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Note on Ramanujan’s arithmetical function T(n). By Mr G. H.
Harpy, Trinity College.

[Recetved 4 January, read 31 January 1927.]

1. In his remarkable memoir ‘On certain arithmetical func-
tions’* Ramanujan considers, among other functions of much
interest, the. function = (») defined by

f@=z{l-a)Q-2)1-2a%)...]*=Sr(n)a"...(1:1).

This function is important in the theory of the representation of
a number as a sum of 24 squares. In fact

(14 224 224 + 22° 4 ... )% = 21, (n) 2" = 38y, (n) o™ + Zey, (n) 2™:
where 7y, (n) is the number of representations ;

88 8 (n) = o (n) — 20" ($m) 1,
where o,(n) is the sum of the sth powers of the divisors of », and
a, (n) the sum of those of its odd divisors ; and

884 e, (n) = (— 1)" 2597 (n) — 5127 (4n) .
2. The associated Dirichlet’s series

Fo=3"0 1)

is' convergent for sufficiently large positive . Ramanujan arrived
by conjecture at the very remarkable identity

F@:H{

1
1—7@nﬂ+p*4 """
where the product extends over all primes p; and a proof of this
formula has since been given by Mordellf. It follows that, if we
write n=p%p’ ... p,% and

cosGp=4p " 7(p) T e (23),
then
wsin(m+1)6, sin(a.+1)6, .
n —_ B ces ” - = ..
sin 6, sin 6,

T(n)=

and 7(n) r (n') =7 (nn’) when n and 2’ are coprime.

* 8. Ramanujan, ‘On certain arithmetical functions’, Trans. Cambd. Phil. Soc.,
22 (1916), 159-184. . .

+ Ramanujan, lc., 179, 184. A function with argument 4n is zero when =
is odd.

+ L. J. Mordell, * On Mr Ramanujan’s empirical expansions of modular func-
tions’, Proc. Camb. Phil. Soc., 19 (1920), 117-124 (a paper communicated in 1917).
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3. The problem of determining the order of magnitude of = (n)
appears to be very difficult. Ramanujan proved, on the one hand
that

T()=0xH* ... (31),
and on the other that
rm)=0x=t+ ... (82).

He also proved} that, if we assume the truth of (2:2), an as-
sumption since justified by Mordell, and also of the inequality

r(p=2PT L (33),
then
r()=n¥d®m 0 .. (34)
and
rmyza® (8'5)
for an infinity of values of », so that (3-1) and (32) may be re-
placed by
r(m)=0@%*) .. (86),
for every positive ¢, and
r(n)=0@") ... 87
If then (3'3) were proved, the problem would be in essentials

solved.

4. In this note I make three contributions to the problem.
The first (which is all but trivial) is to show that (3'7) does not
depend upon the unproved inequality (3:3) but only on the iden-
tities (22) and (2'4) established by Mordell, and is therefore cer-
tainly true. The second is to show that

Tm)=0m®) ... (41),

which therefore replaces Ramanujan’s (3:1); and the third is to
show that, if

T@)={T(OP+{r@P+...+{T(@} ...... (4°2),
then there are positive constants A and B such that
A< T'(n)< B2 ... (43)

for n 2 1. This shows that the average order of 7 (n) is exactly
0 (nl’l‘), and also gives an alternative proof of both (3'7) and (41),
and indeed of more.

* Ramanujan, l.c., 168, 171.
+ That is to say 7 () % o (n%). See Ramanujan, l.c., 171.
: Ramanujan, l.c., 175.
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Proof of (37).

5. Ramanujan shows that (3-7) follows from (2-2) and (3-3). It
is therefore only necessary to show that (3'7) is true if (3:3) is false
for some p.

If(8-3) is false, cos 6, 1s real and 8, complex, so that 6, =k + i1,
where % is an integer and 7p 18 rea.l We may suppose 7, positive,
so that e"» >1. Then, if n = p%, we have

sin (a+1)6

[=nT
lr(m)|= ~ siné,

1 ’sinh (a+1) 7,
=N° | ———
sinh 7,

> An'? eanp = An“"’b”s

where A is a positive constant and § = n,/log p > 0, for all values of
a; and this evidently completes the proof of (3:7).

Proof of (41).
6'1. The proof of (4'1) depends upon the following lemma,
which is interesting in itself.
Lemma 1. If f(z) 18 the function (1°1), then
F@=flre=0{L=r)"} ..o (611)

uniformly in 6.

The proof of this lemma depends on the methods used by
Littlewood and myself in one of our memoirs on Diophantine
approximation®. Following the notations of that memoir, I write

ir _c+ dr
z=q° f@)=¢(g), q=€", T—m,
where a, b, ¢, d are integers such that ad — bc =1. Then the equa-
tion of transformation for ¢ (gq) is

¢ (@ =(a+br)*¢(g)
x(q) =R log ¢ (g),

x(@)=x(@)—12log|a +b7|.

