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This paper examines an intertemporal optimizing consumer or a representative
consumer-firm in a deterministic setting subject to a general (either linear or nonlinear)
capital accumulation equation. Duality theory is used to recast the Hamilton–Jacobi
equation for dynamic optimization in terms of an instantaneous and an intertemporal
profit function. An envelope theorem allows derivation of an explicit solution for the value
of the costate variable as a function of the state and other variables. The final model form
only requires specification of atemporal functions that are linked into a closed-form
solution for the optimal dynamic decision variables through a system of contemporaneous
simultaneous equations.
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1. INTRODUCTION

Explicit closed-form (synthesized) solutions of structural intertemporal optimiza-
tion problems are valuable for several reasons. On the one hand, they provide a
stronger link between theoretical analyses and empirical specifications based on
the theoretical structure. Additionally, explicit solutions provide a means of deter-
mining the exact response of optimal decision variables to some exogenous shock,
thus allowing short-run comparative static analysis in the context of satisfaction of
contemporaneous equilibrium conditions that are fully compatible with intertem-
poral optimizing behavior. For analyses supported by empirically based parameter
values, general (“flexible”) functional form specifications are desirable. However,
general dynamic specifications rarely admit of closed-form solutions.
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In intertemporal models that analyze individual utility maximization or that
model aggregative behavior by the representative-agent paradigm, it is common
to employ primal dynamic optimization techniques. If a synthesized solution is
sought, the instantaneous utility function is usually specified to lie within the isoe-
lastic or origin translated isoelastic (HARA) class, in order to enable the (in this
case) known closed-form solution of the Hamilton–Jacobi equation (in determin-
istic models) or the Hamilton–Jacobi–Bellman equation (in stochastic models) to
be employed. Where more general functional forms are considered, closed-form
solutions usually are not attempted—open-loop approaches are employed. These
generally require satisfaction of the transversality condition to be checked by some
type of shooting method applied to candidate initial values for the costate variable.
With nonlinear transition dynamics and the potential for multiple local optima,
these computationally intensive methods can become burdensome.

An alternative closed-form approach to that of primal dynamic optimization
was proposed by Cooper and McLaren (1980), McLaren and Cooper (1980), and
Epstein (1981). This line of research, intertemporal duality theory, generated re-
sults for which the dynamic choice variables of the consumer or firm (consump-
tion, savings, investment) were derived by intertemporal analogues of Roy’s iden-
tity, Shephard’s lemma, or Hotelling’s theorem. A steady flow of empirical work,
particularly in agricultural economics, has taken place through the 1980’s and
1990’s, applying results from intertemporal duality. In the great majority of appli-
cations, the optimal value function for the intertemporal consumer or firm problem
has been specified by means of a flexible functional form. Examples of this ap-
proach to the empirical implementation of intertemporal duality include those of
Epstein and Denny (1983), Vasavada and Chambers (1986), Chang and Stefanou
(1988), Howard and Shumway (1988), Larson (1989), Luh and Stefanou (1991),
Fernandez-Cornejo et al. (1992), and Manera (1994).

However, applications of dynamic duality have generally imposed assumptions
additional to the theory. Various properties of the optimal value function, because
of their complexity, have not been imposed upon the functional form in empirical
specifications, obviating some of the value of duality theory. An important example
of this is the way in which optimal intertemporal utility depends upon the rate of
return on savings. This relationship was derived by Cooper and McLaren (1980) as
a differential equation relationship involving the optimal value function. Actually,
the theoretical work on intertemporal duality theory treated the interest rate as
constant (in models of the firm) or the rate of return on savings as constant (in
models of the consumer). Empirical applications typically have avoided the issue
of the specification of the dependence of the optimal value function upon this
“parameter” by subsuming it into the functional form.

The current paper aims to extend synthesized dynamic economic modeling
into a context in which intertemporal maximizing models are subject to nonlinear
transition dynamics. This extension has several attractive features. The rate of
return on savings is endogenized in this extension, being modeled as a function
of the state variable. The model may be reinterpreted as that of a representative
consumer-firm under conditions of nonconstant returns to scale technology. In this
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context, the representative-agent assumption allows the optimization conditions to
be interpreted as equilibrium conditions. Hence the model may serve to provide the
microfoundations for macroeconomic models. The nonlinearity in the transition
equation then represents a nonlinear restricted (capital stock conditioned) profit
function for the representative firm, or equivalently a nonlinear GNP (restricted
real value added) function for the economy as a whole.

As pointed out above, traditional dynamic solution approaches are more difficult
in the nonlinear context. Open-loop approaches are computationally burdensome
while closed-loop approaches such as intertemporal duality lead to difficulties in
the specification of the regularity conditions for the optimal value function, es-
pecially in terms of parameters of economic interest. The current paper exploits
other research on the relationship between utility and profit functions to sidestep
these problems. In summarizing various approaches to the derivation of tightly
constrained functional forms in the context of the intertemporal consumer prob-
lem, Cooper and McLaren (1993) pointed out some potentially useful alternative
approaches. One of these involved exploiting the relationship between instanta-
neous and intertemporal functions using the concept of consumer “profit.” The
concept of the profit function as a representation of consumer preferences had
been considered by Gorman (1976), who attributed the idea to Frisch (1932). It
was popularized in an atemporal duality theory context by Browning (1982) and
its value from an intertemporal perspective was highlighted by Browning et al.
(1985).

The work of Browning et al. (1985) represents something of a watershed as
it makes the first explicit use of the concept of consumer profit in a dynamic
optimization context. Exploiting the assumed constancy of the rate of return on
savings, marginal utility is treated as a fixed effect. In the current paper, however,
the intention is to model the rate of return on savings as a variable. In the profit
function context, this requires treatment of marginal utility as a latent variable.

Related research—exploiting duality aspects of the profit function in an atempo-
ral context (Cooper, 1994) and in an intertemporal context but with a constant rate
of return on savings (Cooper, 1995, 1996)—is extended in the current paper to the
general variable case. Specification of the optimal value function (as an explicitly
synthesized function of the state variable and parameters) remains difficult in this
case, for the reasons alluded to above in the commentary on the empirical appli-
cations of intertemporal duality. However, in the current paper, duality between
the optimal value function and the profit function is exploited to ultimately obtain
an intertemporal analogue of Hotelling’s theorem in which the relevant structural
features are self-evident without the need to explicitly specify the optimal value
function.

In intertemporal optimization problems of the type considered here, optimal
contemporaneous consumption and saving/investment are dependent on the cur-
rent value of the costate variable in the intertemporal problem, and this variable
typically jumps in response to external shocks. As an alternative to the more stan-
dard procedure of determining the value of this jump by imposing the assumption
that adjustment then moves along a stable path, found by linearization around the
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steady state, in this paper the optimal contemporaneous value of the costate vari-
able is derived by consideration of its relationship to the state variable and other
parameters regardless of the distance from the steady state and without the need for
linearization. By exhibiting the intertemporal solution in the form of contempo-
raneous optimization conditions, the relationships are capable of specification in
econometric models and also of application in theoretical comparative economic
response analyses.

