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Abstract

A modified ant lion optimization (MALO) algorithm is proposed in this article, for the syn-
thesis of Chebyshev-based arrays by optimizing amplitudes and phases of excitations, and
element spacings. Modification in ant lion optimization is achieved by hybridizing it with cha-
otic particle swarm optimization. The optimization process is employed to obtain an array
pattern with the least possible sidelobe level. Close-in sidelobe level minimization for opti-
mum pattern synthesis is suggested. Instead of only steering the main beam towards the
desired direction presented by some popular optimization methods, the beam steering
along with null positioning in other specified direction is also achieved employing MALO.
Considering the arrays with the same design parameters and the results of other optimization
algorithms, the performance of MALO is evaluated. The results show that MALO provides
considerable improvements in an array pattern compared to the arrays optimized using
other optimization algorithms and the uniform array.

Introduction

In recent years, smart antenna technology is becoming increasingly popular for mobile com-
munication systems. Enhanced directivity desired by this technology is achieved through an
antenna array. The controlling mechanism to the elements of an array provides maximum
radiation/reception in specific directions (beam steering). Along with this null steering (no
radiation/reception) is accomplished in interfering directions by suppressing the sidelobe levels
(SLLs). These are the vital requirements in smart antenna-based modern wireless communi-
cation system. In most wireless applications, enhanced communication is achieved through
minimization of close-in SLL (CISLL), adjacent to the main lobe. SLL, CISLL minimization,
beam steering, and null positioning are the current area of research and highly demanding
in nature in the domain of antenna array design.

Conventional methods such as recursive least squares, least mean square, constant modulus
algorithm, and many more are used for null positioning and beam-steering applications in
smart antenna arrays [1, 2]. Many linear and nonlinear design equations are solved to achieve
optimal results with the help of these methods. When the array size increases, it becomes chal-
lenging to solve those equations to get the desired solutions. The difficulties of solving such
design equations can be overcome by the use of different evolutionary meta-heuristic opti-
mization algorithms. In the past, several optimization algorithms are implemented in the syn-
thesis of various antenna arrays for different applications. In [3–9], genetic algorithm (GA)
and non-dominated sorting GA are employed in optimizing linear, planar, and circular
array structures. Phase and amplitude excitations of the elements are optimized using GA
to achieve radiation patterns of the desired SLL. Element positions of a linear array are opti-
mized in [10], using ant colony optimization (ACO) for SLL minimization and null position-
ing. Spider monkey optimization (SMO) algorithm is introduced in [11]. Inter element
positions of a linear array and the structural dimensions of an E-shaped microstrip patch
antenna are optimized for synthesizing their array of factors. In [12], strawberry algorithm
(SBA) is used for linear and circular array synthesis. The algorithm optimizes the amplitude
excitations, and positions of the arrays for SLL minimization. Particle swarm optimization
(PSO) in [13, 14] effectively deals with amplitude excitations, phases, and positions for the
synthesis of linear and circular arrays. SLL, CISLL minimization, beam steering, null place-
ment, and minimization of transmission power are achieved. Comprehensive learning PSO
is implemented to suppress SLL and null control in linear array and Yagi–Uda array [15].
Mikki and Kishk [16] introduced quantum PSO (QPSO) for optimization of amplitude cur-
rent distribution of a linear array. Optimal dipoles that yield radiation patterns equivalent
to a cylindrical dielectric resonator antenna are also found using QPSO. In [17], QPSO is
implemented for radiation pattern correction when some elements of a uniform linear array
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are entirely defective. Yue et al. in [18] applied chaotic PSO
(CPSO) for estimation of the better angle of arrival for mobile
positioning application. The CPSO is also considered for finding
an optimal transmission power of a planar array in [19]. Through
this method, suppression of the SLL is achieved by optimizing the
aperture, number of elements, and the minimum spacing between
the elements. PSO is combined with discrete Green’s function in
[20] to accomplish appropriate dual-band patch antenna topolo-
gies. Ant lion optimization (ALO) algorithm is used in [21–23]
for optimization of element positions, and current amplitudes
of linear, elliptical, and circular arrays to achieve SLL, CISLL
minimization, and null positioning. Other optimization algo-
rithms such as Taguchi’s optimization [24], biogeography-based
optimization (BBO) [25], cat swarm optimization (CSO) [26],
simulated annealing (SA) [27], symbiotic organisms search
(SOS) [28], flower pollination algorithm (FPA) [29], whale opti-
mization algorithm (WOA) [30], and moth flame optimization
(MFO) [31] are implemented for SLL reduction and null control
applications. In [32–37], the algorithms like MFO, BBO, imperi-
alist competitive algorithm, GA, firefly algorithm (FA), harmony
search algorithm, PSO are used to optimize linear, planar, and cir-
cular arrays that generate shaped beams (such as flat-top, isoflux,
and cosecant beam). Amplitudes, phases, and powers of excita-
tions, element spacings, radius of the rings are optimized to gen-
erate desired shape beams with low peak SLL. In recent years,
researchers are showing interest in the implementation of hybrid
algorithms, which provide more accuracy of system parameters.
Two different types of optimization algorithms are merged to
form a hybrid algorithm. Li et al. in [38] developed HIGAPSO
algorithm by hybridizing improved GA (IGA) and improved
PSO (IPSO). Excitation amplitudes and phases of the signals
applied to elements of the spherical conformal array are opti-
mized to minimize average maximum SLL. Genetical swarm opti-
mization (GSO) is introduced in [39] for the optimization of
unequally-spaced annular ring arrays. Half of the total population
in GSO is created by PSO and the remainder is created by GA. In
[40], hybrid algorithm HBMO/TS built on honey bees mating
optimization (HBMO) and tabu search (TS) is applied to find
the complex excitation weight factors of an adaptive array for
steering the main beam in the desired direction. Circular array
optimization is carried out by the hybrid optimization algorithm
formed by merging ALO and grasshopper optimization algorithm
in [41]. The number of array elements, current excitations, phases,
inter-element spacings along the circumference is optimized to
achieve minimum SLL. Salp swarm WOA is suggested by
Prabhakar and Satyanarayana in [42]. Amplitude excitations
and phases of the conformal array elements are optimized for pat-
tern synthesis. Hybrid algorithms eliminate the drawbacks of an
individual algorithm by accomplishing the advantages of their
constituent algorithms. The benefits of both algorithms are con-
sidered to increase optimization performance by achieving
improved accuracy. Improved performances of hybrid algorithms
inspired us to propose a new hybrid algorithm, modified ALO
(MALO), based on ALO and CPSO.

