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Abstract

This paper introduces recent activities on Marx-based compact repetitive pulsed power gen-
erators at the Institute of Applied Electronics (IAE), China Academy of Engineering Physics
(CAEP), over the period 2010–2018. A characteristic feature of the generators described is
the use of a simplified bipolar charged Marx circuit, in which the normal isolation resistors
or inductors to ground are removed to make the circuit simpler. Several pulse-forming mod-
ules developed to generate a 100 ns square wave output are introduced, including thin-film
dielectric lines of different structures, a pulse-forming line based on a Printed Circuit Board,
and non-uniform pulse-forming networks. A compact repetitive three-electrode spark gap
switch with low-jitter, high-voltage, and high-current was developed and is used in the gen-
erators. A positive and negative series resonant constant current power supply with high
precision and high power is introduced. As an important part of the repetitive pulse
power generator, a lower jitter pulse trigger source is introduced. Several typical high-
power repetitive pulsed power generators developed at IAE are introduced including a
30 GW low-impedance Marx generator, a compact square-wave pulse generator based on
Kapton-film dielectric Blumlein line, a 20 GW high pulse-energy repetitive PFN-Marx gen-
erator, and a coaxial Marx generator based on ceramic capacitors. The research of key tech-
nologies and their development status are discussed, which can provide a reference for the
future development and application of miniaturization of compact and repetitive Marx
generators.

Introduction

Since the 1990s, pulsed power technology has continued to progress in the direction of
ultra-high power and high-energy of single-pulse systems to meet the needs of flash radiog-
raphy, X-ray generation, inertial confinement fusion, and so on (Quintenz, 2004; Deng
et al., 2015, 2016; Ding et al., 2016). At the same time, driven by the demand for directed
energy applications such as high-power microwaves, the development of compact repetitive
pulsed power technology is accelerating (Gaudet et al., 2004; Kim et al., 2016). Initially,
miniaturization of high-power microwave systems was focused on high-power microwave
devices. As the mobility requirements of high-power microwave systems have increased,
research has begun to pay more and more attention to the miniaturization of pulsed
power sources (Korovin et al., 2004; Pan et al., 2016; Zhang et al., 2016). The
Multidisciplinary University Research Initiative (MURI) program on compact, portable,
pulsed power that began in the USA in 2001 (Gaudet et al., 2004) was mainly focused
on the fundamental research on the essential components of compact pulsed power for
directed energy application. A series of compact pulsed power generators based on Tesla
transformers and their applications has been developed and researched in Russia
(Mesyats et al., 2003, 2004; Kim et al., 2016). Compact repetitive pulsed power research
began at IAE in the early 2000s with the development of helical high-current accelerator
(650 kV, 6.5 kA, 210 ns, 20 Hz) (Cao et al., 2006). IAE developed a further type of pulse
accelerator (1 MV, 20 kA, 40 ns, 100 Hz) based on Tesla transformer in 2006 (Zhang
et al., 2007), followed by a repetitive pulse generator (800 kV, 8.5 GW, 180 ns, 25 Hz)
based on a Linear Transformer Driver (LTD) in 2010 (Xiang et al., 2010). Though the
three pulsed power systems mentioned above have a good performance and repeatability,
their sizes and weights are still too large. Since 2010, IAE has embarked on more compact
pulsed power system research. In order to minimize the size and weight, a simplified bipolar
charged Marx circuit was proposed with a series of pulsed power generators developed
based on the simplified Marx circuit. The detailed simplification of the Marx circuit is
described in section “Simplification of Marx circuit”. Research and developments on several
key technologies and components, such as compact pulse-forming modules, a compact and
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repetitively triggered spark-gap switch, a high-voltage bipolar
charging power supply with high precision and high average
power, and a fast rise-time trigger source with low jitter and
high energy are presented in section “Continuing research and
development of key technologies and vital components”.
Several typical compact repetitive Marx generators are described
in section “Development of repetitive pulsed power generators”.

Simplification of Marx circuit

The Marx circuit widely used in the high-power pulsed generators
is a voltage-multiplying circuit that charges a number of capaci-
tors in parallel and discharges them in series (Lehr and Ron,
2017). Figure 1 shows a typical single-sided charged Marx gener-
ator, where a number N of switches and of capacitors are used,
producing an open-circuit voltage of NV0 (where V0 is the charg-
ing voltage). A bipolar charged Marx circuit is shown in Figure 2,
where N switches and 2N capacitors are used, producing an open-
circuit voltage of 2NV0. The advantage of this bipolar charged
Marx circuit is that it has half the number of switches but twice
the stage voltage for a given output voltage. An isolation resistor
to ground is connected between the two capacitors of each stage
in the conventional bipolar charged Marx generator, as shown in
Figure 2. The isolation resistor chain may be replaced by an
inductor chain to enable faster charging and to attain the capabil-
ity of repetitive operation, and reduce the time of electric stress on
the insulation during charging.