2. NOTATION, ASSUMPTIONS, AND PRELIMINARY RESULTS

2.1. A Prototype Intertemporal Model

DefineU (c) as the representative consumer-firm’s instantaneous utility function,
wherec is real aggregate consumption. It is assumed thatUc> 0, Ucc< 0. Let
δ denote the consumer’s subjective rate of time preference. The representative
consumer-firm’s optimization problem and the optimal value function implied by
the optimization may be defined by

J(k, δ) = max{c}
∫ ∞

0
e−δtU (c(t)) dt (1a)

subject to

k̇(t) = F(k(t))− c(t), (1b)

k(0) = k, (1c)

wherek is wealth (or real capital stock in a consumer-firm or aggregative growth
interpretation) andF(k) is a restricted (i.e., capital stock conditioned) real net
output or real value-added function. By implication, variable factors are opti-
mized out as functions of their prices and other relevant parameters and these
variables/parameters are subsumed within the functional form ofF(k) for nota-
tional convenience.

Analysis of the case in whichF(k) is linear ink andU (c) is isoelastic is well
established in both the consumer intertemporal optimization (with linear budget
constraint) and the growth literatures (the “AK” model). The inherent tractability
of the linear transition equation and isoelastic utility case allows closed-form
solutions to be derived for optimal consumption and saving/investment and this
has clearly been a major factor in its appeal. Cooper (1995) has extended this to
more general functional forms forU (c) but still in the context of a linear transition
equation. The nonlinearF(k) case requires some additional manipulation. In what
follows, the linear case is carried along with the nonlinear case in order to establish
the relationship between them.

It is possible to set out the restricted value-added function in more detail as
F(k)=wL(k, w)+ R(k)k, wherew is the real wage,L(k, w) is optimized labor
demand,R(k) is the rate of return on capital, and the real wagew is understood as
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subsumed into the functional form ofF(k). The case in whichF(k) is linear ink
corresponds toL(k, w) linear ink andR independent ofk. This case is consistent
with linearly homogeneous technology and firm price-taking behavior. In this case,
it is convenient to employ the explicit linear specificationF(k)= ρk and to write
the linear transition equation variant of the optimal value function asJL(k, ρ, δ).
Here,ρ may itself be interpreted as a function of further parameters (such as the
real wage) that determine the levels of variable inputs, optimally chosen in the
context of a linearly homogeneous technology.

For expositional purposes, it will be convenient to interpretρ as the implicit
rental rate of capital, and to treat the return to the consumer-firm’s ownership of
capital as the sole factor payment. With this convention, in the linear case,ρk≡ Fkk
implies that factor payments exhaust the value of output. More generally, in the
nonlinear case,F(k)may be interpreted as the restricted net output or value-added
function resulting from optimal variable input and/or price setting in the context of
a noncompetitive environment. In this case,ρ≡ Fk(k) is explicitly acknowledged
to be a variable (dependent uponk) and F(k)− ρk will measure the extent of
economic rents. By analogy with an approach popularized by Romer (1986) in
the endogenous growth literature, it will be convenient to distinguish between a
competitive and a social optimum. Within the context of the methodology to be
proposed in this paper, the distinction can be characterized in the following terms:

COMPETITIVE OPTIMUM (CO).The representative competitive agent treats
ρ and its path of evolution as given for purposes of computing optimal behavior;
however, in the nonlinear case in equilibrium, ρ evolves according to Fk(k).

SOCIAL OPTIMUM (SO).The social optimizer recognizes that, in the nonlin-
ear case, its decisions on the path of k affect the marginal productivity of capital
and hence flow through to the evolution ofρ.

It is worth emphasizing that the distinction between the CO and the SO rests on
the ability of the optimizer to control the evolution ofρ. The CO, which denies
any control, is therefore stronger than the competitive optimization in the Romer
case. In the Romer approach, control is allowed in both the competitive and the
socially optimal cases but the underlying evaluation of the capital stock differs.
It is straightforward to allow for a distinction between the representative private
and the average aggregate capital stock in the context of the CO in this paper, and
thereby allow for effective increasing returns to scale in the equilibrium associated
with the CO, in the spirit of the endogenous growth literature. However, the key
feature of the currently proposed methodology, which enables solution of the CO
optimization problem for general functional form specifications, is the exogeneity
of ρ from the perspective of the representative competitive decision maker, and
so, emphasis in this paper is placed upon the CO/SO distinction drawn earlier.

Although it will be convenient to discuss the intertemporal optimization prob-
lem in general, and hence carry optimization conditions for both the CO and the
SO cases, the primary focus of this paper is a positive one and the ultimate aim is
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to provide a full solution in the CO case whereρ is acknowledged to be evolving
generally, in particular as a function ofk by virtue of the nonlinear technology, but
independently of the actions of the representative agent. In principle, if variable in-
puts are optimally chosen,ρ will also be dependent upon the prices of these inputs.
However, for notational convenience, parameters controlling these instantaneous
optimization decisions are suppressed. Although the major focus of the paper will
be on the optimal solution for the CO case, it will be useful initially to relate the
methodology to control theoretic and dynamic programming approaches to the
solution of problem (1). In its general form, (1) is silent with respect to assump-
tions onρ. In the absence of an additional Romer-type distinction between the
representative private and the average aggregate capital stock, this is most readily
interpretable as compatible with the SO case, where the decision maker recognizes
the full effect of variations ink on F(k) resulting from optimization decisions that
affect the marginal productivity of capital.

In the general nonlinear case, it is assumed thatFk> 0 andFkk< 0. The latter
assumption is specifically exploited, so that the linear case is not a special case of
the nonlinear one. Nevertheless, it is possible to set out the two cases in a similar
manner and this is useful for comparison. The methodology relies upon a recasting
of preliminary results, which are a composite of concepts from control theory and
dynamic programming.

2.2. Control Theoretic Approach

In a control theoretic approach to problem (1), the present-value pre-Hamiltonian
may be defined asH′(c, k, λ′, δt)= e−δtU (c)+ λ′[F(k)− c]. However, it will be
more convenient to work in current-value terms, defining the current-value costate
variable asλ≡ eδtλ′. The optimality conditions may then be expressed by the
current-value variant of the following principle.

PONTRYAGIN’S MAXIMUM PRINCIPLE. Define the current-value pre-
Hamiltonian as

H(c, k, λ) = U (c)+ λ[F(k)− c]. (2a)

Define the (optimal value of the) Hamiltonian as

H(k, λ) = maxcH(c, k, λ). (2b)

Then,

k̇ = Hλ(k, λ), (3a)

λ̇ = δλ− Hk(k, λ), (3b)

and
∂H
∂c
= 0, (3c)
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where the differential equations (3a) and (3b) are subject to the general necessary
infinite horizon transversality condition

lim e−δt
t→∞ H(k(t), λ(t)) = 0 (3d)

and the boundary condition (1c) on the constraining initial capital stock.
Given the structure (2a) for the pre-Hamiltonian, an envelope theorem applied

to (2b) shows that

Hλ = F(k)− c, (4a)

Hk = λFk, (4b)

while the first-order condition implies that

Uc(c) = λ. (4c)

These allow the optimality conditions (3) to be rewritten in the specific form

k̇ = F(k)− c, (5a)

λ̇ = [δ − Fk(k)]λ, (5b)

c = U−1
c (λ), (5c)

lim e−δt
t→∞

{
U
(
U−1

c (λ(t))
) + λ(t)[F(k(t))−U−1

c (λ(t))
]} = 0. (5d)