ALO is proposed in [43] by Mirjalili. It is applied to various
benchmark functions, and the performances of it are evaluated.
The performances are compared with famous optimization tech-
niques such as bat algorithm (BA), FA, GA, CS, PSO, and FPA.
ALO provides improved results, and in most of the test functions,
it performs better than the other algorithms. Many engineering
problems are solved using ALO. ALO is applied in [21–23] to
obtain optimal linear, elliptical, and circular arrays. The results

obtained using ALO are compared with uniform array and with
the arrays optimized utilizing ACO, GA, PSO, CSO, BBO, SOS,
and MFO. The performance of ALO-based array designs is
much better than the arrays designed using other optimization
algorithms and the uniform array. Hence, ALO is a suitable algo-
rithm for antenna array optimization problems. On the other
hand, CPSO improves accuracy and searching capability of
basic PSO. CPSO is an improved PSO by embedding chaotic
mapping to the basic PSO. PSO [44] was developed by Eberhart
and Kennedy in 1995 and was modified by Shi and Kennedy in
1998 [45], whereas chaos-embedded PSOs were proposed by
Alatas et al. in 2009 [46]. In CPSO, the paths of the particles
are guided by the chaotic factors. Chaotic factor helps CPSO to
avoid local minimums more easily than the basic PSO and pro-
vides improved results. Several variants of PSO are also evolved
by modification of the basic PSO. Optimization problems in
almost all fields are solved using traditional PSO and its variants.
This way, PSO became most popular among all the evolutionary
algorithms. In the past works, ALO and CPSO provided impres-
sive performances. The advantages of both of these algorithms
motivated to combine them for achieving a hybrid algorithm.
The prime objective of framing the hybrid algorithm is to expect
still better performance by merging the advantages of ALO and
CPSO. The proposed algorithm is applied to some unimodal
and multimodal benchmark functions available in [43]. The per-
formance indices (mean and standard deviations) and character-
istic curves of the benchmark functions are analyzed.
Performance indices of MALO on the benchmark functions are
compared with that of other optimization algorithms available
in [43]. The indices demonstrate that the performance of
MALO is superior than other algorithms. The convergence curves
of the unimodal functions depict the high exploitation behavior of
this hybrid algorithm. The multimodal function-characteristics
shows that the exploration ability of MALO is also high. High
exploration and exploitation behavior are the main advantage of
MALO. These features enable the MALO algorithm to reach the
global optimum, avoiding local optima. The results and conver-
gence curves of the MALO on benchmark functions suggest
that MALO can be employed as a substitute algorithm for differ-
ent optimization problems.

Linear arrays are considered for optimization by most of the
researchers. These arrays are the best suitable option to imple-
ment some new algorithms on them to validate the effectiveness
of the algorithms. This is because the results of the numerous
algorithms are readily available in the literature for comparison.
Linear arrays, in general, are of three distribution types as uni-
form, binomial, and Chebyshev. Out of these three, Chebyshev
array produces the smallest possible SLL for a given beam width
between the first nulls. In this array, element excitation coeffi-
cients are associated with Chebyshev polynomials. The polyno-
mials and their evaluations are available in [1]. In this article,
Chebyshev-based linear arrays are considered for optimization
utilizing the proposed MALO. Four examples of
Chebyshev-based linear arrays are optimized. Out of these four
examples, three examples are the same array problems presented
in [13] using ACO, in [14] using SMO, in [12] using SBA, in [13]
using PSO, in [21] using ALO, in [24] using Taguchi, in [25]
using BBO, in [26] using CSO, in [28] using SOS, and in [31]
using MFO. The outcomes of these arrays are compared with
that of the conventional uniform arrays and with the algorithms
cited above. The comparisons consider isotropic elements, the
same parameter specifications (spacing between the elements,
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amplitudes, and phases), and without a constant first-null beam-
width (FNBW) as in the previous works. In this way, appropriate
comparisons between MALO and other algorithms are performed.
The examples illustrate the benefits of higher exploration and
exploitation behavior of MALO. The MALO provides the optimum
parameters which offer a considerable reduction in peak SLL and
CISLL. Superior beam steering in a specific direction is another
advantage of this algorithm. The fourth design example introduces
a new approach in the field of smart antenna technology. The sig-
nificant contribution of this example is that the main beam can be
steered in the signal of interest (SOI) direction while, placing the
nulls in the signal not of interest (SNOI) directions.

The combination of CPSO with ALO to form MALO is
described in the section “MALO algorithm”. In this section, val-
idation of the MALO is also carried out by verifying its perform-
ance on two unimodal and three multimodal benchmark
functions. The section “Problem formulation” presents the prob-
lem formulation. Results and discussion are demonstrated in the
section “Results and discussion”. SLL, CISLL reduction, beam
steering, and beam steering, along with nulls placing in specific
directions, are analyzed. The results obtained are compared
with that of the uniform arrays and with the previous works
such as ACO, PSO, Taguchi, SMO, SBA, BBO, CSO, SOS, ALO,
and MFO. The conclusion of the article is presented in the section
“Conclusion”, followed by a list of references.

MALO algorithm

The original ALO is modified by embedding CPSO to achieve a
highly promising new hybrid algorithm. The robustness of this
modified algorithm is verified by some standard benchmark func-
tions. These are explained as follows.

Ant lion optimization

Mirjalili explains the ALO algorithm in depth in [43], so the
detailed description is excluded here. The interactions of the
antlions and ants, demonstrated in the algorithm include the fol-
lowing rules [43]:

1. Ants and antlions are the search agents, and the ants change
their positions in random directions all over the search space.

2. Traps by antlions have impacts on the movements of the ants.
3. Traps are constructed in proportion to the fitness of antlions.

Higher is the fitness, larger is the trap, and higher is the pos-
sibility of catching the ants.

