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ABSTRACT
A novel second-order sliding-mode-based impact angle and autopilot lag guidance law for
engaging manoeuvering targets with unknown acceleration is presented in this study. A back-
stepping technique is applied to the design of the sliding surface. The proposed guidance
law is based on a new sliding surface. It exhibits the advantage of ensuring that the slid-
ing surface and its derivative will converge to zero in finite time while guaranteeing that the
sliding surface will not cross zero until the ultimate time. The method effectively eliminates
the undesired chattering of the sliding surface. To compensate for the uncertainty caused
by target manoeuvering, a new observer is developed to estimate target manoeuvering. The
convergence of the system is proven through a Lyapunov function and finite time conver-
gence theory. Lastly, mathematical simulations results show that the proposed guidance law
can achieve precise interception with a wide range of impact angles, thereby verifying the
effectiveness of the guidance law.

Keywords: impact angle constraint; second-order sliding mode; autopilot lag; manoeuver-
ing target; observer

1.0 INTRODUCTION
Guidance systems for missiles have developed rapidly in recent years, such that merely hitting
the target accurately has become insufficient, but an expected impact angle is also required
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for missiles. A specific impact angle may increase the power of a warhead, which motivates
the development of a guidance law with impact angle constraints.

To date, considerable research concerned with impact angle constraint problems has been
conducted. Literature(1) studied impact angle problems and derived a suboptimal guidance
law through optimal control theory. Literature(2) provided an optimal solution for an ordinary
intersection problem by minimising the performance index for terminal position and velocity
constraints. This solution could be used for impact angle constraint problems if the inter-
section procedure was defined as an expected collision process. The performance index was
selected as an apposite time-varying weighting function in Literature(3) for an optimal impact
angle constraint guidance law. A traditional guidance law to achieve the expected impact
angle was obtained by adjusting the gain of the weighting functions. In Literature(4), arbitrary
order missile dynamics were considered in optimal impact angle constraint problems, thereby
providing a generalised formulation. In Literature(5), the state-dependent Riccati equation
method, which was widely used in various types of nonlinear control issues, was applied to
cope with impact angle constraint problems. In Literature(6), a linear time-varying guidance
law was addressed using the inverse problem in optimal control theory to obtain the expected
impact angle and minimal miss distance. With the progress of model predictive static pro-
gramming and generalised model predictive static programming approaches in recent years,
Literature(7) and (8) proposed new suboptimal guidance commands to accomplish specific
impact angles.

As indicated above, considerable researches have been performed based on optimal control
theory. However, proportional navigation (PN) guidance laws are more widely used to solve
impact angle constraint problems. In Literature(9), a time-varying bias term was added to the
traditional PN, called the biased PN guidance law, and the bias term achieved impact angle
constraints. In Literature(10–12), a two-phase guidance approaches for controlling the impact
angle were proposed. In Literature(10), the guidance law consisted of a PN coefficient with two
phases: one for generating an orientation trajectory to cover all impact angles from 0 to –�

with navigation gain N < 2 and the other for attacking a stationary target at a desired impact
angle with N ≥ 2. In Literature(11), the approach was further developed for the case of non-
stationary nonmanoeuvering targets. In Literature(12), another two-phase guidance approach
that consisted of a conventional PN term and a biased PN term was proposed. The desired
impact angle was satisfied by adjusting the integral of the bias term.