Equations (5a)–(5c) constitute the core of the model as a set of contemporaneous
optimization conditions. Together, (5a) [supplemented by (5c)] and (5b), respec-
tively, describe the evolution of the state and costate variablesk andλ, but require
initial values for determination of the actual paths. Clearly, an initial value fork
is prescribed by (1c). However, for determination of the exact short-run solution
paths, an initial value forλ is still required. Once this is established, the system
evolves according to (5a) and (5b) from the initial position to a path compat-
ible with (5d). Virtually all of the literature approaches this problem either by
assuming that the economy is already in a steady state (traveling along a balanced
growth equilibrium trajectory) or by linearizing the transitional dynamics around
the steady state and determining the value ofλ that allows the steady state to be
reached by movement along the stable arm of the saddle path system. The case for
this approach as put by Lucas (1988) is

[Under certain parameter restrictions imposed to ensure this,] an economy that begins
on the balanced path will find it optimal to stay there. What of economies that begin
off the balanced path—surely the normal case? Cass showed—and this is exactly
why the balanced path is interesting to us—that forany initial capitalk(0)>0, the
optimal capital-consumption path{k(t), c(t)} will converge to the balanced path
asymptotically. That is, the balanced path will be a good approximation to any actual
path “most” of the time. [Lucas (1988, p. 11)]
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Although the Cass result is useful where it applies, there is an empirically rele-
vant case for examining models in which a balanced growth path may not exist.
Even with existence, there is the issue of speed of convergence, which requires
examination. However, it seems fair to summarize the approach of much of the
literature as focusing on balanced paths and steady states simply because this at
least is manageable. As Lucas continues later in the same paper,

Consideration of off-steady-state behaviour would open up some new possibilities,
possibly bringing the theory into greater conformity with observation, but I do not
view this route as at all promising. Off steady states, [simple relationships that de-
termine growth rates] need not hold and capital and output growth rates need not be
either equal or constant.. . . [Lucas (1988, p. 14)]

In the current paper, the aim is to find optimal contemporaneous consumption and
investment relationships in an intertemporal optimizing or growth model context
without linearization about a stationary or steady state and without assuming any
particular relationship to, or even the existence of, a balanced growth equilibrium.

To obtain optimal contemporaneous solutions forc and k̇, it is necessary to
resolve the issue of determination of an initial value for the costate variableλ

by recognizing the fundamental endogeneity ofλ in an optimizing context and
hence by expressing the unobservableλ as a function of givens (in particular, as a
function of the predetermined level of the quasi-fixed capital stock,k). To isolate
the issues involved in determining the optimal relationship betweenλ andk, it is
useful to employ a dynamic programming formulation.

2.3. Dynamic Programming Approach in the SO Case

Recognizing that, by its structure, the optimization problem (1) lends itself to
consideration of the SO, it is useful to pursue the implications of the SO by
utilizing the following principle.

BELLMAN’S PRINCIPLE OF OPTIMALITY. The optimal value function for
problem(1) satisfies

δJ(k, δ) = maxc〈U (c)+ Jk(k, δ)[F(k)− c]〉. (6)

Bellman’s principle implies the first-order condition

Uc(c) = Jk(k, δ) (7)

and, in conjunction with the control theoretic approach (4c), this implies that the
costate variableλ must satisfy

λ = Jk(k, δ). (8)

In the linear transition equation case, as noted following the presentation of problem
(1), the optimal value function may be written asJL(k, ρ, δ), whereρ (≡δF/δk)
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may be thought of as a function of atemporal parameters but is not a function of
k. In this case, (8) may be written:

λ = JL
k (k, ρ, δ). (8L)

As long asJkk< 0, condition (8) represents a relationship of optimality between
a given level of capital stockk and the optimal value of the costate variableλ.
Given shocks to parameters such asδ (andρ in the linear case) or to parameters
of the utility function (not explicitly shown), thenλmust jump to a value implied
by equation (8).

It should be emphasized that (8) may best be regarded as representing the opti-
mality condition for the SO in the nonlinear case, since the optimal decision rule is
not conditioned on any externally imposed values ofρ. In effect, in the nonlinear
technology case, the full influence of the optimization decision on the marginal
productivity of capital is implicitly taken into account in (8).

Although, conceptually, (8) endogenizesλ, the difficulty in using condition (8)
in this way is that the optimal value functionJ(k, δ), or at least the marginal optimal
value functionJk(k, δ), must first be ascertained. Direct analytical construction of
J from (6) by dynamic programming is limited to specific functional forms for
U (c), which are not empirically flexible enough to provide a realistic model. As
an alternative, numerical solution of (6) may be employed. It remains the case,
however, that to solve (6) for function specifications complex enough to flexibly
represent empirical realities, with potentially multiple local optima forλ, it is
helpful to reduce the complexity of (6) by analytical methods as much as possible.

2.4. A Preliminary Representation of the Hamilton–Jacobi Equation

In many areas of economic analysis, duality theory has been used to enable tractable
but optimization-consistent (regular) response functions of agents to be specified
more flexibly than is possible for those response functions that could be explicitly
derived by primal techniques. In the current paper, duality theory is used for
a similar purpose. By translating (6) using dual functions, a simpler analytical
relationship is derived and envelope theorems are used to generate the required
optimal relationship betweenλandk under very general specifications of consumer
preferences.

A convenient form of (6) for this analysis is obtained by a conjunction of the
Pontryagin and Bellman principles, equating (2a), (2b), and (6) in view of (8).
This generates the Hamilton–Jacobi (H-J) equation, which relates the optimal
value functionJ≡ J(k, δ) to the HamiltonianH ≡ H(k, λ). In both the linear
case and the nonlinear SO case, this can be written

δJ(k, δ) = H(k, λ). (9)

As (2) makes clear,H may be constructed purely from the specification of
the atemporal functionsU (c) and F(k). On the other hand, the use of (8) to
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endogenizeλ requires specification ofJ. Conceptually, (9) provides an important
link since it relatesJ to H . However, a difficulty in using (9) directly to generate
J from H remains to be resolved. Specifically, in the form in whichJ and H
have been defined, by (6) and (2b), respectively, they are conditioned on different
sets of variables and parameters. Additionally, formulation (9) does not adequately
account for the CO in the nonlinear case. Although the optimization conditions
require (4c) in all cases, (8) only applies for the linear case and the SO variant
of the nonlinear case. The CO variant of the nonlinear case needs to allow for a
possible divergence between the private marginal valueλ and the social marginal
valueJk(k, δ). To allow for this, a generalized representation of the H-J equation
(9) using (2a), (2b), (6), and (5c) in place of (8) can be written as

δJ(k, δ) = H(k, λ)+ [ Jk(k, δ)− λ]
⌊
F(k)−U−1

c (λ)
⌋
. (9′)

Of course, in both the linear and the nonlinear SO cases, (9′) reduces to (9).
The objective of the next two sections is to introduce a series of results in duality

theory that may be used both to develop the nonlinear CO case in parallel with the
linear and the nonlinear SO cases and also to re-express both sides of the general-
ized H-J equation (9′) as functions of a common set of variables and parameters.
The duality reformulations generate their own envelope theorems. These then en-
able the optimal relationship betweenk andλ to be directly ascertained at any
point on the optimal path, not restricted to a linearized neighborhood of a station-
ary state, and for both regular and flexible functions representing the underlying
consumer preference ordering and firm optimal behavior.

