same map as
a �-connected map followed by a modal map, so the claim follows from uniqueness of
factorizations.

Corollary 5.5. Suppose P : X → U is a family of types such that the projection map pr1 :( ∑
(x:X) P(x)

) → X is �-étale. Then, P(x) is �-modal for each x : X, and the map P : X → U� has
a unique extension
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X U�.

�X

η

P

P̃

It follows that the commuting square∑
(x:X) P(x)

∑
(t:�X) P̃(t)

X �X

pr1 pr1

η

is a pullback square. In particular, the topmap is�-connected, so this square is in fact a�-naturality
square.

Proof. Since the square is a pullback, and the bottom map is �-connected, it follows that the top
map is �-connected. However, the codomain of the top map is �-modal, so it follows that the
square is equivalent to the �-naturality square

∑
(x:X) P(x) �( ∑

(x:X) P(x)
)

X �X.

pr1 �pr1
η

6. �-Equivalences
The class of �-equivalences was introduced by Christensen et al. (2020) in the more general case
of reflective subuniverses. We will use them in this section to derive some generalizations of the
results in the previous section.

Definition 6.1. We say that a map f :A→ B is an �-equivalence if �f : �A→ �B is an
equivalence.

Remark 6.2. The difference between the notions of�-equivalences and�-connectedmaps is best
explained by an example. In the case of n-truncation, the n-equivalences are precisely the maps
that induce isomorphisms on the first n homotopy groups. The n-connected maps are the maps
that induce isomorphisms on the first n homotopy groups and moreover induce an epimorphism
on the (n+ 1)-st homotopy group.

We also note that the n-equivalences are not stable under pullbacks, whereas the n-connected
maps are. Consider, for instance, the pullback square

�(Sn+1) 1

1 Sn+1

Here, the map on the right is an n-equivalence, since Sn+1 is n-connected. However, the map on
the left is not an n-equivalence, since the n-th homotopy group of �(Sn+1) is not trivial: it is the
(n+ 1)-st homotopy group of Sn+1, which is Z.

We recall from Christensen et al. (2020) the following facts about �-equivalences:
Proposition 6.3. (i) The �-equivalences satisfy the 3-for-2 property.
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(ii) A map f :A→ B is a �-equivalence if and only if for every �-modal type X, the
precomposition map

f ∗ : (B→ X)→ (A→ X)
is an equivalence.

(iii) Every �-connected map is a �-equivalence.

We learned about the following generalization of Theorem 5.4 in a discussion with Anel,
Awodey, Joyal, and Shulman: The factorization system of �-equivalences and �-étale maps is
an orthogonal factorization system that satisfies the property that the right class descends along
maps in the left class:

Theorem 6.4. For any �-equivalence f :A→ B, the pullback operation
f ∗ : et/B→ et/A

is an equivalence.

Proof. Given a �-equivalence f :A→ B, consider the commuting square

et/(�B) et/(�A)

et/B et/A

�f ∗

η∗ η∗
f ∗

By the modal descent theorem (Theorem 5.4) it follows that the maps η∗ are equivalences.
Furthermore, the map �f is assumed to be an equivalence. Therefore, it follows that f ∗ is an
equivalence.

Next, we show that �-equivalences are stable under base change by �-étale maps.

Proposition 6.5. Consider a pullback square

E′ E

B′ B

p′

g

p

f

in which p and p′ are �-étale and f is a �-equivalence. Then, the map g is a �-equivalence.

Proof. Consider the commuting cube

E′

�E′ B′ E

�B′ �E B

�B

In this cube, the back-left, back-right, and front-right squares are pullback squares by assump-
tion. Therefore, it follows by Proposition 5.1 that the front-left square is a pullback. However, in
this square, the map �B′ → �B is an equivalence, so we conclude that the map �E′ → �E is an
equivalence. In other words, the map g : E′ → E is a �-equivalence.
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The following theorem is a descent-type result of the kind of Theorems 2.2 and 2.3.