4. In each iteration, an antlion and the most fitting antlion (elite)
can capture each ant.

5. The random walk adaptively decreases, and the probability of
achieving a solution increases by increasing the sliding of ants
to the antlions.

6. An ant is hunted by the antlion when the ant is fit. This indi-
cates that an anticipated solution is found.

7. Antlion relocates itself to the recent hunting position and con-
structs a conical hole to optimize the ability to catch another ant.

The stochastic movements of the ants, throughout the opti-
mization process, are defined as:

Ri = [0, cums(2g(t1)− 1), . . . , cums(2g(tn)− 1), . . . ,

cums(2g(tM)− 1),
(1)

where cums computes the cumulative sum. Parameter tn is the
iteration number and M is the maximum number of iterations.
γ(t) is a random function described as follows:

g(t) = 1 if rand . 0.5
0 if rand ≤ 0.5

{
, (2)

where rand within the interval [0, 1] is a random number.
At every step, ants update their locations on the basis of equa-

tion (1). The random walks are modified based on normalization
using the following equation:

Ri norm = Ri − ai
bi − ai

( )
× (dti − cti )+ cti , (3)

where ai is the minimum value and bi is the maximum value of Ri.
cti is the minimum value and dti is the maximum value of Ri at the
tth iteration.

The hunting ability of an antlion is modelled through a rou-
lette wheel operator. The roulette wheel chooses an antlion and
assumes that ants are captured only by the selected antlion.
Movement of the ants is affected by the position of the antlions.
This is described by the following equations:

ci = ct + Altj , (4)

di = dt + Altj , (5)

where ci, di are the minimum and maximum values among all
random walks for the ith ant. ct, dt indicate the minimum and
maximum values among all random walks at the tth iteration.
Altj represents the position of the chosen jth antlion at the tth
iteration.

When the ants slid into the trap, they try to escape from it. On
the other hand, the sliding of ants towards the antlions is updated
adaptively. Hence the values of ct and dt are updated using the
following equations:

ct = ct

10w × (t/n)
, (6)

dt = dt

10w × (t/n)
, (7)

where w is a constant determined according to the present iter-
ation. w = 2 at t > 0.1T, w = 3 at t > 0.5T, w = 4 at t > 0.75T, w =
5 at t > 0.9T, and w = 6 at t > 0.95T.

An antlion also updates the hunting position to increase its
chance of capturing new ant. This phenomenon is demonstrated
in the following equation:

Altj = At
i if fitness of A

t
i . fitness of Altj , (8)

where At
i = position of the ith ant at the tth iteration.

The best antlion in the optimization cycle is considered as the
elite. During the optimization process, the elite affects the random
walks of all ants. Hence the position of each ant is updated by the
simultaneous effect of the elite and the roulette wheel. This is
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expressed in equation (9) as:

At
i =

Xt
al + Xt

e

2
, (9)

where Xt
al and Xt

e represent the random walk nearby the antlion
selected through a roulette wheel and nearby the elite obtained
within the optimization process at the tth iteration, respectively.

Modification of ALO

The advantage of ALO is that it avoids optimal local values. In the
original ALO, CPSO is integrated to improve the optimization
functionality to provide more accurate design parameters. The
working procedure of CPSO is focused on the behavior of search-
ing for foods by a group of birds or schooling of fish. The search-
ing agents (birds/fishes) search for optimal solutions in adequate
space and thus increase the probability of obtaining optimum
values. Each agent moves randomly towards a global best position
with its velocity and position vectors which are updated by equa-
tions (10) and (11) [45] as:

vi = w× vi + c1 × rand1 × ( pi − xi)+ c2 × rand2

× (pg − xi), (10)

xi = xi + vi. (11)

The variables of equation (10) are well-known in the domain
of optimization through PSO and are described in [45]. The trad-
itional PSO algorithm sometimes trapped prematurely in local
optimums, which is a shortcoming. As described in [46], chaotic
mappings help it to escape from the local optima. Chaotic maps
constructed by mutating its initial state are apparently random
deterministic and reproducible sequences. Several chaotic map-
pings, such as a logistic, tent, sinusoidal iterator, Gauss, etc. are
adopted to enhance the global convergence of PSO. Here the
CPSO considers the chaotic mutation operation based on logistic
mapping to obtain the best optimal values. Logistic mapping
shows vital usefulness in the improvement of the searching pro-
cess. Mapping is employed in each iteration, and the position
can be further updated using the formula as [46]:

xi(d) = 4× xi−1(d)× (1− xi−1(d)), (12)

where i is the current iteration. d = 1, 2, …, dim and dim is the
dimension of searching range. The xi is converted to the real posi-
tions as:

xi(d) = lb(d)+ xi × (ub(d)− lb(d)), (13)

where lb is the lower bound and ub is the upper bound of the
particles.

The optimization process of MALO involves the searching and
updating strategy of both ALO and CPSO. In each iteration, the
ALO explores the searching space first, by its search agents, the
ants and the antlions. The positions of antlions define the opti-
mizing parameters. After the exploration of searching space
using ALO, the positions of antlions are updated and optimized
employing CPSO. The positions of best-fitted antlions (elites) in
each iteration are kept in memory. After the final iteration, the

best elites are selected and the corresponding positions yield the
global optimum parameters. The operational flow diagram of
the MALO is shown in Fig. 1. The steps involved in the optimiza-
tion process are as follows:

Step 1: The positions of antlions and ants are initialized
randomly.

Fig. 1. Flowchart of the MALO.
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Step 2: The fitnesses of the antlions are calculated and the elite is
selected.

Step 3: An antlion is selected utilizing the roulette wheel. The ran-
dom walks nearby the elite and the selected antlion are calculated.

Step 4: The positions of the ants are updated using equations (1)–
(7) and (9).

Step 5: The positions of the antlions are updated using equation (8).
Step 6: The fitnesses of the updated antlions are calculated and

compared with that of the elite. If the fitness of the updated
antlion is better, then it becomes the elite.

Step 7: Better antlions are searched employing CPSO using equa-
tions (10) and (11).

Step 8: The elite is updated using equations (12) and (13).
Step 9: Steps 3–8 are repeated until the final iteration is reached.