3. REFORMULATION OF ATEMPORAL ASPECTS OF THE
OPTIMIZATION PROBLEM

3.1. Consumer Profit Maximization as a Dual to Utility Maximization

Consider a reformulation of the consumer’s optimal instantaneous consumption
choice problem as

8(λ) = maxc{U (c)− λc}. (10)

The interpretation of this optimization is that the consumer recognizes that in-
stantaneous utility achieved via additional consumption must be paid for at oppor-
tunity costλ. Thus the8 function represents optimized instantaneous (normalized)
profit for the consumer.

Problem (10) is conceptually consistent with the intertemporal optimizing prob-
lem in thatλ is the shadow value of capital, the accumulation of which is foregone
if consumption is increased. By setting the given price of consumption at this
value, problem (10) generates a first-order condition,

Uc(c) = λ, (11)

and this is equivalent to (4c), the optimality condition for consumption in prob-
lem (1).
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An envelope theorem (Hotelling’s lemma) implies that

c = −8λ(λ) (12)

so that−8λ is interpretable as theU−1
c function employed in (5c). Rearranging (10)

by utilizing (12), a marginal-utility-conditioned (Frischian) instantaneous utility
function may be defined by

U F (λ) = 8(λ)− λ8λ(λ). (13)

3.2. The Hamiltonian and Instantaneous Economic Profit

Using the concept of consumer profit, the Hamiltonian (2) can be rewritten, in
view of (10), as

H(k, λ) = 8(λ)+ λF(k). (14)

The Hamiltonian (14) has an interesting interpretation. It is the representative
agent’s (and hence the economy’s) restricted value-added function, being the sum
of the “consumer-side” profit function and the “firm-side” restricted value-added
function, taking the capital stock as given, with all profits priced in utility terms.
In this interpretation, the representative agent receives “profits” both from excess
consumer utility and from excess value added. Excess consumer utility is measured
by utility greater than the opportunity cost of consumption,λc. Excess value
added represents the ability of the firm to repay the agent as supplier of variable
factor inputs. However, to measure the true economic value of excess value added,
restricted value added needs to be adjusted for the opportunity cost of capital. In
the linear transition equation case, the marginal profitability of capital has been
denoted byρ. It is convenient, therefore, to denote the implicit rental rate of capital
generally byρ. Sinceλk is the value of the capital stock in the eyes of the optimizing
representative agent, it follows that excess value added may be measured by value
added greater than the opportunity cost of capital,ρλk. (Restricted) economywide
instantaneous economic profit therefore can be defined by

P(k, λ, ρ) = 8(λ)+ λ[F(k)− ρk]. (15)

In the linear technology case, firm-side economic profit is zero [F(k)= ρk] and
(15) simply reduces to consumer profit8(λ). In the nonlinear case, it has been
assumed thatFkk< 0. In this case, the optimized instantaneous profit function may
be defined as

5(λ, ρ) = maxk P(k, λ, ρ), (16)

which implies the first-order condition

ρ = Fk(k), (17)

which can be inverted to give

k = F−1
k (ρ). (18)
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Thus, in the nonlinear case, the capital stock can be optimized out as a function
of its implicit rental rate. For convenience in what follows, reference is made to
5(λ, ρ) as a general expression for economywide instantaneous economic profit,
with the understanding that5(λ, ρ)→8(λ), independent ofρ, in the linear case.
In both the linear and nonlinear cases, it is now possible, by use of the synthetic
variableρ, to write the Hamiltonian in linear-affine-in-k form,

H̄(k, λ, ρ) = 5(λ, ρ)+ λρk. (19)

It is also convenient to note that, by an envelope result from (16) and (15) in the
nonlinear case and by obvious definition in the linear technology case,

5λ(λ, ρ) = 8λ(λ)+ F(k)− ρk (20)

and where, in the nonlinear case,k satisfies (18). Consequently, an alternative
expression to (13) for Frischian utility is

U F (λ) = 5(λ, ρ)− λ5λ(λ, ρ). (21)

Results (20) and (21) will be useful later in an examination of the optimal output
/consumption relationship.

4. REFORMULATION OF INTERTEMPORAL ASPECTS OF THE
OPTIMIZATION PROBLEM

4.1. Alternative Representation of the Intertemporal Problem

Having introduced the synthetic variableρ in the instantaneous component of the
representative consumer-firm’s problem, it is helpful to re-express the intertem-
poral optimization problem (1) in a form that emphasizes the role ofρ. Define
average productivity,M(ρ), in terms ofρ as

M(ρ) ≡
{
ρ, Fkk = 0

F
(
F−1

k (ρ)
)/

F−1
k (ρ), Fkk 6= 0

(22)

Utilizing (22), problem (1) may be recast in a form that defines the optimal
value function as a function of both the original state variablek and the additional
synthetically constructed state variableρ. Consider the following intertemporal
utility-maximizing problem, which is slightly more general than the prototype (1):

J̄(k, ρ, δ) = max{c}
∫ ∞

0
e−δtU (c(t)) dt (23a)
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subject to

k̇(t) = M(ρ(t))k(t)− c(t), (23b)

ρ̇(t) =
{

0, Fkk = 0
Fkk(k(t))k̇(t), Fkk < 0

(23c)

k(0) = k, (23d)

ρ(0) = ρ. (23e)

Problem (23) includes the synthetic variableρ as a second state variable. Al-
though this introduces an apparent complexity, it allows the characteristics of the
optimal value function, viewed as a function ofk but conditioned onρ, to be rep-
resented more simply. In the linear case,Fkk= 0,ρ is constant and (23) reduces to
(1) with J̄(k, ρ, δ)≡ JL(k, ρ, δ). In the nonlinear case, (23) is more general than
(1), but contains (1) as the special case in which the optimization takes place in
the absence of initial arbitrage opportunities—that is, where the initial value ofρ

is consistent with the initialk in the sense thatρ(0)= Fk(k(0)) is satisfied by the
initial conditions (23d) and (23e). However, an important advantage of formulation
(23) over (1) is its explicit recognition ofρ as a state variable. For nonlinearF(k),
this allows the CO and SO cases to be distinguished.

Case CO. Although the decision maker takes account of the effect of the choice
of c(t) directly on k̇(t) through (23b), the subsequent indirect effect onρ̇(t) in
(23c) is not recognized to be a consequence of the optimality decision; rather,
(23c) is treated as an exogenously evolving constraint.

Case SO. The decision maker takes account of the effect of the choice ofc(t)
not only directly onk̇(t) through (23b) but also, subsequently, indirectly onρ̇(t)
through (23c).

The implications of (23) and of the capability of making these distinctions can
be summarized in Lemma 1.