Theorem 6.6. Consider a diagram of the form

E′′ E′ E

B′′ B′ B
h

in which h is a �-equivalence, the vertical maps in the right square are �-étale, and the left square
is a pullback square. Then, the following are equivalent:

(i) The outer rectangle is a pullback square.
(ii) The square on the right is a pullback square.

Proof. We have that (ii) implies (i) by the pasting lemma for pullbacks, so it suffices to show that
(i) implies (ii). Consider the diagram

E′′ E′ E

�E′′ �E′ �E

B′′ B′ B

�B′′ �B′ �B.


In this diagram, the three vertical �-naturality squares are all pullback squares, because the verti-
cal maps E′ → B′ and E→ B are assumed to be �-étale, and the vertical map E′′ → B′′ is �-étale
by Corollary 5.2. Furthermore, the back-left square and the back rectangle are assumed to be pull-
back squares. By Proposition 5.1, it follows that the front-left square and the front rectangle are
pullback squares. Furthermore, the top map in the front-left square is an equivalence. Therefore,
we see that the front-right square, which is equivalent to the front rectangle, is a pullback square.
Using the pullback squares on the sides of the right cube, we conclude that the back-right square
is a pullback square.

7. Modal Reflective Factorization Systems
Wewill now define the modal reflective factorization system of a modality, of which the right class
is the class of �-étale maps. Note that our modal reflective factorization systems correspond most
closely to the semi-lex reflective factorization systems of Cassidy et al. (1985).

Definition 7.1. Themodal reflective factorization system associated with a modality� consists of
the �-equivalences as the left class and the �-étale maps as the right class.

Theorem 7.2. The pair (L,R), where L is the class of �-equivalences, andR is the class of �-étale
maps, is an orthogonal factorization system.
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Proof. First we show that every map factors as a �-equivalence followed by a �-étale map.
Consider a map f :A→ B, and the diagram

A

B×�B �A �A

B �B.

f

η

gap

pr1

pr2

�f

η

Then, pr1 : B×�B �A→ B is a pullback of a map between modal types, so it is �-étale by
Corollary 5.2. Furthermore, the map pr2 : B×�B �A→ �A is a pullback of a �-connected map,
so it is �-connected. It follows from Proposition 6.3 that it is a �-equivalence. Since the modal
unit η :A→ �A is also �-connected, and therefore a �-equivalence, we obtain by the 3-for-2
property of�-equivalences established in Proposition 6.3 that the gapmap is also a�-equivalence.

It remains to show that for every �-equivalence i :A→ B, and every �-étale map f : X → Y ,
the square

XB YB

XA YA

is a pullback square. Consider the commuting cube

XB

(�X)B XA YB

(�X)A (�Y)B YA

(�Y)A

In this cube, the top and bottom squares are pullback squares by the assumption that f is�-étale and the fact that exponents of pullback squares are again pullback squares. Furthermore,
the square in the front left is pullback, because the two vertical maps are equivalences by the as-
sumption that i :A→ B is a �-equivalence. Therefore, we conclude that the square in the back
right is also a pullback square, as desired.

The modal reflective factorization system of a modality enjoys several properties. We highlight
two of them, which turn out to characterize the orthogonal factorization systems that arise as
the modal reflective factorization system of a modality. Note that the following proposition is a
converse to Proposition 6.5.

Proposition 7.3. Any commuting square of the form

E′ E

B′ B

p′

g

p

f
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in which p and p′ are �-étale and f and g are �-equivalences is a pullback square.

Proof. Consider the cube

E′

�E′ B′ E

�B′ �E B

�B

In this cube, the back-left square and the front-right square are pullback squares by the assumption
that p′ and p are �-étale. Moreover, the maps �B′ → �B and �E′ → �E are equivalences by the
assumption that f and g are �-equivalences. Therefore, it follows that the front-left square is a
pullback square. We conclude that the back-right square is a pullback square.