If we continue to follow both the ideas and the notation of the
memoir referred to+, in which in particular

Q = eﬂlT’

Hence, if

we have

e, my=logi~l-r, |Q=e,

* G. H. Hardy and J. E. Littlewood, ‘Some problems of Diophantine approxi-
mation : I1: The trigonometrical series associated with the elliptic theta-functions’,
Acta Math., 37 (1914), 193-238.

+ 226 et seq.
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we obtain
1 1
x (@ = x (- Blog (7r—+a'y") =x (@) - 6logy — 6logs;,
q ‘a1

x(@)+6logy=—6log(1/n)+Wlog {@*(1 - S)* (1 —@)*...}]
=—6log%—21r7\+24,23310g(1—Q2")< 4 —610g%—2-n-7x<11,

where the A’s are constants® But this is equivalent to

1\—¢
f@I=1@|<dy<a(logy) <a@-ry
which proves the lemma.

62. We can deduce (4'1) at once from (6:11). For

()= o [LD da=0 (1 -ry4 =0 ()

ant

if the integration is effected round the circle of radius r=1-1/n.

Proof of (43).
7'1. To prove (4'3) we require a further lemma.
Lemma 2. Ifa,Z20,h>0,k>0,a>0and
h(l-r)y<g(r)=Sa,r"<k(l-r)= ...... (711)

Jfor all values of r less than and sufficiently near to 1, then there are
positive constants p and g such that

PP < 8=+ G+ g+ ... + A< gn* ...... (7112)
for all sufficiently large values of n.
The second inequality (7°12) is immediate, since

s,,ér"‘§a,,r'ér"‘g(r)é 4g (1 - 11%)<4kn“
0

if r=1—1/n and = is sufficiently large. The first inequality is not
quite so obvious. '

We write r =¢, so that 1 —r~y. Then plainly

G(y)=Sse™™ >3hy—= L. (7-18)
if y is sufficiently small. We choose ¢ so that
¢>2a, 8¢gcre*<h ... (7'14),
" The function - 6 log (1/A) — 27\ becomes negatively infinite when'A =0 or

A-»®, and has a maximum when 7\ = 3. Here A > }.
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and take y =¢/v, where v is a large integer; and we write
G (y) =% 806~ + 5 8,6 = G () + G (y) ...(T15).
Then 1 o
G:(y) < qy%l nte™<q f :c ureWdy =gy f ; wr e~V dw,
if v is sufficiently large®. But
x () =f;'w“e‘“’d'w =ce+a fj wledw < ¢*e° + §x (c);

since ¢ > 2a; and so

G (y) < 2qcte~*y—t< phy™t Ll (7-16),
by (714). From (7'13)—(7'16) we deduce
G(y)=G@ —G(y)>thy™ ... (7°17).
But
y —~ny < 8 o % .
Gi(g)= % eV s s Y (7-18),

if y is small enough. Comparing (7-17) and (7°18) we see that
8 > bhy = fhore
for sufficiently large v, which proves the first inequality (7-11):

72. The second inequality (4'3) is an immediate deduction
from Lemmas 1 and 2. For

y(r)=2{'r(n)}’r”‘=2—1; j:'| f(re®)|2do

=01 =7} =0 ()

when r=1—1/n, by Lemma 1; and T (n)< Bn?* by Lemma 2.
This inequality plainly includes (41), since T (n) Z {7 (n)}*
To prove the first inequality (4'3) we use Jacobr's identity +
VY@)={1-2)1-a)(1-2)...]'=1-82+5-Tc"+...,

where the indices are the triangular numbers.
Since f = z{*, we have

90)=53 [T 1w o120 > 4 ([ (roy 1 ab)

i 0
SAQ+83r+ 584 Tirti g )
* The maximum of u®e~*¥ occurs for u=afy, outside the range of integration

because ¢>a.
+ Fundamenta nova, § 66.
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whenr~>1. But if r =¢7% we have
S (20 + Lprh) o 4 Sutrn o 4J e dt

~A5"in A=)}
and so
g(M>A4Q-r)",

and therefore, by Lemma 2, T (n) > An'2
Since

Tm)ysn Msax O]

this gives an alternative proof of (3:7).

[Added 9 Feb. 1927.] The note was written nearly 10 years
ago, my interest in the matter reviving recently as a result of
editorial work in connection with the forthcoming edition of
Ramanujan’s works. The index 6 of (4°1) is the }» which occurs
in the recent work of Landau, Petersson, and Walfisz concerning
the number of representations of n by r squares,and the associated
lattice-point problem ; and (4°1) itself must be included implicitly
in their general results. See H. Petersson, ‘ Uber die Anzahl der
Gitterpunkte in méhrdimensionalen Ellipsoiden’, Hamburg Math.
Abhandlungen, 5 (1926), 116~150; and the memoirs of Landau
and Walfisz there referred to.
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