LEMMA 1. An Equivalent Intertemporal Utility Maximizing Problem. In the
absence of initial arbitrage opportunities, problems (1) and (23) are equivalent,
the relationship between the optimal value functions is

J(k, δ) ≡ JL(k, ρ, δ) ≡ J̄(k, ρ, δ), Fkk = 0, (24a)

J(k, δ) ≡ J̄(k, Fk(k), δ), Fkk < 0, (24b)

the costate variable may be expressed in terms of the optimal value functions for
(23) and (1) as

λ = JL
k (k, ρ, δ) = J̄k(k, ρ, δ) = Jk(k, δ), Fkk = 0, (25a)

λ = J̄k(k, ρ, δ) 6= Jk(k, δ), Fkk < 0 and CO, (25b)

λ = J̄k(k, ρ, δ)+ J̄ρ(k, ρ, δ)Fkk(k) = Jk(k, δ), Fkk < 0 and SO,

(25c)
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and the Hamilton–Jacobi equation is

δ J̄(k, ρ, δ) = H(k, J̄k(k, ρ, δ)), Fkk = 0, (26a)

δ J̄(k, ρ, δ) = H(k, J̄k(k, ρ, δ))+Ä(ρ, δ), Fkk < 0 and CO, (26b)

δ J̄(k, ρ, δ) = H(k, J̄k(k, ρ, δ)+ J̄ρ(k, ρ, δ)Fkk(k)), Fkk < 0 and SO,

(26c)

where, in (26b),

Ä(ρ, δ) = J̄ρ
(
F−1

k (ρ), ρ, δ
)
Fkk
(
F−1

k (ρ)
)[

F
(
F−1

k (ρ)
)

+8λ

(
J̄k
(
F−1

k (ρ), ρ, δ
))]
. (27)

Proof. In the linear technology case,F(k)= ρk, Fkk= 0, M(ρ)≡ ρ, andρ is
constant and is subsumed as a parameter into the functional form ofJ(k, δ). Here,
the equivalence of (1) and (23) is obvious and (24a) clearly holds. In the nonlinear
case, the absence of initial arbitrage meansρ(0)= Fk(k(0)). Given this restriction
on the initial conditions, the nonlinear variant of (23c) ensures that (17) continues to
hold along the optimal path fork. In view of (22) and (18),F(k(t))=M(ρ(t))k(t)
and problem (23) together with (17) is identical to problem (1) so that (24b) must
hold. A constructive proof of (25) is available by applying Bellman’s principle of
optimality to problem (23). The optimal value function for (23) satisfies

δ J̄(k, ρ, δ) = maxc〈U (c)+ J̄k(k, ρ, δ)[ρk− c]〉, Fkk = 0

δ J̄(k, ρ, δ) = maxc〈U (c)+ J̄k(k, ρ, δ)[M(ρ)k− c]〉 + J̄ρ(k, ρ, δ)Fkk(k)

×[M(ρ)k−U−1
c ( J̄k(k, ρ, δ)

]
, Fkk < 0 and CO

δ J̄(k, ρ, δ) = maxc

〈
U (c)+

[
J̄k(k, ρ, δ)+
J̄ρ(k, ρ, δ)Fkk(k)

]
[M(ρ)k− c]

〉
,

Fkk < 0 and SO.

The first-order conditions for each of these cases in conjunction with the control
theoretic optimality condition (4c) for problem (1) implies that, for equivalence
of problems (1) and (23), the costate variableλ must satisfy (25a)–(25c) for the
respective cases. Expressions (26a)–(26c) for the H-J equations follow, in view of
definitions (2a)–(2b), by insertion of these results in the generic expression (9′).
In the nonlinear CO case, the term̄Jρ(k, ρ, δ)ρ̇ is not considered to be under the
influence of the optimizing agent in its decision making with respect to fulfillment
of the first-order condition for optimality. However, the relationship of optimality
betweenk andρ given by (18) is maintained. Using (18), (23c), (22), (23b), (12),
(5c), and (25b), this term is equivalent toÄ(ρ, δ) in (27).

Note that, in all cases,λ is equated to the marginal instantaneous utility of
consumption as indicated in (4c). In the nonlinear CO case, this is equated to the
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perceived private marginal present value of the optimized utility of resources,J̄k,
as given in (25b). In the nonlinear SO case, it is equated to the social marginal
present value of optimized utility of resources,J̄k + J̄ρFkk, as given in (25c).
Clearly, λ is different in the CO and SO cases. If̄J could be ascertained, the
difference could be measured as̄Jρ(k, ρ, δ)Fkk(k).

4.2. The Intertemporal Profit Function as a Dual to the Optimal Value
Function

The overall objective of Sections 3 and 4 is to rewrite both the instantaneous
(Hamiltonian) component and the intertemporal (optimal value function) compo-
nent of the H-J equation in terms of common variables and parameters. To com-
plete this task, use is made of the optimal value function, treating it as “output”
and defining its dual, optimal intertemporal profit.

THEOREM 1. A Dual Intertemporal Profit Maximizing Problem. Let̄J(k, ρ, δ)
denote the optimal value function for problem (23). Dual to problem (23) is the
following problem:

9(q, ρ, δ) ≡ maxk〈 J̄(k, ρ, δ)− qk〉 (28)

and, in the absence of arbitrage, problem (28) is also dual to problem (1) with

q = λ, Fkk = 0 (29a)

q = λ, Fkk < 0 and CO (29b)

q = λ−4(ρ, δ), Fkk < 0 and SO (29c)

which may be written generically as

q = Q(λ, ρ, δ), (29)

noting that Qλ= 1 in all cases; and where, in (29c),

4(ρ, δ) = J̄ρ
(
F−1

k (ρ), ρ, δ
)
Fkk
(
F−1

k (ρ)
)
. (30)

Proof. The Legendre transformation (28) establishes standard duality between
9(q, ρ, δ) and J̄(k, ρ, δ). The first-order condition for (28) is

J̄k(k, ρ, δ) = q (31)

and envelope results are

9q(q, ρ, δ) = −k, (32a)

9ρ(q, ρ, δ) = J̄ρ(k, ρ, δ). (32b)

In the absence of arbitrage, Lemma 1 has established the equivalence of problems
(23) and (1), and that (25) holds in the cases indicated. In the linear case,Fkk= 0.
Then, the combination of (31) with (25a) immediately gives (29a). In the nonlinear
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CO case, the combination of (31) and (25b) gives (29b). In the nonlinear SO case,
the combination of (31) and (25c) implies that

q = λ− J̄ρ(k, ρ, δ)Fkk(k). (33)

However, (18) also holds in the nonlinear case, and the combination of (18) with
(33) gives (29c).

The importance of Theorem 1 is that it allows the derivation of a simple and
powerful envelope theorem, which may be used to generate the optimal relationship
betweenλ and k. This important implication of the theorem is highlighted in
Corollary 1.

COROLLARY 1: An Intertemporal Analogue of Hotelling’s Theorem. Let the
intertemporal profit function conditioned onλ be defined by

9̃(λ, ρ, δ) ≡ 9(Q(λ, ρ, δ), ρ, δ). (34)

Then, the optimal contemporaneous relationship between k andλ, conditional on
ρ, is given by

k = −9̃λ(λ, ρ, δ). (35)

Proof. From (34), (29), and (32a),9̃λ=9q Qλ = 9q = −k.

The relevance of Corollary 1 is that, if the functional form of9̃ can be ascertained,
(35) can be used to establish the optimalλ to associate with initial values ofk, ρ, δ
or the optimal jump inλ following a shock to any ofk, ρ, δ. It remains to establish
the functional form of9̃ in terms of the initially specified functions8 andF .