Proposition 7.4. Suppose pi : Ei → Bi is a �-étale map for each i : I, where I is assumed to be a�-modal type. Then, the induced map on total spaces

tot(p) : ∑(i:I)Ei →
∑

(i:I)Bi
is also �-étale.

Proof. Since pullback squares are preserved by �, it follows from our assumption that the square∑
(i:I) Ei

∑
(i:I) �Ei

∑
(i:I) Bi

∑
(i:I) �Bi

is a pullback square. The vertical map on the right is a map between �-modal types by the
assumption that I is modal. Therefore, it follows that the map on the left is �-étale.

Now we show that if an orthogonal factorization system satisfies the conditions described in
Propositions 7.3 and 7.4, then it is the modal reflective factorization system of a modality.

Theorem 7.5. Suppose (L,R) is an orthogonal factorization system satisfying the following two
properties:

(i) Any commuting square of the form

E′ E

B′ B

p′

g

p

f

in which p′, p ∈R and f , g ∈L is a pullback square.
(ii) For any family of R-maps

pi : Ei → Bi
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indexed by a type I such that the terminal projection I → 1 is inR, the induced map on total
spaces

tot(p) : ∑(i:I)Ei →
∑

(i:I)Bi
is also inR.

Then, the orthogonal factorization system (L,R) is the modal reflective factorization system of a
modality.

Proof. The subuniverse of modal types is defined to be the subuniverse of types X such that the
terminal projection X → 1 is in R. The modal operator � is defined by the (L,R)-factorization
of the terminal projection:

X �X 1.∈L ∈R

We first show that this is a reflective subuniverse. Thus, we have to show that for any �-modal
type Y , the precomposition function

(�X → Y)→ (X → Y)
is an equivalence. This follows from orthogonality, since the square

Y�X YX

1�X 1X

is a pullback square if Y → 1 is inR.
Next, we show that the reflective subuniverse � is �-closed, which is one of the equivalent

conditions on a reflective subuniverse to be a modality. Consider a type X such that the terminal
projection X → 1 is in R, and consider a type family P over X such that the terminal projection
P(x)→ 1 is inR for each x : X. Then it follows by assumption (ii) that the map(∑

(x:X)P(x)
)

→
(∑

(x:X)1
)

is inR. Thus, we see that the composite∑
(x:X) P(x) X 1

is in R, which shows that the reflective subuniverse � is �-closed. We conclude that it is a
modality.

It remains to show that a map is in R if and only if it is �-étale. To see this, consider the
diagram

E �E 1

B �B 1,

p �p

where p is assumed to be in R. The top and bottom maps in the left square are L-maps.
Moreover, all the maps in the right square are R-maps. Hence, the left square is a pullback by
assumption (i).

So by the theorem, the following definition agrees with Definition 7.1:

Definition 7.6. An orthogonal factorization system (L,R) is called a modal reflective factoriza-
tion system if it satisfies the two properties from the statement of Theorem 7.5.
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Recall from Rijke et al. (2017, Section 1) that there are four equivalent ways of saying what a
modality is:

(i) A higher modality.
(ii) A uniquely eliminating modality.
(iii) A �-closed reflective subuniverse.
(iv) A stable orthogonal factorization system.

In other words, the type of higher modalities is equivalent to the type of uniquely eliminating
modalities, and so on. Each of these equivalences preserves the underlying subuniverse of modal
types. We can now add a fifth structure to this list:

(v) A modal reflective factorization system.

Note, however, that this does notmean that an orthogonal factorization system is stable if and only
if it is reflective. The reflective and stable orthogonal factorization systems of a modality coincide
if and only if the modality is lex.

Theorem 7.7. The type of modalities is equivalent to the type of modal reflective factorization
systems.

Proof. In the proof of Theorem 7.5, we showed that the right classR of a modal reflective factor-
ization system is precisely the class of étale maps for the underlying modality. In other words, a
modal reflective factorization system is completely determined by its modal types, so the claim
follows.