Variable structure control theory has been gradually applied to guidance law systems in
recent years due to its robustness and simple control algorithm(13,14). The sliding mode can
be designed as necessary and is independent of object parameters and disturbances. Thus,
the terminal condition can be incorporated into the sliding mode to obtain the guidance law,
thereby satisfying terminal constraints. The core of this type of guidance is determining how
to select the switching function of the sliding surface to meet the requirements for zeroing in
missed distance and impact angle constraints and to ensure that the system reaches the sliding
surface in finite time. In Literature(15), a new guidance law was established using a high-
performance sliding mode technique, which not only satisfied the terminal angle constraint
but also enhanced the observabilities of stationary and slow-moving targets. Literature(16)

proposed a linear sliding mode guidance law (LSMGL) to intercept nonmanoeuvering tar-
gets in an expected impact angle. In Literature(17), a terminal sliding mode (TSM) based
on robust control was presented to intercept stationary or slow-moving targets whose termi-
nal constraints were the impact angle and the seeker’s field-of-view limit. In Literature(18)

and (19), TSM and nonsingular TSM (NTSM) guidance laws were developed for manoeuver-
ing targets, respectively, and preset angle limits were implemented. However, the two studies

https://doi.org/10.1017/aer.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.28


1352 THE AERONAUTICAL JOURNAL SEPTEMBER 2020

have shortcomings: (1) the control input chattering problem and (2) the upper bound accel-
eration of the target manoeuvering was required. The target information is usually difficult
to obtain in advance for practical applications. Therefore, a large value of switching gain
is consumed to ensure the stability of sliding variable structure control, which increases the
amount of control energy. Literature(20) provided a precise interception guidance law that
considered impact angle constraints without the information of the target and used a distur-
bance observer to estimate target information in real time, thereby solving the aforementioned
problems. In practical applications, a precision guidance system will be influenced by autopi-
lot lag, particularly if target manoeuvering exists, thus autopilot delay in a guidance system
design process should be considered(21).

In the past decade, backstepping design procedures have been intensively introduced(22–25).
The backstepping control is a systematic and recursive design method for nonlinear systems
to offer a choice to accommodate the unmodeled nonlinear effects and parameter uncertain-
ties. The essence of backstepping design is to select some appropriate functions of state
variables as pseudocontrol inputs for lower dimension subsystems of the overall system.
Each backstepping stage results in a new pseudocontrol design, expressed in terms of the
pseudocontrol designs from preceding design stages. When the procedure is terminated, a
feedback design for the true control input results, which achieves the original design objec-
tive by virtue of a final Lyapunov function, which is formed by summing up the Lyapunov
functions associated with each individual design stage(26). In(27), the author developed a back-
stepping design method of tracking controller for the systems under consideration. In(28),
based on the observer methodology, the adaptive fuzzy backstepping technique was extended
to uncertain multiple-input and multiple-output (MIMO) systems, and an adaptive controller
was developed. Then, for nonlinear time-delay systems, backstepping-based controllers were
designed in(29).

The essence of guidance system is a nonlinear control problem, and usually the dynamics of
the system is completely matched with its mathematical model. There are, of course, unavoid-
able model uncertainties for any practical system including the guidance systems, which lead
the degradation of controller performance. For the guidance system, the target manoeuver-
ing is an uncertainty, if the manoeuvering is not considered in the control command, the
guidance performance will be reduced. In these cases, the conventional control approaches
are not applicable, and usually the universal functions approximators (UFAs)-based adaptive
approaches are suggested to address this issue(30). Therefore, the analytical study of adaptive
control of uncertain nonlinear systems using UFA has received much attention during last
decade(31). In this regards, neural networks (NNs) and fuzzy logic (FL) are usually exploited
to approximate the unknown uncertainties(32). Then, adaptive laws are designed to adjust the
parameters of the NNS and FL. Another important method to deal with these problems is to
use the observer(17), which is the method adopted in this paper.

Motivated by these situations, the present study proposes a novel second-order sliding-
mode guidance law (NSO-SMGL) using backstepping technique by considering autopilot
lag. For target manoeuvering, this study adopts a general disturbance observer to estimate the
manoeuvering and compensate for it in the guidance law. Through the designed command,
the missile achieves precise interception with the desired impact angle even if autopilot delay
exists. The convergence of the guidance system is proven through Lyapunov stability theorem,
which ensures that the sliding surface and its derivative will converge to zero in finite time
and guarantees that the sliding surface will not cross zero as what happened in(33), thereby
effectively eliminating undesired chattering.
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Figure 1. Relative motion between the missile and the target.