4.3. Reformulation of the Hamilton–Jacobi Equation

Recall that the basic issue in the use of the H-J equation is the need to constructJ
from H . However, Corollary 1 shows that the solution to the intertemporal problem
may be obtained if the functional form for9̃ can be ascertained. On the other hand,
Theorem 1 defined a relationship betweenJ̄ and9. In addition, the alternatively
conditioned intertemporal profit functions9 and9̃ are related via (34), with the
conditioning variablesq andλ themselves related through (29). These results are
now exploited to reconstruct the H-J equation in an amenable form.

LEMMA 2. A Profit-Function Representation of the Hamilton-Jacobi Equa-
tion. Let the instantaneous consumer-firm economic profit function5(λ, ρ) be
defined by (16) in the nonlinear case and simply by8(λ) in the linear technology
case. Let the intertemporal profit function9̃(λ, ρ, δ) be defined by (34), given (28)
and (23). DefineÄ(ρ, δ) by (27) and4(ρ, δ) by (30). Then the Hamilton–Jacobi
equation for the intertemporal problem (1) has the representation

δ9̃(λ, ρ, δ)+ [ρ − δ]λ9̃λ(λ, ρ, δ) = 5(λρ), Fkk = 0 (36a)

δ9̃(λ, ρ, δ)+ [ρ − δ]λ9̃λ(λ, ρ, δ) = 5(λ, ρ)+Ä(ρ, δ),
Fkk < 0 and CO (36b)
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δ9̃(λ, ρ, δ)+ [ρ − δ]λ9̃λ(λ, ρ, δ)+ δ4(ρ, δ)9̃λ(λ, ρ, δ) = 5(λ, ρ),
Fkk < 0 and SO. (36c)

Proof. Letk∗ be optimal for problem (28). Then,k∗ satisfies (35), and using
this together with (34) to rearrange (28) gives

J̄(k∗, ρ, δ) = 9(q, ρ, δ)+ qk∗ = 9̃(λ, ρ, δ)+ qk∗. (37)

Now, LHS (37) can be represented as a costate conditioned variant of the optimal
value function by the following definition:

LHS(37) = J̄(k∗, ρ, δ) = J̄(−9̃λ(λ, ρ, δ), ρ, δ) ≡ J̃(λ, ρ, δ). (38)

On the other hand, RHS (37) has various representations appropriate to the
definition ofq from (29a)–(29c) for the linear, nonlinear CO, and nonlinear SO
cases, respectively. When (38) is employed with each of these in turn, (37) becomes,
for the various cases,

J̃(λ, ρ, δ) = 9̃(λ, ρ, δ)− λ9̃λ(λ, ρ, δ), Fkk = 0 (39a)

J̃(λ, ρ, δ) = 9̃(λ, ρ, δ)− λ9̃λ(λ, ρ, δ), Fkk < 0 and CO (39b)

J̃(λ, ρ, δ) = 9̃(λ, ρ, δ)− λ9̃λ(λ, ρ, δ)+4(ρ, δ)9̃λ(λ, ρ, δ),
Fkk < 0 and SO. (39c)

A matching costate conditioned variant of the Hamiltonian can be obtained by
combining (35) with (19) to obtain

H̃(λ, ρ, δ) ≡ H̄(−9̃λ(λ, ρ, δ), λ, ρ) = 5(λ, ρ)− ρλ9̃λ(λ, ρ, δ). (40)

Now, for the linear, nonlinear CO, and nonlinear SO cases, the H-J equation is
given by (26a)–(26c), respectively. Using (39a)–(39c) forJ and (40) forH , the
H-J equations (26a)–(26c) equate to (36a)–(36c) for the respective cases.

5. SOLUTION OF THE INTERTEMPORAL OPTIMIZATION PROBLEM

In this section the general solution to the reformulated H-J equation is presented
for the linear technology case and for the nonlinear CO case, that is for (36a)
and (36b), respectively, and the intertemporal optimizing behavioral equations are
derived for these cases. The primary emphasis is placed upon the nonlinear CO
case (36b). Clearly, the linear case (36a) is a special case of this. The nonlinear
SO case is not pursued further. Solution of (36c) is more complex than (36b), and
it is also less relevant to the determination of a system of equations capable of
modeling optimal intertemporal choice via the representative-agent paradigm in a
typical (imperfectly) competitive situation. Theorem 2 holds the key to the solution
to (36b) because, under mild regularity conditions on the underlying consumer
utility function and parameter restrictions that together imply the imposition of
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an equivalent of the transversality condition (3d), the H-J equation in the form
(36b) has a solution for the intertemporal economic profit function9̃(λ, ρ, δ) in
terms of the instantaneous economic profit function5(λ, ρ). Moreover, solutions
exist for a wide range of regular and flexible specifications. Specifically, to solve
(36b), it is necessary for the integral in (41) to be finite for allλ∈ (0,∞). It can be
shown that this implies finiteness of an integral expression for the optimal value
function and equivalently for the Hamiltonian and hence implies satisfaction of the
transversality condition. Given the restriction as stated in Theorem 2 and noting
thatλ is marginal utility, which for regular specifications of a utility function may
be restricted without loss of generality to range from∞ for c= 0 to 0 forc→∞,
equation (36b) can be integrated, yielding the following result on the relationship
between the intertemporal and instantaneous profit functions:

THEOREM 2. Structure of the Intertemporal Profit Function. Let preferences
and technology of the consumer-firm be represented by an instantaneous economic
profit function5(λ, ρ). Suppose that5(λ, ρ)>

<
λ−δ/[ρ−δ]5̄(ρ) asρ >

<
δ. Then, for

the intertemporal optimization problem(1) under the competitive representative-
agent paradigm, there is an implied intertemporal profit function of the form

9̃(λ, ρ, δ) =



5(λ, ρ)/δ +Ä(ρ, δ)/δ, ρ = δ
λ
− δ
ρ−δ

ρ − δ
∫ λ

0
ζ

2δ−ρ
ρ−δ 5(ζ, ρ)dζ +Ä(ρ, δ)/δ, ρ > δ

−λ
− δ
ρ−δ

ρ − δ
∫ ∞
λ

ζ
2δ−ρ
ρ−δ 5(ζ, ρ)dζ +Ä(ρ, δ)/δ, ρ < δ

(41)

Proof. By Lemma 2 and concentrating on the nonlinear CO case, the reformu-
lated H-J equation (36b) applies. Forρ= δ, it is obvious that9̃ =5/δ+Ä/δ. The
separate solutions forρ > δ andρ < δ are structured to ensure that the integrals
converge to finite values under the lower-bound assumption on the dependence of
5 onλ if ρ > δ (thrift dominates) and the upper-bound assumption on the depen-
dence of5 onλ if ρ < δ (impatience dominates). Forρ > δ, conjecture a solution
of the form

9̃ = a1λ
b1

∫ λ

0
ζ c1[5(ζ, ρ)+Ä(ρ, δ)] dζ.

Construct LHS (36b) explicitly for this conjecture and note that equality with
RHS (36b) requires evaluation ofa1, b1, andc1 as 1/(ρ − δ),−δ/(ρ − δ), and
(2δ − ρ)/(ρ − δ), respectively. Forρ < δ, conjecture a solution of the form

9̃ = a2λ
b2

∫ ∞
λ

ζ c1[5(ζ, ρ)+Ä(ρ, δ)] dζ.