Validation of MALO algorithm

The proposed algorithm is validated by verifying its performance
on five benchmark functions (two unimodal (single-peak)

functions and three multimodal (multi-peak) functions).
Table 1 shows the benchmark functions taken from [43].
MALO is applied to optimize the above five functions by execut-
ing each for 30 runs with 30 dimensions and 1000 iterations per
each term. Performance indices (mean and standard deviations)
of the obtained minimums are computed for each function. The
comparisons of the performance indices obtained using MALO
and other algorithms, such as ALO, PSO, FPA, CS, FA, BA,
and GA in [43] are shown in Table 2. From the results shown
in Table 2, it is worth noting that the performance of MALO is
superior than other algorithms.

The characteristics of the benchmark functions and their
resultant convergence curves are plotted in Figs 2–6. In [43], it
is observed that the performance of ALO is better than various
other optimization algorithms. The performance is evaluated by
comparing the convergence characteristics of ALO with that of
the other algorithms. As MALO is the modification of ALO, the
convergence characteristics of this are compared with that of
ALO and PSO instead of all other algorithms. The comparison

Table 1. Benchmark functions [43].

Function Expression Dim (n) Range fmin

F1
∑n
i=1

x2i 30 [−100, 100]n 0

F2 ∑n−1

i=1
[100(xi+1 − x2i )

2 + (xi − 1)2] 30 [−30, 30]n 0

F3 ∑n
i=1

−xisin
����|xi |

√( ) 30 [−500, 500]n −12 569.5

F4
∑n
i=1

[x2i − 10 cos (2pxi)+ 10] 30 [−5.12, 5.12]n 0

F5 0.1 sin2(3pxi)+
∑n−1

i=1

(xi − 1)2[1+ sin2(3pxi + 1)]

{

+(xn − 1)2[1+ s2(2pxn)]}+
∑n
i=1

u(xi , 5, 100, 4)

30 [−50, 50]n 0

Table 2. Mean (μ) and standard deviation (σ) of the benchmark functions and their comparison with other algorithms in [43].

F

GA BA FA FPA

μ σ μ σ μ σ μ σ

F1 0.118842 0.125606 0.773622 0.528134 0.039615 0.01449 1.06346 × 10−7 1.27 × 10−7

F2 0.13902 0.121161 0.334077 0.300037 0.049273 0.019409 0.781200043 0.000176

F3 −2091.64 2.47235 −1065.88 858.498 −1245.59 353.2667 −1842.42621 50.42824

F4 0.659278 0.815751 1.233748 0.686447 0.263458 0.182824 0.273294621 0.068583

F5 1.29 × 10−1 0.068851 0.386631 0.121986 0.00213 0.001238 3.67 × 10−6 3.51 × 10−6

F

CS PSO ALO MALO

μ σ μ σ μ σ μ σ

F1 6.50 × 10−3 2.05 × 10−4 2.70 × 10−9 1.00 × 10−9 2.59 × 10−10 1.65 × 10−10 2.6488 × 10−11 1.056 × 10−11

F2 2.12 × 10−1 2.14 × 10−2 0.123401 0.216251 0.34677239 0.109584 0.0983125 0.030564

F3 −2094.91 0.007616 −1367.01 146.4089 −1606.27643 314.4302 −3577.7893 425.6523

F4 0.127328 0.002655 0.278588 0.218991 7.71411 × 10−6 8.45 × 10−6 6.2896 × 10−10 4.8235 × 10−10

F5 4.88 × 10−6 6.09 × 10−7 1.35 × 10−7 2.88 × 10−8 2.00222 × 10−11 1.13 × 10−11 2.3746 × 10−13 1.0095 × 10−13

The values in bold indicate that they belong to our method.
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with other algorithms is deliberately excluded, as it is already
available in [43]. The characteristics of the two unimodal test
functions F1 and F2 are shown in Figs 2 and 3, respectively.
These figures depict the benefits of high exploitation behavior
of MALO. High exploitation enables the MALO algorithm to con-
verge rapidly towards the optimum. Figures 4–6 show the charac-
teristics of the multimodal functions F3, F4, and F5, respectively.
From these characteristics, it is clearly observed that the explor-
ation ability of MALO is also high. This high level of exploring
ability enables MALO to explore the desirable search domain.
Due to the high level of exploration and exploitation ability of
MALO the local optima or premature convergence are avoided
and the global optima are attempted. Attempting the global

optima by MALO can be clearly observed from the convergence
curve of each benchmark function. The curve illustrates that the
MALO exhibits superior convergence functionality, though the
simulation time is a little longer than that of PSO. The simulation
time for ALO is also longer than PSO and is closer to MALO. The
time in case of MALO is longer, because of the hybridization of
two algorithms. Embedding one algorithm (CPSO) to another
(ALO) makes the hybrid algorithm (MALO) to some extent com-
plex as compared to the individual one. That complexity in the
new modified algorithm makes the simulation time longer. The
simulation time of the algorithms PSO, ALO, and MALO for
1000 iterations is presented in Table 3. In spite of the long run
time, the higher convergence functionality and ability to avoid
local optima and attempting global optima makes use of the

Fig. 2. (a) Function F1. (b) Convergence curve of function F1.

Fig. 3. (a) Function F2. (b) Convergence curve of function F2.

Fig. 4. (a) Function F3. (b) Convergence curve of function F3.

Fig. 5. (a) Function F4. (b) Convergence curve of function F4.

148 Hrudananda Pradhan et al.

https://doi.org/10.1017/S1759078721000295 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078721000295


proposed MALO algorithm for antenna array synthesis and
beamforming in smart antenna technology.

Problem formulation

Various linear antenna arrays based on Chebyshev distribution, as
shown in Fig. 7 are considered in this work. In the figure, 2N iso-
tropic elements are located along the x-axis same as the consider-
ation of other authors. Out of 2N, N elements are located on the
right side of the origin and named as 1, 2, …, N. Similarly, other
N elements are placed to the left-hand side and are assigned as
1
′
, 2

′
, …, N

′
. The elements 1 and 1

′
are placed at x = λ/4 on

both sides of the origin. Array factor for the geometry is given
by [1]:

AF(f) = 2
∑N
n=1

In cos (kxn cos (f)+ wn), (14)

where the amplitude excitation of the nth element is In. k is wave
number and is equal to 2π/λ. Parameters xn and wn represents the
position and phase excitation of the nth element, respectively.