The remainder of this paper is organised as follows. Section 2 establishes the kinematics
equations between a missile and a target. Several theoretical bases are also given. Section 3
introduces the general disturbance observer and the approach to apply NSO-SMGL. The con-
vergence of the sliding control method is also proven. Section 4 provides the expression for
the proposed NSO-SMGL. Section 5 presents the simulation results of the derived guidance
law for several typical situations. Section 6 gives the conclusions of the study.

2.0 PRELIMINARY
In this section, missile interception engagement on a vertical plane, including impact angle
definition and an autopilot model, are derived. Necessary fundamental theories are also
presented.

2.1 Problem formulation
The geometric relationship between the relative motion of a missile and a target on a vertical
plane is established in Fig. 1. In the figure, M and T denote the positions of the missile and the
target, respectively. vM and vT indicate the velocity of the missile and the target, respectively.
aM and aT represent the normal acceleration of the missile and the target, respectively. θM

and θT are the flight path angle of the missile and the target, respectively. q is the line-of-
sight (LOS) angle between the missile and the target. r is the relative distance between the
missile and the target. The relative motion equation between the missile and the target can be
obtained from Fig. 1

ṙ = vT cos (q − θT ) − vM cos (q − θM ), · · · (1)

rq̇ = −vT sin (q − θT ) + vM sin (q − θM), · · · (2)

θ̇M = aM/vM , · · · (3)

θ̇T = aT/vT , · · · (4)
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where ṙ is the derivative of the relative distance with respect to time, q̇ is the derivative of
the LOS angle q, it represents the LOS angular rate, and θ̇M and θ̇T are the derivatives of the
missile’s and target’s flight path angles with respect to time.

When both sides of Equation (2) are differentiated with respect to time, the following
equation can be derived:

q̈ = −2
ṙ

r
q̇ + v̇M sin(q − θM ) − aM cos (q − θM)

r
+ aT cos (q − θT ) − v̇T sin(q − θT )

r
,

· · · (5)

where v̇M and v̇T are the tangential accelerations of the missile and the target; and q̈ is the
derivative of the LOS angular rate with respect to time.

For the convenience of derivation, we firstly assume that the missile and the target are
flying in a constant tangential speed. In fact, the guidance law is suitable for a varying speed
missile because the tangential velocity is treated as the system uncertainty and is estimated
and compensated by the observer together with the target manoeuvering. Then, Equation (5)
can be organised as

q̈ = −2
ṙ

r
q̇ − aMq

r
+ aTq

r
, · · · (6)

where aMq = aM cos (q − θM ) and aTq = aT cos (q − θT ) are the components of the missile
and the target accelerations that are perpendicular to the LOS, respectively.

In accordance with the principle of parallel approach, the purpose of a guidance law is to
make the LOS angular rate q̇ approach to zero by adjusting aMq, thereby ensuring that the
missile will attack the target accurately.

Assumption 1. Given the missile’s and the seeker’s physical limits, the missile’s and the
target’s acceleration components and their first and second derivatives (aMq, aTq, ȧTq, and äTq)
are bounded by the following conditions:

∣∣aMq

∣∣≤ Am,
∣∣aTq

∣∣≤ At,
∣∣ȧTq

∣∣≤ A1,
∣∣äTq

∣∣≤ A2; · · · (7)

where Am, At, A1, and A2 are unknown bounds which represent the manoeuverability; and the
seeker’s minimum working distance is r0. The variable r satisfies

r ≥ r0, · · · (8)

Considering the dynamic model of the autopilot, the autopilot model is approximated to
the first-order inertia as follows:

ȧMq = − 1

τ
aMq + 1

τ
u, · · · (9)

where τ is the autopilot dynamic lag constant of the missile, and u is the guidance command
acceleration to be provided to the missile.