Again construct LHS (36b) for this case and note that equality with RHS (36b)
requiresa2, b2, andc2 to equate to−1/(ρ− δ),−δ/(ρ− δ), and(2δ−ρ)/(ρ− δ),
respectively. The term involvingÄ(ρ, δ) may be integrated explicitly for these
values to give the form (41).

https://doi.org/10.1017/S1365100501031017 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501031017


GENERAL DYNAMIC MODELING 665

The relevance of Theorem 2 is that it provides an operational basis for the use
of Corollary 1, in view of the fact that it defines the intertemporal profit function
in terms of the instantaneous function5(λ, ρ), a function that may be specified
directly from considerations of empirical applicability. Although (41) indicates
that9̃ also depends additively uponÄ(ρ, δ), this term is independent ofλ and so
is irrelevant for the application of Corollary 1. There are many specifications for
which the integral in (41) can be solved analytically. Implications of Theorem 2
for construction of the optimal relationship betweenk and λ are presented in
Corollary 2.

COROLLARY 2.The Optimal State/Costate Relationship. For the competitive
representative consumer-firm intertemporal optimization problem(1), let the in-
tertemporal profit function be defined by(41). Then k andλ are optimally related
by

k =



−5λ(λ, ρ)/ρ, ρ = δ
δλ

−ρ
ρ−δ

(ρ − δ)2
∫ λ

0
ζ

2δ−ρ
ρ−δ 5(ζ, ρ)dζ − 5(λ, ρ)

(ρ − δ)λ, ρ > δ

− δλ
−ρ
ρ−δ

(ρ − δ)2
∫ ∞
λ

ζ
2δ−ρ
ρ−δ 5(ζ, ρ)dζ − 5(λ, ρ)

(ρ − δ)λ, ρ < δ.

(42)

Proof. Relationship (42) follows by application of (35), that is,k=
−9̃λ(λ, ρ, δ), to (41).

Relationship (42) translates the intertemporal analogue of Hotelling’s Theorem
(35) from a relationship involving the intertemporal economic profit function to one
involving the economywide instantaneous profit function. It serves to determine
(inversely and nonlinearly)λ as a function ofk andρ. Together with relationship
(17), which definesρ as Fk(k), this effectively accomplishes the task of finding
the initial value ofλ to complete the specification of the model equations (5) for
the competitive equilibrium solution to problem (1) in exact short-run form. To
incorporate (42) into a system of equations modeling the representative-agent’s
optimal consumption-investment decisions, it is convenient to reformulate (42).
For purposes of interpretation, there are a number of interesting ways of refor-
mulating (42). Using (20) and (21), (42) may be integrated by parts to obtain an
optimal output–consumption relationship:

F(k) =



−8λ(λ), ρ = δ
ρλ

−ρ
ρ−δ

ρ − δ
∫ λ

0
ζ

δ
ρ−δ [−8λ(ζ )] dζ, ρ > δ

−ρλ −ρρ−δ
ρ − δ

∫ ∞
λ

ζ
δ
ρ−δ [−8λ(ζ )] dζ, ρ < δ.

(43)

Further rearrangement of (41)–(43), using (36b), (39b), (35), (14), and (13),
allows the optimal value function to be expressed in terms of the Frischian instan-
taneous utility function as
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J̃(λ, ρ, δ) =



U F (λ)/δ +Ä(ρ, δ)/δ, ρ = δ
λ
− δ
ρ−δ

ρ − δ
∫ λ

0
ζ

2δ−ρ
ρ−δ U F (ζ ) dζ +Ä(ρ, δ)/δ, ρ > δ

−λ− δ
ρ−δ

ρ − δ
∫ ∞
λ

ζ
2δ−ρ
ρ−δ U F (ζ ) dζ +Ä(ρ, δ)/δ, ρ < δ

(44)

To set out the model in an easily interpretable form, it is convenient to define
three further latent variables. These are, first,f , representing the value of current
output and determined by some explicit specification of technology,

f = F(k); (45)

second,φ, representing the value of instantaneous consumer profit and implying
some specification of consumer preferences,

φ = 8(λ); (46)

and, third, j , representing the value of the agent-endogenous component of the
optimal objective, defined as

j = J̃(λ, ρ, δ)−Ä(ρ, δ)/δ (47)

and derived from (44) in view of definition (47), utilizing (13), as

j =



[8(λ)− λ8λ(λ)]/δ, ρ = δ
λ
− δ
ρ−δ

ρ − δ
∫ λ

0
ζ

2δ−ρ
ρ−δ [8(ζ)− ζ8λ(ζ )] dζ, ρ > δ

−λ− δ
ρ−δ

ρ − δ
∫ ∞
λ

ζ
2δ−ρ
ρ−δ [8(ζ)− ζ8λ(ζ )] dζ, ρ < δ

(48)

The model can then be represented by seven equations. Four of these define latent
variables:ρ, φ, j , andλ. (The variablef may also be treated as a latent variable if
necessary.) Of these,ρ is determined as a function of the predetermined variablek
via equation (17), that is,ρ= Fk(k), and hence is dependent upon the technology
specification (45). The other three latent variables (φ, j,andλ ) are then determined
jointly through a set of three nonlinear simultaneous equations. Specifically,φ is
determined directly from (46) but conditionally onλ, j is constructed from (48,
andλ is obtained by combining (14) with a simple rearrangement of (26b), which
exploits the definitions (45), (46), and (47):

λ = [δ j − φ]/ f. (49)

Of these equations, the only complex relationship is the equation determining
j , (48), which involves an integral calculation. Finally, given the solution for
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λ from these equations, there are two equations that recursively determine the
ultimate economic decision variables of interest—optimal consumption (12) and
the optimal savings/investment choice (1b).

Collecting (45), (17), (46), (48), (49), (12), and (1b), and using (45) to simplify
(1b), the full model is set out as

f = F(k), (50a)

ρ = Fk(k), (50b)

φ = 8(λ), (50c)

j =



[8(λ)− λ8λ(λ)]/ρ, ρ = δ,
λ
−δ
ρ−δ

ρ − δ
∫ λ

0
ζ

2δ−ρ
ρ−δ [8(ζ)− ζ8λ(ζ )] dζ, ρ > δ,

−λ −δρ−δ

ρ − δ
∫ ∞
λ

ζ
2δ−ρ
ρ−δ [8(ζ)− ζ8λ(ζ )] dζ, ρ < δ,

(50d)

λ = [δ j − φ]/ f, (50e)

c = −8λ(λ), (50f)

k̇ = f − c. (50g)

Since the system (50) applies in both the linear and nonlinear CO cases, the only
restrictions onF(k) are the sign restrictionsFk≥ 0, Fkk≤ 0 together with any
regularity conditions implied by the interpretation ofF(k) as a restricted value-
added function. No “tractability” restrictions (related to the complexity of the
intertemporal problem) are required. The only restrictions on8 are those required
for consistency with the atemporal problem (10), which it encapsulates—that is,
the regularity conditions for utility-maximizing behavior. Again, no tractability
restrictions are required, with the possible exception of restrictions on the func-
tional form if an explicit analytical solution of the integral in (50d) is desired.
However, it should be noted first that functional forms for8(λ) may be em-
ployed, dual toU (c), which are much more general than the isoelastic specifi-
cations that are typically used in the literature and, second, analytical solution
of the integral in (50d) is not actually required to undertake comparative eco-
nomic response analysis with this model. The key comparative response results
are those that express the instantaneous sensitivity of the costate variableλ to
exogenous shocks such as changes inρ andδ. These may be obtained by ma-
nipulation of the total differential of the simultaneous subsystem (50c), (50d),
(50e).
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6. EXAMPLE

As an example, a specification that contains isoelastic utility as a special case is
considered. In the isoelastic special case, the utility function could be written

U (c) = c1−1/ε − 1

1− 1/ε
, (51)

whereε is the intertemporal elasticity of substitution, 0<ε <∞, and the loga-

rithmic case corresponds toε= 1. From (10), the consumer profit function dual to
(51) is

8(λ) = ε − λ1−ε

1− ε . (52)

Consider, therefore, the more general consumer profit specification,

8(λ) = ηε1− λ1−ε1

1− ε1
+ (1− η)ε2− λ1−ε2

1− ε2
, (53)

where 0<η<1 and, without loss of generality, it may be assumed that 0<ε1≤
ε2<∞. Specification (53) reduces to the isoelastic case whenε1= ε2.