8. Applications in Real-Cohesive Homotopy Type Theory
Shulman (2015, Section 8) introduces real-cohesive homotopy type theory. This type theory is a
candidate for an internal language for some specific cohesive (∞, 1)-toposes. The term “cohesion”
refers to a higher analog of Lawvere’s axiomatic cohesion (Lawvere, 2007) developed by Schreiber
(2013).

In this section, we will assume all the rules of Shulman’s real-cohesive homotopy type theory
which he also assumes in his article. Additionally, we will assume Shulman’s Axiom “R	”. We
will use univalence without mention and, as Shulman does, we will assume propositional resizing.
From now on, we will refer to this type theory as real-cohesion. Following Shulman’s notation, we
will write “R” for the type of Dedekind reals, which will be small by propositional resizing.

In real-cohesion, types can have both topological structure and homotopical structure. We can
probe the topological structure of some typeX bymappingR intoX, that is, by looking at topologi-
cal paths γ :R→ X. Since having two different notions of “paths” would be confusing, we decided
to follow the terminology of Shulman (2015) in this article and call the elements of identity types
identifications or equalities.

We will briefly recall some facts and definitions from real-cohesion. There is an unfortunate
name-clash, since 0-truncated types are sometimes called “discrete.” The following definition is
about topological discreteness and is a priori not related to truncation levels.

Definition 8.1. A type X is discrete if and only if the map

x 	→ (y 	→ x) : X → (R→ X)

is an equivalence.
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Note that in real-cohesion, discreteness is defined without any reference toR. The definition in
real-cohesion just uses the rules of this type theory and that it can be replaced with the definition
above is exactly the statement of the Axiom “R	” (see Shulman (2015, Section 8)). The Dedekind
reals are 0-truncated and turn out to be not discrete. We import the fact that the following types
are discrete:

∅ 1 N Z S1

where ∅ is the empty type, 1 is the unit-type, and S1 is the higher inductive type representing the
homotopy type of the 1-sphere. Note that the latter is denoted with S

1 in Univalent Foundations
Program (2013), which we will use for the topological 1-sphere:

Definition 8.2. Let S1 denote the topological sphere given by

S
1 :≡ {

(x, y) ∈R
2 ∣∣x2 + y2 = 1

}
.

The discrete types are the modal types of a modality that can be constructed as nullification at
R, which is a general construction defined in Rijke et al. (2017, Section 2.3).

Definition 8.3. Let
∫
be a modality called “shape” given by nullification at R.

By construction as a nullification at R, shape will nullify R, which means
∫
R= 1. In general,

shape may be thought of as mapping topological spaces to their homotopy types. Using the rules
of real-cohesion, Shulman computes

∫
S
1 = S1.

We will denote the modal unit of
∫
with ηX : X → ∫

X, for a type X.
Let ∗ : S1 be a fixed point on the topological circle. For S1, the

∫
-disk

D(S1, ∗)≡
∑
x:S1

ηS1 (x)= η( ∗ )

turns out to be the universal cover of S1. But this works only for spaces with trivial higher
homotopy groups. For the construction of the universal cover of an arbitrary type, this has to
be adjusted:

X̃ :≡
∑
x : X

∥∥ηX(x)= ∗∥∥
0.

Note that this type would again be a fiber of a unit, if we had a modality that takes the shape and
1-truncates it. It is not clear to us, if the simple definition

∫
1 :≡ ‖–‖1 ◦ ∫

works. One way to make
it work would be to show that truncations of discrete types are again discrete types. But it is not
known by the authors if this is true and it seems to be an open problem1. In Rijke et al. (2017,
Theorem 3.28), it is shown that for any two accessible modalities, there is a modality such that its
modal types are the meet of the modal types of the two modalities. So we can make the following
definition:

Definition 8.4. Let the 1-shape
∫
1 be the modality given as the meet of the accessible modalities

‖–‖1 and
∫
.