For problems with an impact angle constraint, the impact angle is first defined as the angle
between the velocity vector of the missile and the target at the end of the collision. Therefore,
considering the constraint on the impact angle, the flight path angle should be strictly limited
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when the missile is hitting the target. Defining the end of guidance as tf , the expected impact
angle of the missile is θd , and the desired LOS angle is qd at the end of guidance. Therefore,
the design of the guidance law that considers the impact angle constraint refers to the missile
hitting the target accurately at the desired impact angle; that is(33),

lim
t→tf

r (t) q̇ (t) → 0, · · · (10)

θM

(
tf
)− θT

(
tf
)= θd , · · · (11)

∣∣θM

(
tf
)− qd

∣∣< π

2
. · · · (12)

Equation (12) indicates that the target is within the field of view of the missile’s seeker
when the missile hits the target. From Equations (2) and (10):

vT sin
(
θT

(
tf
)− qd

)≈ vM sin
(
θM

(
tf
)− qd

)
. · · · (13)

From Equation (13), a unique flight path angle of the missile θM

(
tf
)

can be ascertained if
the flight path angle of target θT

(
tf
)

is known for the desired missile impact angle θd . Then,
the desired LOS angle can be obtained from Equations (10) and (12). Hence, the control of
the impact angle can be transformed into the control of the final LOS angle.

2.2 Fundamental theories
Before designing the guidance law, the definition of finite-time stability in sliding mode
control is first introduced.

Definition 1(34). Consider the following system:

ẋ(t) = f (x, t) , x ∈ Rn, · · · (14)

where f (x) : D → Rn is defined as a value of D in n dimensional space Rn that satis-
fies the local Lipschitz continuous condition. For the system Equation (14), f (x) : U → Rn

is a continuous function for x on the semi-open domain U containing the origin. Finite-
time convergence is represented by ∀x0 ∈ U0 ⊂ Rn, there exists a continuous function T(x) :
U0\ {0} → (0, +∞), thereby making the solution of the system Equation (14) x(x0, t) sat-
isfy: when t ∈ [0, T (x0)], there exists x (x0, t) ∈ U0\ {0} and lim

t→T(x0)
x (x0, t) = 0, and when

t > T (x0), there exists x (x0, t) = 0. Suppose the equilibrium point of the system Equation
(14) is x = 0, when and only when the system is strongly stable and converges in a limited
time, the equilibrium point x = 0 of the system is then regarded as stable in a finite time. If
U = U0 ∈ Rn, then the equilibrium point is stable globally in a finite time.

Lemma 1(35). Suppose the existence of a continuous differentiable positive definite function
V(x) defined in a neighborhood of the origin. For the real numbers c > 0 and 0 < β < 1,
there is V̇ (x) + cVβ (x) ≤ 0 and x ∈ U\ {0}. Then, the system could converge to origin in
finite time, and the upper bound of the convergence time is satisfied as follows:

T (x0) ≤ V 1−β (x0)

c (1 − β)
. · · · (15)
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3.0 TARGET MANOEUVERING ESTIMATOR AND
SECOND-ORDER SLIDING MODE THEORY

An estimation of target manoeuvering is required to effectively intercept manoeuvering tar-
gets. A general disturbance observer is presented in the first part of this section, and then a
novel second-order sliding mode theory is established in the next part.

3.1 Target manoeuvering estimator
Consider the following system:

ẋ = f + bu + d. · · · (16)

where f is the known state variable of the system; u and b are the control input and coefficient,
respectively; and d represents target manoeuvering, which is regarded as system interference.

For System Equation (15), the general disturbance observer is defined as

{
ż0 = z1 + k1|x − z0|1−1/psgn (x − z0) + f + bu

ż1 = k2|x − z0|1−2/psgn (x − z0)
, · · · (17)

where k1, k2 > 0 and p > 2 are parameters to be designed; and z0 and z1 are estimations of x
and d, respectively.