The array factor of the Chebyshev distributed linear array is
the summation of cosine terms with symmetric amplitude excita-
tions. Each cosine term is an integer multiple of a fundamental
frequency and can be rewritten as a series of cosine functions

correlated to the Chebyshev polynomials. Chebyshev polynomial
is denoted as Tm(z) and is formulated as [1]:

Tm(z) = 2zTm−1(z)− Tm−2(z), (15)

where m is the order of the Chebyshev polynomial, which is one
less than a number of elements. z = cos(u) and u = (πxn/λ)cosf.

Since the excitation distribution of a Chebyshev array is sym-
metrical, the amplitudes of the left-hand side elements are the
same as that of the right-hand side elements. Hence amplitudes
of only the right-hand side elements (i.e. 1, 2, …, N) are shown
in the respective tables of different design examples. MALO is
implemented in the optimization of four design examples of lin-
ear arrays to optimize input parameters like amplitudes, positions,
and phases of the elements. The design specifications, such as the
number of elements, the input parameters, and the SLL region of
each design examples are kept the same as the structures in the
literature. These structures optimized with other optimization
algorithms are also available in the literature. These literatures
are appropriate to compare the results related to MALO with
that of other optimization techniques.

In order to have better insight into our problems, a parameter
mapping between the hybrid algorithm and the array is presented
in Table 4. Each array example is demonstrated using a different
set of parameters. The link between these parameters and the
algorithm can be easily understood from Table 4. The proposed
algorithm is executed taking into account the number of search
agent as 50 and the total iterations as 1000. These numbers are
helpful to achieve better parameters. The optimized parameters
are achieved through the appropriate positions of the antlions.
The updated elite positions are found following the steps of the
optimization process presented in the subsection “Modification
of ALO”.

Example-I: amplitude optimization

The use of MALO for the synthesis of two linear arrays (i.e.
Example-Ia: 2N = 10 elements array and Example-Ib: 2N = 16 ele-
ments array) is considered here. The objective of this example is
to obtain a Chebyshev array pattern as well as the peak SLL sup-
pression. Peak SLL in a particular region can be minimized by
considering the objective function formulated as:

FObj = min(max(20log|AF(f)|)) (16)

where max(20log|AF(f)|) provides the peak SLL. Considering
equation (16) as the objective function for MALO, the current

Fig. 6. (a) Function F5. (b) Convergence curve of function F5.

Table 3. Simulation time (min) of the algorithms for 1000 iterations: PSO, ALO,
and MALO.

Function PSO ALO MALO

F1 0.01326 0.8259 0.8381

F2 0.01641 0.8242 0.8378

F3 0.01417 0.9436 0.9471

F4 0.01538 0.9092 0.9392

F5 0.03845 0.9558 0.9673

The values in bold indicate that they belong to our method.

Fig. 7. 2N elements linear array geometry.

International Journal of Microwave and Wireless Technologies 149

https://doi.org/10.1017/S1759078721000295 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078721000295


amplitude excitations of the antenna elements are optimized. The
search region for the current amplitudes is spread from 0 to
1. Putting the optimal values found through MALO in equation
(14), AF(f) for the said linear arrays with suppressed peak SLL
is obtained. In this example, the positions of each element and
their phases are kept fixed (i.e. xn = 0.5λ and wn = 00). The SLLs
are suppressed in the regions, f = [00, 760] and f = [1040, 1800].

Example-II: position optimization

In this example, MALO is implemented for the optimization of the
positions of the elements from the origin, as shown in Fig. 7. A 2 N
=10 elements non-uniformly spaced linear array is considered as
Example-IIa. It is optimized to take the same objective function
in equation (16). For a uniform array of 0.5λ spaced elements the
total length is 4.5λ. Therefore, the last elements’ positions are
fixed at 2.25λ on each side of the y-axis. The minimum spacing
between two consecutive elements is taken as 0.25λ. Similar to
Example-I, peak SLL suppressed AF(f) is obtained by putting the
optimum position values found through MALO in equation (14).
Here the amplitudes of the elements and their phases are kept con-
stant (i.e. In = 1 and wn = 00). The SLL regions for this example are
defined by f = [00, 760] and f = [1040, 1800].

In a smart antenna-based communication system, there are
many applications that need minimization of CISLL adjacent to
the main lobe. This can also be achieved by the elements position
optimization. For this, the objective function is taken as [13]:

FObj=min [/1max{20log|AF(fAS)|}+/2max{20log|AF(fNS)|}]
(17)

where fAS are the SLL regions the same as Example-IIa defined
by {[0◦, 76◦] and [104◦, 180◦]}. fNS represents the CISLL region,
{[69◦, 76◦] and [104◦, 111◦]}. ∝1 and ∝ 2 are constants with
values 1 and 2, respectively.

Keeping the same conventions, the 10-elements linear array is
again optimized to take the objective function as in equation (17)
to realize the CISLL suppressed AF(f). This is referred to as
Example-IIb.

Example-III: phase optimization for beam steering

Nowadays, wireless and mobile technologies are widely applied in
various wireless monitoring applications. Some of the wireless mon-
itoring applications are water level and its quality monitoring, health
monitoring of bridge pillar, building wall structures [47, 48]. These
wireless monitoring applications include a set of omnidirectional
and directional antenna systems. The omnidirectional antenna
transmits information to the distant terminal units. The directional
antenna system collects the data from the antennas embedded in
different places on the concrete structures. The antenna system
adopts the beam-steering process for the data collection from the
remote embedded antennas. Beam steering is the procedure of guid-
ing an antenna array’s main beam towards a specific direction.