Let the production technology be given by

F(k) = α(k+ γ )θ , θ ≤ 1, γ ≥ 0. (54)

Given specifications (53) and (54), the system (50) becomes

f = α(k+ γ )θ , (55a)

ρ = αθ(k+ γ )θ−1, (55b)

φ = ηε1− λ1−ε1

1− ε1
+ (1− η)ε2− λ1−ε2

1− ε2
, (55c)

j = η
(

ε1

1− ε1

)[
1

δ
− λ1−ε1

ε1δ + (1− ε1)ρ

]

+ (1− η)
(

ε2

1− ε2

)[
1

δ
− λ1−ε2

ε2δ + (1− ε2)ρ

]
, (55d)

λ = [δ j − φ]/ f, (55e)

c = ηλ−ε1 + (1− η)λ−ε2, (55f)

k̇ = f − c. (55g)
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In this example, the evaluation of the integral in (50d) leading to the expression
for j in (55d) requires the parameter restrictions

ε2 <
ρ

ρ − δ if ρ > δ, (56a)

ε1 >
ρ

ρ − δ if ρ < δ. (56b)

Sinceε1> 0, (56b) is not an effective restriction and only (56a) is of concern.
Restriction (56a) is required to ensure thatε2δ + (1− ε2)ρ >0 in cases where
ρ > δ. This is necessary to ensure convergence of the integral in (50d) for the spec-
ifications (53) and (54). Consequently, it ensures satisfaction of the transversality
condition (3d). Since growth is occurring whenρ > δ andρ approachesδ from
above ask rises, the restriction becomes less demanding ask rises. At lowerk (or
higherρ), the restriction is more relevant, and ifk effectively starts from zero, the
parameter restriction at its most binding becomes, for the specification (54),

ε2 <
αθγ θ−1

αθγ θ−1− δ . (57)

Restriction (57) allowsε2> 1 except in the limiting caseγ = 0 when the restriction
requiresε2< 1.

It can be shown that the optimal growth path for the specification (53)–(54) is
not balanced. In fact, given the technology assumed in (54), this statement is true
even for the isoelastic special case (52), let alone the generalized specification (53).
Given the complexity of the optimal growth paths, it suffices to demonstrate the
unbalanced growth for the combination of (52) and (54), with the additional sim-
plification in (54) thatγ = 0. For this case, the model equations (55) simplify
to

f = αkθ , (58a)

ρ = αθkθ−1, (58b)

φ = ε − λ1−ε

1− ε , (58c)

j =
(

ε

1− ε
)[

1

δ
− λ1−ε

εδ + (1− ε)ρ
]
, (58d)

λ = [δ j − φ]/ f, (58e)

c = λ−ε, (58f)

k̇ = f − c. (58g)

With these specifications, it is possible to explicitly solve (58c)–(58e) simultane-
ously. The solutions for the agent-endogenous component of the optimal value
function, j , and for the costate variable,λ, are
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j ≡ J̄(k, ρ, δ)− Ä(ρ, δ)
δ

=

[
εδ + (1− ε)ρ

ρ

]−1/ε
(αkθ )1−1/ε

ρ
− 1

δ

1− 1/ε
, (59)

λ =
{

[εδ + (1− ε)ρ]

θ
k

}−1/ε

. (60)

Using (58f), the explicit solution for optimal consumption in this case is

c = εδ + (1− ε)ρ
θ

k. (61)

Given thatρ is a variable, evolving in equilibrium as a function ofk according to
(58b), it follows from (61) that in the competitive equilibriumc/k is not constant
and hence growth cannot be balanced along the optimal path. In example (58), of
course, this result is entirely due to the nonlinear technology. In general, noniso-
elastic utility such as in example (55) will also generate this effect. Looking at the
evolution of consumption implied by the time derivative of (58f), using (58b) and
also utilizing (5b), it can be seen that, for the model described by system (58),

ċ/c = ε[αθkθ−1− δ]. (62)

Additionally, constructinġk/k from (58g) using (58a) and (61), the difference in
the growth rates of the capital stock and consumption can be derived as

k̇

k
− ċ

c
= ε
(

1− θ
θ

)
[αθkθ−1− δ]. (63)

Result (63) shows that the difference between the growth rates of consumption
and capital stock is dependent upon the capital stock level. It also shows that linear
technology (θ = 1) is sufficient for the transition path to be balanced. However,
the further technology is from linear, and the further is the marginal product of
capital from the subjective rate of time preference, the greater will be the opti-
mal contemporaneous imbalance between consumption growth and capital stock
growth.

7. CONCLUSION

By making use of results from duality theory, it has been demonstrated that the
Hamilton–Jacobi equation for dynamic optimization may be recast in a form relat-
ing concepts of intertemporal and instantaneous profit. An intertemporal analogue
of Hotelling’s theorem is then available, and this allows the derivation of an explicit
solution for the value of the costate variable as a function of the state variable and
parameters under general preference specifications and for either linear technol-
ogy or, in the case of nonlinear technology, for a competitive equilibrium solution
under the representative-agent paradigm. The form of the explicit solution, which
involves an integral expression in the representative consumer’s instantaneous
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profit function, admits exact analytical solutions for quite general specifications
of preferences and technology.

The general dynamic model of a representative optimizing consumer-firm is
set out in equations (50). In employing these results to construct a general in-
tertemporal economic model based on system (50), only functional forms at the
atemporal level need to be specified, and this is the big advantage of this approach
over the traditional intertemporal duality approach of Cooper and McLaren (1980),
McLaren and Cooper (1980), and Epstein (1981). The contemporaneous relation-
ship between the costate variableλ and all other variables/parameters is set out in
the completely contemporaneous simultaneous subsystem (50c), (50d), and (50e),
and this indicates the advantage of the approach over open-loop techniques, which
require checking of transversality by computing candidate optimal paths over time.
The potential advantage of the closed-loop system (50) is enhanced in the pres-
ence of nonlinearities. Since (50) holds contemporaneously for any empirically
suitable functional forms for8(λ) andF(k), regardless of distance from the sta-
tionary state, this also indicates the advantage of this formulation over open-loop
approaches, which require linearized steady-state analysis.

A simple example is presented to demonstrate the power of the approach in
analyzing the (most likely) empirically relevant case of off-balance transition
dynamics.
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