Theorem 1(36). Variables η1 = x − z0 and η2 = d − z1 are defined as estimation errors. If the
derivative of system interference satisfies

∣∣ḋ∣∣≤ ḋmax with ḋmax being a positive constant, then
the vector can converge to the following domain in finite time:

‖η‖ ≤
(

ḋmax ‖B‖
λmin (Q)

)(p−1)/(p−2)

, · · · (18)

where η = [η1, η2]T , λmin (·) refers to the minimum eigenvalue of matrix (·) and the vector
2-norm ‖·‖, and

Q =
⎡
⎣ k1k2 + k3

1
p−1

p −k2
1

p−1
p

−k2
1

p−1
p k p−1

p

⎤
⎦ , B =

[−k1

2

]
, · · · (19)

Proof of Theorem 1. According to Equations (16) and (17), the estimation error variable can
be acquired as

{
η̇1 = η2 − k1|η1|1−1/psgn (η1)

η̇2 = ȧTq − k2|η1|1−2/psgn (η1)
, · · · (20)

For differential Equation (16), construct the Lyapunov function as follows

V1 = k2p

p − 1
|η1|2(p−1)/p + 1

2
η2

2 + 1

2

(
k1|η1|(p−1)/psgn (η1) − η2

)2
, · · · (21)

https://doi.org/10.1017/aer.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.28


ZHANG ET AL NOVEL SECOND-ORDER SLIDING MODE GUIDANCE LAW... 1357

which can be written as the following vector form

V1 = ηT Pη, · · · (22)

where

P = 1

2

[
k2p
p−1 + k2

1 −k1

−k1 2

]
, · · · (23)

As k2 > 0 and p > 2 are positive definite and radially unbounded, that is

λmin (P) ‖η‖2 ≤ V1 ≤ λmax (P) ‖η‖2, · · · (24)

where λmax (·) refers to the maximum eigenvalue of matrix (·).
Advert that V1 is continuously differentiable, except on the set 	 = {

(η1, η2) ∈ R2 |η1 = 0
}
.

However, if η1 = 0, η2 �= 0, one can imply η̇1 = η2 �= 0, this means that the trajectories of
system Equation (20) just cross the area 	 and cannot maintain on it, except when the initial
values η1 = 0, η2 = 0, have been achieved. Thus, the time derivative of V1 can be calculated
by derivation as

V̇1 =
(

k2p

p − 1
+ 1

2
k2

1

)
2p − 2

p
|η1|(p−2)/psgn (η1)

(
η2 − k1|η1|(p−1)/psgn (η1)

)
+ (

2η2 − k1|η1|(p−1)/psgn (η1)
) (

ȧTq − k2|η1|(p−2)/psgn (η1)
)

− k1
p − 1

p
|η1|−1/p

(
η2 − k1|η1|(p−1)/psgn (η1)

)
,

= −|η1|−1/p

(
k1k2|η1|2(p−1)/p + p − 1

p
k3

1 |η1|2(p−1)/p · · · (25)

−2
p − 1

p
k2

1 |η1|(p−1)/psgn (η1) η2 + p − 1

p
k1η

2
2

)

+ (
2η2 − k1|η1|(p−1)/psgn (η1)

)
ȧTq

≤ −|η1|−1/pηT Pη + ḋmax (x) Bη

As k1, k2 > 0 an p > 2, obviously, the matrix Q is Hurwitz. Moreover, from the fact

that ‖η‖ =
√

|η|2(p−1)/p + η2
2 ≥ |η1|(p−1)/p, one can imply |η1|−1/p ≥ ‖η‖−1/(p−1). Then, from

Equations (24) and (25) one can get

V̇1 ≤ −|η1|−1/pλmin (Q) ‖η‖2 + ḋmax (x) ‖B‖ ‖η‖
≤ − (

λmin (Q) ‖η‖(p−2)/(p−1) − ḋmax (x) ‖B‖) ‖η‖ ,

≤ − (
λmin (Q) ‖η‖(p−2)/(p−1) − ḋmax (x) ‖B‖) V

1/2
1√

λmax(P)