Beam-steering application by the implementation of MALO in
the linear array is demonstrated in this example. The simplest
method of achieving beam steering for a linear array is through
the optimization of phases of the elements. The positions of the
elements and their amplitudes are kept fixed (i.e. xn = 0.5λ and
In = 1). Keeping the phase of the first element fixed at 0° as a ref-
erence, optimal phases for rest of the elements are found by
MALO and considering the AF(f) as [13]:

AF(f) =
∑2N
n=2

exp( j[np cos (f)+ wn])+ 1. (18)

The SLL regions are defined by f = [0◦, (fs − (Dfs/2))
0]

and f = [(fs + (Dfs/2))
0, 180◦]. fs represents the steering

angle and it lies in the band Δfs. In this example, phases of a
20-elements linear array are optimized for steering angle fs =
45° and the band of steering angle Δfs = 14°. The AF(f), as in
equation (18) with reduced SLL is obtained by putting the opti-
mum phase values found applying MALO.

Example-IV: beam steering and null positioning by
simultaneous optimization of amplitude and phase

In this example, MALO is employed for simultaneous optimiza-
tion of amplitude and phase for smart antenna technology. The
smart antenna application involves steering the main beam

Table 4. Mapping between the MALO and the array in the optimization process.

Term related to MALO algorithm Mapped term related to the antenna array

Antlions Parameters (spacing between the elements, amplitudes, and phases) to be
optimized.

Dimensions of the antlions or ants Number of parameters (element number, amplitude number, etc.)

Trap (conical hole) and its nearby space Searching space (rang between the lower and upper limits)

Position of antlions Value of parameters

Elite (best-fitted antlions) Best solutions so far

Updating the position of the antlions Keeping the best solution found so far

Elite of the final iteration Optimum values of the parameters

Random walks through the roulette wheel Selection of a set of parameters

Minimum fitness value Best combination of AF, minimum SLL or CISLL, and considerable FNBW.

Sliding of ants to the antlions Converging towards the best solution

An ant is hunted An expected solution is found.

Antlion relocates itself to the recent hunting position and constructs a
conical hole

Choosing a new combination of the optimizing parameters
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along with null positioning in the specific directions. The steering
angle is characterized as the direction of the SOI angle, and the
angles of nulls are characterized as SNOI angles. The beamform-
ing here is achieved by an adaptive process. Figure 8 shows the
block diagram of an adaptive array. Elements of antenna array
receive the combined signal of subscriber’s signal at the SOI
angle and the interfering signals at SNOI angles. The combined sig-
nal is then multiplied with a complex-valued weight having the ele-
ments amplitude weights and the phase weights. These amplitude
and phase weights are optimized in order to obtain the optimum
output signal. Considering the self-developed MATLAB code, the
main beam of the radiation pattern is directed at any specific
SOI angle along with the placement of one or more nulls at any
SNOI angles. In this section, a 20-elements array is considered to
steer the main beam at the SOI angle fs = 45° and nulls at SNOI
angles fnl1 = 25° and fnl2 = 65°. The AF(f) with reduced SLL is
obtained by the optimum amplitude and phase excitations values
found applying MALO. AF(f) for this case is formulated as [1]:

AF(f) =
∑N
n=1

wnexp(j[(n− 1)kxn sin (f)+ wn]), (19)

where wn is the complex weight of the nth element expressed as
anexp( jbn). The amplitude weight of the nth element is an, and
bn is its phase weight.

Results and discussion

MALO is implemented in four examples of linear arrays to opti-
mize element amplitudes, positions, and phases of the elements
either in single or in combined form. The optimized parameters
provide various outcomes such as suppression of peak SLL and
CISLL, beam steering, and beam steering, along with null posi-
tioning. The obtained outcomes are compared with that of the
conventional uniform arrays and with the previous works, such
as ACO, PSO, Taguchi, SMO, SBA, BBO, CSO, SOS, ALO, and
MFO. The comparisons are made considering assumptions like
isotropic elements, the same parameter specifications, and with-
out a constant first null beamwidth (FNBW) as in the previous
works.

The optimal amplitudes of current for design Examples-Ia and
Ib are shown in Tables 5 and 6, respectively. Figure 9(a) presents
the optimized radiation pattern of the design Example-Ia. It
shows that all the algorithms provide nearly the same FNBWs.
The FNBWs are greater than that of the uniform array. In spite
of this, the peak SLL can be better suppressed by the use of opti-
mization algorithms. The peak SLL of −27.6 dB is achieved by
using MALO. The peak SLL of uniform array, PSO [13],
Taguchi [24], BBO [25], SOS [28], ALO [21], and MFO [31] is
14.63, 2.9783, 2.73, 2.39, 2.32, and 1.52 dB higher than that com-
pared to MALO, respectively. MALO provides the highest peak
SLL suppression, taking into account the same parameter

Fig. 8. Adaptive antenna array geometry.

Table 5. Optimal amplitudes of current for Example-Ia.

Optimization

Element amplitude

1 2 3 4 5

PSO [13] 1.0000 0.9010 0.7255 0.5120 0.4088

Taguchi [24] 1.0000 0.8999 0.7228 0.5077 0.3994

BBO [25] 1.0000 0.8988 0.7189 0.5025 0.3862

SOS [28] 1.0000 0.8985 0.7189 0.5017 0.3856

ALO [21] 1.0000 0.8959 0.6957 0.4935 0.2966

MFO [31] 1.0007 0.8962 0.6966 0.4935 0.2965

Proposed MALO 1.0000 0.8909 0.6822 0.4826 0.2878

The values in bold indicate that they belong to our method.
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specifications such as a number of elements, amplitude excitation,
and SLL region. This result is summarized in Table 7. The amp-
litude distributions of the array elements of the design Example-Ia
are shown in Fig. 9(b). From this figure, it is noted that the ampli-
tudes of the current decrease from the central element to the
outermost element. Hence power dividers can be easily used for
such amplitude distribution. It also provides the information
that by using MALO, peak SLL is better suppressed even with
smaller amplitudes. Similarly, the radiation pattern and the

corresponding amplitude distribution for design Example-Ib are
illustrated in Figs 10(a) and 10(b), respectively. From Fig. 10(a),
it can be noticed that the FNBW of MFO is greater than that of
other algorithms. Here also the optimization algorithms except
MFO provide nearly the same FNBW. Peak SLL achieved using
MALO for this case is −31.6 dB. Uniform array, PSO [13],
Taguchi [24], and ALO [21] provide peak SLLs of 18.45, 0.97,
0.39, and 0.75 dB higher than that compared to MALO, respect-
ively. The peak SLL of MALO is 1.46, 8.65 and 1.79 dB higher
than that of BBO [25], MFO [31], and SOS [28], respectively.
The MFO displays a better SLL peak suppression, but it reveals
a higher half-power beamwidth (HPBW) than other methods.
Higher HPBW is not desirable in smart antenna beam-steering

Table 6. Optimal amplitudes of current for Example-Ib.