Without affecting the basic characteristics of the Marx circuit,
removal of the grounding resistors from the Marx circuit and the
combination of two capacitors of the same stage into one capac-
itor will further simplify the circuit, as shown in Figure 3. The
capacitance of the first and last capacitors are both C0, and the
capacitance of 2nd to (N–1)th are C0/2. If the capacitors are
replaced by pulse-forming lines (PFL) or pulse-forming net-
works (PFN), an output pulse with flat-top duration can be
obtained, as shown in Figure 4, where the waveform obtained
using the simplified Marx circuit is the same as that of the con-
ventional bipolar charged Marx circuit. This simplified Marx
circuit reduces the number of capacitors and eliminates the resis-
tors to ground, which facilitates miniaturization of the pulsed
power system.

Fig. 2. A typical bipolar charged Marx generator.

Fig. 1. A typical single-sided charged Marx generator.

Fig. 4. Comparison of the output waveforms using three types of Marx circuits based
on PFL.

Fig. 3. Simplified bipolar charged Marx generator.

Fig. 5. Compact, portable layer-wound Blumlein line.
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Continuing research and development of key technologies
and vital components

Pulse-forming modules

Several different kinds of pulsed forming modules were devel-
oped at IAE, such as thin-film dielectric PFLs, PFL based on
Printed Circuit Board (PCB), and non-uniform PFN. Thin-film
dielectric PFL is easy to fold and wind (Smith et al., 1971;
Schamiloglu et al., 2003; Ouyang et al., 2008), which is beneficial
to the miniaturization of pulse power sources. Figure 5 shows a
compact, portable, layer-wound mylar dielectric Blumlein line,
having the dimensions of 50 cm × 18 cm × 12 cm, maximum
withstand voltage of 60 kV, and a pulse width of 180 ns (Gan
et al., 2012). Figure 6 shows the typical output waveform of a

Fig. 7. The thin plate-isolated Blumlein lines.

Fig. 9. Schematic of a layer-wound spiral strip line.

Fig. 6. Output waveform of layer-wound Blumlein line.

Fig. 8. Output waveforms of the thin plate-isolated Blumlein line with and without
impedance compensation.

Fig. 10. Output waveform of spiral strip line with charging voltage of 100 kV.
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layer-wound Blumlein line. As can be seen that there is a pre-
pulse about 90 ns before the voltage waveform due to the spatial
electric field coupling to the load. Affected by the coupling effect,
the pulse amplitude decreases during the second half of the main
pulse.

In order to reduce the influence of the coupling effect on the
flat-top of the pulse waveform, the characteristic impedance of the
second half of the Blumlein line is changed to a gradient imped-
ance to compensate the output waveform. Figure 7 shows the thin
plate-isolated Blumlein lines. The output waveforms before and
after impedance compensation were shown in Figure 8. The
results show that a waveform with a better flat-top is obtained
after the compensation.

A spiral strip Blumlein line with a withstand voltage of 100 kV
and a pulse width of ∼200 ns was developed (Song et al., 2012).
This type of line is spirally wounded on a flat insulator of
Polymethyl methacrylate, as shown in Figure 9. This type of
PFL has a relatively wide pitch and layer spacing, so the output
waveform is not affected by the coupling effect, and the spiral
winding makes the structure more compact. The thickness of
the thin-film dielectric layer is determined by the designed char-
acteristic impedance and withstand voltage. An output waveform
with a rise time of 40 ns, a pulse width of 207 ns, and a flat-top of
140 ns is obtained, as is clear from Figure 10.

In order to meet the requirement of a relatively low-power
pulsed system, a more compact solid-state PFL based on a PCB
was developed (Li et al., 2013). Figure 11a shows a planar
S-type folded PFL with a withstand voltage of 50 kV. A multi-
stage PFL module was designed in parallel in order to reduce

the characteristic impedance and improve the energy-storage den-
sity, as shown in Figure 11b. A typical output waveform having a
pulse width of 140 ns and a flat-top width of 100 ns is shown in
Figure 12. This kind of PFL has a pulse square wave with good
flat-top, but a low withstand voltage due to the limitation of the
dielectric material of PCB. It is suitable for use in relatively low-
power, low-voltage pulsed circuits.