Then, also from Rijke et al. (2017) we know that a type is
∫
1-modal if and only if it is discrete

and 1-truncated. In Shulman (2015, Theorem 6.21), it is shown that crisply discrete types have
discrete n-truncations. So for crisp types X, we have∥∥∥∥

∫
X

∥∥∥∥
1



∫
1
X.
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If X is a pointed type, the fundamental group with respect to its topological structure can be
defined as the loop space

�

(∫
1
X

)
.

Since we will use this notion only once, we will not denote it with π1 to limit confusion with
common definitions of homotopy type theory.

With
∫
1 and its unit η, covering spaces and the universal cover are easy to define:

Definition 8.5. (i) A map f : X → Y is called a covering space, if it is
∫
1-étale and 0-truncated.

(ii) Let X be a pointed type. Then

X̃ :≡D
∫
1 (X, ∗)≡

∑
x:X

η(x)= η( ∗ )

is the universal cover of X.

The following observations justify these names:

Remark 8.6. Let X be any pointed type.

(i) The projection from the universal cover X̃ is a covering space.
(ii) We have

∫
1 X̃ = 1.

(iii) Let f : Y → X be a covering space. Then. we have the following lifting property: A map
g : Z → X lifts uniquely to Y , if

∫
1 g lifts to

∫
1 Y along

∫
1 f .

(iv) Let f : Y → X be a covering space and f a pointed map. Then, there is a unique map X̃ → Y
such that

X̃ Y

X
f

commutes.

Proof. (i) By Lemma 5.2.
(ii) Applying Theorem 5.4 to 1→ ∫

1 X yields this result directly.
(iii) This is the universal property of the pullback square from the definition of �-étale maps.
(iv) This is an application of (iii).

To get the full correspondence for some general type X of actions of the fundamental groupoid
of X on sets and covering spaces over X, we can apply Theorem 5.4 to

∫
1 to get:

Theorem 8.7. (i) Let X be a type. Then, the type of
∫
1-étale maps into X and the type of

∫
1-

modal dependent types over
∫
1 X are equivalent.

(ii) The type of covering spaces and the type of maps
∫
1 X → U∫

0
are equivalent.

(iii) Let X be pointed and such that
∫
1 X is connected. Then,

∫
1 X → U∫

0
is the type of actions of the

fundamental group �(
∫
1X) on discrete 0-types and this type is again equivalent to covering

spaces of X.
Proof. (i) This is just Lemma 5.4 applied to

∫
1.

(ii) By pullback pasting and surjectivity of ηX , fibers of 1-covering spaces over X are always
equivalent to values of the corresponding morphism

∫
1 X → U∫

1
and vice versa.

(iii) The equivalence holds by (ii). That maps of the form ρ : ∫1 X → U∫
0
are actions of the loop

space of
∫
1 X on the value ρ( ∗ ) which is a consequence of the homotopical covering theory

of Hou (Favonia) (2017, Section 3.1) and Buchholtz et al. (2018, Section 7.1).
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Similar generalizations of the classical topological correspondence are known on the classical
side, for example, for cohesive ∞-stacks (Schreiber, 2013, Section 5.2.7) or topological 1-stacks
(Roberts, 2009). The introduction of the latter also gives more details on the history of the subject,
in particular concerning definitions of covering spaces of topological and differentiable stacks.

Conclusion
During the time of writing and revising this article, �-étale maps were already used for more
calculations in real-cohesion (Myers, 2019) and there are lots of further direction worth exploring.
Also in Myers (2019), the concept of �-fibrations is introduced and used to precisely characterize
the pullback squares which are preserved by a modality. This generalizes Corollary 5.2 (i).

While parts of Theorem 3.10 apply to general nullification modalities, it is not clear to the
authors if the whole theorem can be generalized. Also concerning generalizations, we do not be-
lieve that much of the theory in this article holds for reflective subuniverses, but we did not try to
phrase everything as general as possible in this respect.

In some cases, we gave references to classical notions that should correspond to the notions in
this article. For instance, our modal reflective factorization systems – and therefore modalities by
Theorem 7.5 – should correspond to the semi-lex reflective factorization systems of Cassidy et al.
(1985) but we did not make any attempt at proving this.