Optimization

Element amplitude

1 2 3 4 5 6 7 8

PSO [13] 1.0000 0.9521 0.8605 0.7372 0.5940 0.4465 0.3079 0.2724

Taguchi [24] 1.000 0.9500 0.8575 0.7317 0.5861 0.4381 0.2988 0.2552

BBO [25] 1.000 0.9402 0.8487 0.7104 0.5596 0.4115 0.2697 0.2035

SOS [28] 1.000 0.9466 0.8475 0.7137 0.5624 0.4094 0.2697 0.2088

ALO [21] 1.0000 0.9344 0.8521 0.7044 0.6000 0.4000 0.3003 0.2002

MFO [31] 1.0004 0.9340 0.8129 0.6534 0.4857 0.3197 0.1932 0.1002

Proposed MALO 1.0000 0.9286 0.8445 0.6935 0.5989 0.3912 0.2985 0.1956

The values in bold indicate that they belong to our method.

Fig. 9. (a) Radiation pattern of Example-Ia. (b) Amplitude distribution of Example-Ia.

Fig. 10. (a) Radiation pattern of Example-Ib. (b) Amplitude distribution of
Example-Ib.

Table 7. Peak SLL (dB) of Example-I.

Design Uniform array PSO [13] Taguchi [24] BBO [25] SOS [28] ALO [21] MFO [31] Proposed MALO

Example-Ia −12.97 −24.6217 −24.87 −25.21 −25.28 −26.08 −26.07 −27.6

Example-Ib −13.15 −30.63 −31.21 −33.06 −33.39 −30.85 −40.25 −31.6

The values in bold indicate that they belong to our method.
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applications. This is because a higher HPBW represents a wider
main beam and hence the lower directive radiation pattern. In
our case, the MALO provides the highest peak SLL suppression,
considering the equal HPBW. The findings of the design
Example-Ib are also outlined in Table 7.

The optimum position values obtained for design Examples-II
are presented in Tables 8 and 9. Table 8 depicts the optimal posi-
tions of Example-IIa. Figure 11(a) illustrates the radiation pattern
of the Example-IIa, in which reduction of peak SLL is presented.
From Fig. 11(a), it can be observed that the CSO, ALO, and
MALO provide higher FNBW. BBO provides the smallest
FNBW. In spite of this, all the algorithms offer peak SLL suppres-
sion. The SLL suppression using all algorithms by optimizing pos-
ition is lower than that by amplitude optimization. For this
example, the peak SLL achieved by MALO is −24.69 dB which
is 11.72, 2.03, 3.97, 6.61, 4.44, 1.96, 1.80, 4.99, and 1.40 dB
lower than that compared to uniform array, ACO [13], PSO
[13], Taguchi [24], SMO [14], SBA [12], CSO [26], BBO [25],
and ALO [21], respectively. It implies that the MALO among
other algorithms has the best peak SLL suppression. The radiation
pattern of design Example-IIb is shown in Fig. 11(b). The figure
shows that CISLL suppression, a very demanding feature can be
achieved by position optimization. Here, uniform array, the
array optimized employing PSO [13], Taguchi [24], BBO [25],

Table 8. Optimal positions of elements for Example-IIa.

Optimization

Element position ± xn(λ)

1 2 3 4 5

Uniform array 0.25 0.75 1.25 1.75 2.25

ACO [10] 0.25 0.55 1.05 1.55 2.15

PSO [13] 0.2605 0.5105 1.0186 1.4694 2.1407

Taguchi [24] 0.2142 0.5989 1.0597 1.5861 2.25

SMO [11] 0.236 0.528 1.007 1.471 2.126

SBA [12] 0.230 0.515 0.981 1.460 2.120

CSO [26] 0.1516 0.4115 0.7899 1.1048 1.6843

BBO [25] 0.21451 0.60006 1.0610 1.5870 2.25

ALO [21] 0.1259 0.3751 0.7515 0.9994 1.5652

Proposed MALO 0.1281 0.3627 0.7430 0.9841 1.5597

The values in bold indicate that they belong to our method.

Table 9. Optimal positions of elements for Example-IIb.

Optimization

Element position ± xn(λ)

1 2 3 4 5

Uniform array 0.25 0.75 1.25 1.75 2.25

PSO [13] 0.1685 0.5461 0.9364 1.5107 2.25

Taguchi [24] 0.1642 0.5509 0.9362 1.5199 2.25

BBO [25] 0.15085 0.5567 0.93079 1.5157 2.25

ALO [21] 0.1792 0.5407 0.9452 1.5097 2.25

Proposed MALO 0.1782 0.5245 0.9368 1.5057 2.25

The values in bold indicate that they belong to our method.

Fig. 11. (a) Radiation pattern of Example-IIa. (b) Radiation pattern of Example-IIb.
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ALO [21], and MALO reveals the peak SLL of −12.97, −18.31,
−18.08, −18.14, −18.5, and −18.01 dB, respectively. The corre-
sponding CISLL value, utilizing MALO is −33.13 dB. This
CISLL is 20.16, 2.13, 2.89, 2.69, and 2.11 dB lesser than that of
uniform array, PSO [13], ALO [21], Taguchi [24], and BBO
[25], respectively. The MALO provides the highest CISLL sup-
pression among other algorithms. The FNBWs offered by the
algorithms are nearly identical. ACO [13], SMO [14], SBA [12],
and CSO [26] are applied only for the position optimization of
Example-IIa (i.e. peak SLL suppression) and not for

Example-IIb (i.e. CISLL suppression). Table 10 shows the sum-
marized results of Examples-IIa and IIb.