· · · (26)
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If λmin (Q) ‖η‖(p−2)/(p−1) − ḋmax (x) ‖B‖ > 0, Equation (26) can be written as

V̇1 ≤ − γ V 1/2
1√

λmax (P)
, · · · (27)

where γ = λmin (Q) ‖η‖(p−2)/(p−1) − ḋmax (x) ‖B‖ > 0, In the light of Lemma 1, the area

‖η‖ ≤
(

ḋmax (x) ‖B‖
λmin (Q)

)(p−1)/(p−2)

, · · · (28)

can be approached in finite time, which also proves that the estimation errors will be converge
in a small area around zero in finite time. The proof is completed.

Remark 1. By proper parameter selection,
∣∣ḋmax ‖B‖/λmin (Q)

∣∣< 1 can be obtained.
Furthermore, as p > 2, a sufficiently large value of (p − 1) / (p − 2) can be achieved.

Therefore, the value of
(
ḋmax ‖B‖/λmin (Q)

)(p−1)/(p−2)
can be tuned very close to zero and

highly precise estimation performance can be assured.

Remark 2. It should be noted that the setting of p is very important. If one set p = 2, the pre-
sented target manoeuvering estimator reduces to classical super-twisting observer. However,
the term |x − z0|1−2/psgn (x − z0) in Equation (17) with p = 2 is discontinuous while the
proposed estimator is continuous and therefore the undesired chattering can be mitigated
significantly.

Remark 3. Compared with classical linear state observer, the proposed observer has two
main advantages: (1) guarantee finite-time convergence of the target manoeuvering estimation
error; (2) exhibits strong robustness against the variation of target manoeuverings.

3.2 Second-order sliding mode control
In general, we use the first-order sliding mode method to deal with problems with a relative
degree of 1(37). However, a higher-order sliding mode method should be used for problems
with larger degrees. In higher-order sliding mode, the sliding surface and its successive
derivatives will converge to zero; that is,

s, ṡ, s̈, ...sκ = 0, · · · (29)

where κ is the relative degree. The second-order sliding mode method is widely adopted
in guidance system design. This method can be used to deal with problems with a relative
degree of 2 or to eliminate chattering with a relative degree of 1. One example of an extensive
second-order sliding mode method is the super-twisting algorithm(15), in which the sliding sur-
face and its derivative make countless twists around the origin and converge to zero in finite
time. Despite being a useful method that has been considerably studied, the super-twisting
algorithm exhibits a drawback, i.e., the sliding surface is forced to oscillate near the equi-
librium point (zero), which results in command chattering. NSO-SMGL, which is based on
a backstepping technique, is deduced in this section. This approach exhibits the advantage
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of ensuring that the sliding surface and its derivative converge to zero in finite time while
guaranteeing that the sliding surface will not cross zero until the ultimate time.

First, the desired sliding surface is defined as follows:

s = f = 0. · · · (30)

The first and second derivatives of the sliding surface Equations (30) are

ṡ = h, · · · (31)

s̈ = f + bu + d, · · · (32)

where h, f , and b are known functions of the system; and d represents target manoeuvering,
which is assumed as a bounded uncertainty. The guidance command u emerges in the second
derivative of the sliding surface; thus, surface Equations (30) has a relative degree of 2.

The objective is to search for a formula for sliding surface Equations (30) and its deriva-
tive Equations (31). Both equations converge to zero at an expected time tr. A backstepping
technique is used to achieve the objective. We set ṡ as a virtual command, and ṡ should be
designed to send s to zero. The Lyapunov function V2 is selected.