The PFN is a typical square wave pulse-forming technique
using L-C circuit. Figure 13 shows an equivalent electrical cir-
cuit for the Guillemin type C network with n branches (Li
et al., 2018). The experimental results show that when the
L-C cell number of the Guillemin type C network is gradually
reduced from 6 to 2, a good square-wave pulse can still be
obtained, as shown in Figure 14. Therefore, in attempts to
obtain a quasi-square waveform with flat-top under a compact
structure, a low-inductance pulse-forming module based on
two-cell L-C circuit was designed and fabricated (Li et al.,
2018). The two-cell PFN was encapsulated in a shell and

Fig. 11. S-type folded planar pulse-forming line based on PCB, (a) single module, (b) multi-stage parallel modules.

Fig. 12. Output waveform of S-type folded planar PFL.

Fig. 13. Equivalent circuit for Guillemin type C network with n branches.
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Fig. 14. Experimental and simulated results of different branches of Guillemin network.

Fig. 15. Picture of the pulse-forming module and internal structures.
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appears similar to a conventional capacitor, as shown in
Figure 15. The dimensions of the two-cell pulse-forming mod-
ule with an impedance of 2.5 Ω are 720 mm × 155 mm ×
62 mm, and its energy storage density can reach 42 kJ m−3.
The research results show that the developed pulse-forming
module has a withstand voltage of 120 kV, a pulse of 180 ns,
and a flat-top of 100 ns. Simulated and experimental output
waveforms are given in Figure 16.

Three-electrode spark-gap switch with low jitter and
high current

The spark-gap switch is a key component of an only pulsed
power source with the performance of the switch directly influ-
encing the output characteristics of the overall pulsed power sys-
tem. Based on the application requirements of the repetitive
pulsed power source, a small field distortion three-electrode
spark gap switch was designed, developed, and studied (Zhang
et al., 2018), as shown in Figure 17. The compact switch has a
small size of only 150 mm × 42 mm, a light weight of about
1.5 kg, and a high withstand voltage of over 112 kV. The switch
filled with a mixed gas of 30% SF6 and 70% N2 has a wide volt-
age operating range of 31–90, 42–85% of the pulsed self-
breakdown voltage at the gas pressures of 0.1, 0.4 MPa, as
shown in Figure 18. It can be operated stably at a repetition
rate between 1 and 50 Hz with a jitter of <4 ns, as shown in
Figure 19. Its service life has exceeded 100 000 shots under the
on-current of 8.5 kA.

High precision and high-power repetitive power supply

Since there are no resistors or inductors to ground in a simpli-
fied Marx circuit, the potential of the capacitors is suspended
during charging, which causes the positive and negative voltages
of a capacitor to be inconsistent or even impossible to be
charged. A special constant current charging power system was
therefore developed (Gan et al., 2018), as shown in Figure 20.
A real-time comparison circuit was used in the control mode.
After each small step is completed, the control system compares
the positive and negative voltages so as to confirm whether they

are consistent. If there is a deviation, the part with larger voltage
is hold constant with the other part adjusted until the two volt-
ages are equal. Then the joint charges are continued and
repeated iteratively in order to realize the positive and negative
voltage synchronous charging. Figure 21 gives the real-time
comparison charging schematic.

Based on this design idea, a compact high-power pulse charg-
ing power supply was developed, with an output voltage between
±10 and ±50 kV, a charging accuracy of 0.1 kV, a charging current
of 2.5 A, and a repetition frequency continuously adjustable
between 1 and 50 Hz. The power supply has a small volume of
1.7 m × 1.5 m × 0.5 m, a light weight of 300 kg, with strong anti-
interference abilities and a short-circuit capability. In practice, it
has been applied to a repetitively high-power pulse power source.

Low-jitter high-energy trigger source

In order to reduce the delay time jitter of a repetitive pulse gener-
ator, a low-jitter and repetitively high-energy trigger source was

Fig. 16. Simulated and experimental output waveforms.

Fig. 18. Operating voltage range of the switch versus gas pressure.

Fig. 17. Photo of the small field distortion spark-gap switch.
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Fig. 19. Variation of jitter with the repetition frequency.

Fig. 20. Equivalent circuit of series resonant charger.
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developed (Li et al., 2017). The source consists of a ±50 kV charg-
ing power supply, a Hydrogen-thyristor pulse source with an out-
put voltage of 80 kV, two 30 nF capacitors, a three-electrode spark
gap switch, and a high-power solid resistor of 300 Ω, as shown in
Figure 22. The output pulse has a rise time of 30 ns, a width of
200 ns, a maximum output voltage of 95 kV, and a maximum stor-
age energy of 75 J. It can run with 30 pulses at a repetition rate of
30 Hz and a jitter of only 2 ns, as shown in Figure 23.