Example-III illustrates primarily the steering of the main beam
along with SLL suppression by the optimization of only the exci-
tation phases of the antenna elements. The optimal phases for
beam steering in design Example-III are presented in Table 11.
Figure 12 displays the respective radiation pattern and the plots
of phase distribution. The radiation pattern using MALO in
Fig. 12(a) is nearly the same as that of PSO. But the null depths
in case of MALO are more than that of PSO. The main beam
steering by MALO towards the desired angle 45° is superior
than ALO and PSO. This can be explicitly observed with the
expansion of the radiation pattern. The peak SLL obtained here
is −12.84 dB. Although the peak SLL suppression here is not
much better, still it is 0.5 and 1.7 dB lower than PSO [13] and
ALO [21], respectively. This analysis is summarized in Table 12.

In the literature, the authors have focused on either beam
steering or null positioning applications. One of the most import-
ant features of simultaneous beam steering and null positioning
for smart antenna application is proposed in Example-IV. The
coinciding of beam steering and null positioning is achieved by
optimizing the element amplitude weights and phase weights.
Optimal normalized amplitude weights and phase weights of
the elements are obtained by the application of MALO and are
presented in Table 13. The normalized amplitude weight of an
element is computed by dividing its amplitude weight by the max-
imum weight among all the weights of the elements. The corre-
sponding radiation pattern for the angles f = [−90◦, 90◦] is
depicted in Fig. 13(a). This demonstrates that the main beam of

Table 10. Peak SLL (dB), and CISLL (dB) for Example-II.

Design
Uniform
array

ACO
[10]

PSO
[13]

Taguchi
[24]

SMO
[11]

SBA
[12]

CSO
[26]

BBO
[25]

ALO
[21]

Proposed
MALO

Example-IIa
(Peak SLL)

−12.97 −22.66 −20.72 −18.08 −20.25 −22.73 −22.89 −19.70 −23.29 −24.69

Example-IIb
(Peak SLL)

−12.97 – −18.31 −18.08 – – – −18.14 −18.5 −18.01

Example-IIb
(CISLL)

−12.97 – −31.0 −30.44 – – – −31.02 −30.24 −33.13

The values in bold indicate that they belong to our method.

Table 11. Optimal phases of elements for Example-III.

Optimization Element phases (wn)

PSO [13] 0, 253, 134, 6.5, 237.9, 109.7, 343.3, 217.1, 91.3, 324.8, 197.8, 70.9, 304.9, 179.0, 51.8, 284.6, 156.1, 28.8, 268.8, 165.9

ALO [21] 0, 237.6558, 100.6945, 324.6030, 189.2521, 54.7329, 281.2010, 148.3234, 6.0491, 244.2962, 113.2517, 342.8036, 213.1424, 83.7345, 314.4018,
185.1796, 57.0217, 292.8150, 181.4052, 90.1626

Proposed
MALO

0, 233.1453, 101.4513, 331.6756, 205.0493, 80.2251, 312.6770, 188.2829, 61.5675, 292.4402, 161.1995, 30.1116, 263.7237, 137.6325,
11.7202, 247.9531, 118.6177, 348.3104, 221.6622, 93.3327

The values in bold indicate that they belong to our method.

Fig. 12. (a) Radiation pattern of Example-III. (b) Phase distribution of Example-III.

Table 12. Peak SLL (dB) of Example-III.

Design PSO [13] ALO [21] Proposed MALO

Example-III −12.34 −11.14 −12.84

The values in bold indicate that they belong to our method.
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the radiation pattern is directed towards the SOI angle fs = 45°

and nulls at SNOI angles fnl1 = 25° and fnl2 = 65°. Null depths
of −48.93 and −52.29 dB are achieved for the nulls at 25° and
65°, respectively. The peak SLL achieved for this example is
−13.184 dB. Both the normalized amplitude and phase distribu-
tion plots are presented in Fig. 13(b). This example is a new
approach in the field of antenna technology. Thus, no comparison
with other algorithms could be established.

Conclusion

This article proposed the hybrid algorithm MALO successfully.
MALO is validated by verifying its performance on five popular
benchmark functions. The effectiveness of MALO is compared
with other widely used optimization algorithms, such as ALO,
PSO, CS, FPA, FA, BA, and GA. Considering the results, it is con-
cluded that MALO being a potential optimization algorithm can
be effectively used to solve many engineering optimization
problems.

The amplitudes, positions, and phases of Chebyshev-based lin-
ear array are successfully optimized, employing MALO. The pro-
posed algorithm is applied to optimize single or multiple design
parameters at a time for obtaining optimal arrays. In all the exam-
ples, the MALO provides a considerable reduction in peak SLL.
Higher peak SLL suppression is achieved in Example-I when
the amplitude optimization is considered. Example-II illustrates

the suppression of CISLL for specific applications by optimizing
the positions between the elements. Beam steering meant for
mobile and other wireless applications like environmental moni-
toring system are successfully presented in Example-III. The amp-
litude and phase excitations of the antenna elements are
simultaneously optimized to achieve the beam steering in the
desired direction. The design Example-IV presents a new direc-
tion of effort in the field of smart antenna technology. This design
example discusses both beam steering and null positioning in
contrast to only beam steering or null positioning by other
researchers. The beam steering is carried out along the SOI
angle fs = 45° and nulls at SNOI angles fnl1 = 25° and fnl2 =
65°. The results obtained by implementing MALO are compared
with that of conventional uniform arrays and the arrays optimized
using algorithms, such as ACO, PSO, Taguchi, SMO, SBA, BBO,
CSO, SOS, ALO, and MFO. The comparisons depict that the
MALO-based array designs provide better performance.

MALO is employed in the optimization of four different
design examples to motivate the antenna design community. In
addition, MALO may be used to optimize certain antenna geom-
etries like microstrip, conformal, and fractal. Configurations like
planar, circular, elliptical, or hexagonal arrays may also be consid-
ered for optimization using MALO. This is because, the provided
results such as SLL minimization, beam steering and null posi-
tioning along specific directions are also valid for the above con-
figurations. It may be a useful extended approach to evaluate the
effectiveness of MALO by optimizing specifically the array struc-
tures generating shaped beam like flat-top, isoflux, or cosecant
beam patterns.
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