Note
1 We have to thank one of our anonymous reviewers for pointing out the problem with the simple definition and the solution
we use below.
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Appendix A. Analogous Constructions in Algebraic Geometry
The results we present here are certainly known to experts in algebraic geometry, but we were
not able to find a suitable reference in the literature. The purpose of this section is to present the
name-giving analogs of �-étale maps and �-disks from algebraic geometry.

Noetherian schemes are spaces of interest in algebraic geometry. There is a notion of formally
étale maps between such spaces. One purpose of this section is to show that such maps are char-
acterized in very much the same way as �-étale maps: We will define a pointed endofunctor on a
category containing Noetherian schemes such that the maps with cartesian naturality squares are
precisely the formally étale maps. Also in this section, we will show that formal disks or formal
neighborhoods of points can be constructed analogous to �-disks.

The functor � we will define below arises most naturally in algebraic geometry but can also be
adapted to differential geometry. How an analogous functor can be used in differential geometry
is described and studied intensively in Khavkine and Schreiber (2017).

In the following, k will always be a field and all rings and algebras are assumed to be
commutative and equipped with a unit for multiplication. We denote the category of finitely
generated algebras over k with k-Algfg. That means, that any A ∈ k-Algfg is a quotient A=
k[x1, . . . , xn]/( f1, . . . , fm). These algebras may contain nilpotent elements, that is, elements x ∈A,
such that x �= 0, but xn = 0 for some n ∈N. Nilpotent elements will be important for our construc-
tions, since they represent infinitesimals. This can roughly be explained by the analogy that the
elements of the algebras are to be thought of as generalized coordinate functions and the nilpotents
represent coordinates that are so (infinitesimally) small, that some power is actually zero.

We use the notation Spec(A) for the Hom-functor k-Algfg(A, –) from k-Algopfg to the category
of sets. These functors represent the so-called affine Noetherian k-schemes and they form the ba-
sic building blocks of spaces called Noetherian k-schemes (see Hartshorne (1977, Chapter II) for
more on schemes). We will use no property of Noetherian k-schemes here, except that we can
descend to affine Noetherian k-schemes .

For any X ∈ Psh(k-Algopfg ), the functor �X defined pointwise by

(�X)(A) :≡ X(A/
√
0)

is again a functor from k-Algopfg to sets. So � is an endofunctor on the presheaf category
Psh(k-Algopfg ).

The name �-étale is an adaption of the name “formally étale” for general modalities. The name
“formally étale” was used in Wellen (2017), which reused the name from Khavkine and Schreiber
(2017). The original definition of formally étale maps is from algebraic geometry. The definition of
formally étale maps in Grothendieck and Dieudonné (1967, Section 17) states that a comparison
map to a pullback should be an isomorphism, which is equivalent to the unique lifting condition
in the following definition:

Definition A.1. A morphism of schemes ϕ : X → Y is formally étale, if for all rings R and all
nilpotent ideals N in R all squares

Spec(R/N) X

Spec(R) Y

f
∃!

have a unique lift like indicated in the diagram.

https://doi.org/10.1017/S0960129520000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000201


Mathematical Structures in Computer Science 389

We will now make a remark which explains how the formally étale maps from algebraic
geometry relate to our notion of �-étale. The presented fact and its proof are mostly a repeti-
tion of a proof from Wellen (2017, Section 4.4). We use the fact that the Noetherian k-schemes
are embedded in the category Psh(k-Algopfg ).

Proposition A.2. 4 A morphism of f : X → Y Noetherian schemes X, Y is formally étale if and
only if the naturality square

X �X

Y �Y
f �f

is a pullback square.