Development of repetitive pulsed power generators

Low-impedance Marx generator

A low-impedance Marx generator with an output voltage of
628 kV, a current of 52 kA, a rise time of 97 ns, a storage energy

of 5 kJ, and dimensions of 1.2 m × 0.5 m × 0.6 m was developed
(Qin et al., 2012), as shown in Figure 24. Based on this generator,
a low-impedance magnetically insulated line oscillator (MILO)
was directly driven (Song et al., 2013). With an electron-beam
voltage of ∼450 kV and a current of ∼40 kA, the radiated micro-
wave had a peak power of 400 MW, a pulse width of 60 ns, and
the center frequency of 1.23 GHz. Figure 25 shows the voltage
and current waveforms of the low-impedance Marx generator
with a MILO as the load.

Square-wave pulse generator based on Kapton-film
dielectric line

A square-wave pulse generator based on Kapton-film dielectric
Blumlein line using the simplified Marx circuit was developed
(Song et al., 2017b), as shown in Figure 26. The output pulse
obtained had a peak power of 4 GW, a width of 156 ns, a rise
time of 40 ns when feeding on a 60 Ω water resistor load. It
could be operated at a repetition rate of 10 Hz. Figure 27 shows
the output waveform in both single shot and a repetition rate of
10 Hz.

Fig. 21. A step comparison charging schematic.

Fig. 22. Layout of the high-energy trigger source.

Fig. 23. Output waveforms of high-energy trigger source.

Laser and Particle Beams 117

https://doi.org/10.1017/S0263034619000272 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034619000272


High pulse-energy repetitive PFN-Marx generator

A compact and repetitively high pulse-energy PFN-Marx genera-
tor with low jitter was developed using the simplified bipolar
Marx circuit (Song et al., 2017a, 2019), as shown in Figure 28.
The size and weight of the generator were minimized by using
two-cell pulse-forming modules as described earlier, alternating
two superposition structures on both sides and high electric
field shielding technology. The generator has a total volume of
2.5 m3 and a weight of 2.2 tons, making it much more compact
than conventional pulsed power sources. Experimental results
demonstrated that when the generator operates with a single
pulse output, the voltage, current, and peak power are 0.98 MV,
19.6 kA, and 19.2 GW. The total energy storage in the Marx

tank is about 3.9 kJ. When the generator was operated at a repe-
tition rate of 30 Hz, the output pulse had a peak power of
16.7 GW obtained as shown in Figure 29. The voltage fluctuation
range is limited to within ±1.5%, and the current fluctuation
range is limited to within ±2%. The delay time jitter between
the trigger pulse and the output pulse is <6.5 ns standard mean
deviation. Statistical distributions of the delay time jitter and cur-
rent amplitude variation of the 300 pulses are approximately
Gaussian.

Coaxial Marx generator based on ceramic capacitors

A compact coaxial Marx generator with a 3.3 nF ceramic capac-
itor as the stage storage capacitance was developed (Gan et al.,
2013). When operating at a repetition rate of 100 Hz, a pulse
with a voltage of 150 kV, a width of 25 ns, and a rise time of
10 ns was obtained on a 50 Ω resistive load. The maximum volt-
age can reach 240 kV on open circuit. Figure 30 shows the gen-
erator, which is Ф200 mm × 550 mm in size, and Figure 31
shows a typical output waveform with an output voltage of
100 kV.

Conclusion

This paper reviews the progress of the miniaturization of repet-
itive pulsed power sources in recent years at IAE. A simplified
bipolar Marx circuit was proposed and has been applied to
the development of various types of compact pulsed power
sources, laying a foundation for future miniaturization and
practical application. The development of pulsed power

Fig. 24. Photo of a low-impedance Marx generator for high-power microwave application.

Fig. 25. Voltage and current waveforms of low-impedance Marx generator.
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technology is inseparable from market demands, and the min-
iaturized pulsed power system needs to undergo a transition
from laboratory device to industrial equipment. The develop-
ment of miniaturized pulsed power sources with a high average
power-to-volume ratio, high reliability, and long lifetime is one
of the main directions for the future. To realize the market-
oriented application of high-energy pulsed power sources, fur-
ther researches are needed in the following aspects: (1) primary
high-energy density storage technology, (2) pulse shaping and
waveform control technology in compact structures, (3) high
current switch with low jitter and long lifetime, (4) system ther-
mal management technology.

Author ORCIDs. Falun Song, 0000-0002-9666-6813.

Fig. 26. Photo of pulse generator based on Kapton-film dielectric line.

Fig. 27. Output waveforms of pulse generator based on Kapton-film dielectric line at
(a) single shot and (b) repetition rate of 10 Hz. Fig. 28. Structural diagram of high pulse-energy repetitive PFN-Marx generator.

Fig. 29. The waveforms of 30 pulses on a plane diode.
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