Proof. Let X and Y be Noetherian k-schemes. We will first show that a morphism of schemes
f : X → Y is formally étale, if and only if for all A ∈ k-Algfg all squares

Spec(A/
√
0) X

Spec(A) Y

f
∃!

have a unique lift like indicated in the diagram. Let us call this property (1). Since
√
0 is always

nilpotent in a Noetherian ring, (1) is implied if f is formally étale.
The property formally étale is known to be local in the source (Grothendieck and Dieudonné,

1967, Section 17.1.6), so we can assume X and Y to be affine. For affine X = Spec(S) and Y =
Spec(S), all squares

Spec(A/N) X

Spec(A) Y

f
Spec(ϕ)

factor as

Spec(A/N) Spec(im(ϕ)/(im(ϕ)∩N)) X

Spec(A) Spec(im(ϕ)) Y

f

That means we can assume A to be Noetherian, if X and Y are Noetherian for the sake of checking
if f is formally étale. So let us assume (1) holds. Let A be Noetherian and let us construct a unique
lift in

Spec(A/N) X

Spec(A) Y

f

We extend the square by reducing R or equivalently R/N:
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Spec(A/
√
0)

Spec(A/N) X

Spec(A) Y

f

There are two ways to view the boundary of this diagram as a square, so we can apply (1) in two
different ways. One application tells us that the map Spec(A/N)→ X is the unique one making
the diagram commute. The second application yields a unique lift:

Spec(A/
√
0)

Spec(A/N) X

Spec(A) Y

f

which is also a lift in the original square by the uniqueness of the map Spec(A/N)→ X. This
proves that (1) implies that f is formally étale.

So what remains to be shown is that (1) is equivalent to

X �X

Y �Y
f �f

being a pullback. This is true if and only if it is true pointwise, that is, for all k-algebras A, the
squares

X(A) �X(A) = X(A/
√
0)

Y(A) �Y(A) = Y(A/
√
0)

fA �fA

have to be pullback squares. But this is just (1) by Yoneda.

In algebraic geometry, there is the concept of the formal completion of a closed subspace (see
Hartshorne (1977, p. 194) or Grothendieck (1960, 10.8)). Roughly, the formal completion of a sub-
spacemay be thought of as the subspace together with all points from the surrounding space which
are infinitesimally close to the subspace. In the affine case, where a closed subspace of Spec(A) is
given by an ideal I ⊆A, we can construct a topological ring Â as the limit of the sequence of
quotients by powers of I with discrete topology:

. . . A/I3 A/I2 A/I.

Let us write 
(A) for A ∈ k-Algfg with the discrete topology. The completion yields a functor:

Spf(Â) := k-Algfg,top(Â,
(_))
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Proposition A.3. Let X be a Noetherian k-scheme and D�(X, x) be given as the pullback:

D�(X, x) 1

X �X
ηX◦x

Then, D�(X, x) is the formal neighborhood of x in X.

Proof. Since formal completions are defined by descending to affine schemes, we can assume
X = Spec(A) with A ∈ k-Algfg. Then x : 1→ X can be rewritten as x : Spec(k)→ Spec(A) and thus
corresponds to a k-algebra homomorphism A→ k, which is given by modding out a maximal
idealm⊆A. Let us write prI for the morphism to the quotient by an ideal I. So the formal neigh-
borhood of x in X is Spf(Â), where Â is the completion with respect to m. This means what we
need to show is, that for all B ∈ k-Algfg, the square

k-Algfg,top(Â,
(B)) k-Algfg(k, B)

k-Algfg(A, B) k-Algfg(A, B/
√
0)

pr√0◦–◦prm

pr√0◦–

is a pullback square. This amounts to the following universal property of Â:
For any k-algebra homomorphism ϕ :A→ B such that ϕ(m)⊆ √

0, there exists a unique mor-
phisms ϕ̂ : Â→ B such that composition with the canonical A→ Â is ϕ. For the construction of
ϕ̂, we may assume that Â is the limit of

. . . A/mn+2 A/mn+1 A/mn

for some n ∈N such that ϕ(mn)= ϕ(m)n = 0. So we have a map of sequences

. . . A/mn+2 A/mn+1 A/mn

. . . B B B

ϕ ϕ ϕ

id id id

inducing the required ϕ̂ : Â→ B.
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