V2 = 1

2
s2 · · · (33)

Considering the derivative of Equation (33) with respect to time yields

V̇2 = sṡ. · · · (34)

To ensure that sliding surface Equations (30) will converge to zero in finite time, V̇2 must
be negative infinity. Then, ṡ can be set as

ṡ = − ns

tr − t
, n > 1, · · · (35)

where tr is the expected convergence time. Substituting Equations (35) into Equations (34)
yields

V̇2 = − ns2

tr − t
. · · · (36)

Substituting Equation (33) into Equation (36) derives

V̇2 = − 2nV2

tr − t
. · · · (37)

Integrating Equation (37) from the initial value (V2 (t0) , t0) into the current value (V2 (t) , t)
can result in

V2 (t) = V2 (t0)

(tr − t0)
2n

(tr − t)2n. · · · (38)
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Notably, when n is greater than 0.5, (tr − t)2n in Equation (38) will converge to zero
because t is close to tr. Therefore, the Lyapunov function (and consequently, the sliding
surface) is guaranteed to converge to zero at the expected time tr provided that n > 0.5.
Equation (35) depends on the values of the sliding surface and time t; it can also ensure that
ṡ converges to zero at tr, as proven in(19). Furthermore, achieving such goal for ṡ places an
additional constraint on parameter n, which should be satisfied as n > 1.

Equation (35) provides an expected trajectory for ṡ to follow. Notably, condition Equation
(35) should not necessarily be satisfied at the initial time because the initial value of ṡ com-
pletely depends on the initial conditions of the problem. Therefore, guidance command u
must be used to send ṡ from its initial value to the trajectory defined by Equation (35) in
finite time, and then ṡ must be maintained on the trajectory. Given that the system must com-
ply with certain actions along trajectory Equation (35) to ensure that s and ṡ converge to
zero, the trajectory should be reached in finite time.

To ensure that trajectory Equation (35) will be reached in finite time, the new sliding surface
should be considered as follows:

s2 = ṡ + ns

tr − t
= 0. · · · (39)

The time derivative of surface Equation (39) results in

ṡ2 = f + d + nṡ (tr − t) + ns

(tr − t)2
+ bu. · · · (40)

As indicated in Equation (40), the new sliding surface Equation (39) has a relative degree
of 1 to guidance command u.

The expression for u must be obtained to make s2 converge to zero in finite time t∗r . The
Lyapunov function is selected as follows:

V2 = 1

2
s2

2. · · · (41)

The time derivative of Equation (41) yields

V̇2 = s2ṡ2 = s2

[
f + nṡ (tr − t) + ns

(tr − t)2
+ d + bu

]
· · · (42)

To ensure that the Lyapunov function will converge to zero in finite time, u is exhibited as

u = −1

b

(
f + nṡ (tr − t) + ns

(tr − t)2
+ d̂ + η sgn

(
ṡ + ns

tr − t

))
. · · · (43)

where η is an appropriately positive constant, and n > 2. d̂ is the estimation of target manoeu-
vering. If d̂ → d is in finite time, then V̇2 is a negative definite function with guidance
command Equation (43), which satisfies the following inequality :

V̇2 < −η |s2|, · · · (44)
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where η is the design parameter that satisfies η > 0 and influences the convergence speed of
the system.

The consequence from the preceding derivations can be summarised in Theorem 2.

Theorem 2(38). Assume that a sliding surface s = f has a relative degree of 2, with a second
differential form s̈ = f + bu + d. Then, with the guidance command Equation (43), s and ṡ
can converge to zero in finite time tr.

Remark 4. For the guidance command Equation (43), if there exists noises, the estimator can
estimate the target’s acceleration together with the noises, and compensate in the guidance
law, which could counteract the effects of noises. Therefore, the guidance law has certain
robustness when there exists noises.

In terms of the application of guidance command Equation (43), the sign function is under
guidance command. To eliminate the overload command chattering problem brought by the
sign function, we use the following continuous saturation function to smooth it:

sat (S, φ) =
{

S/φ , |S| ≤ φ

sgn (S) , |S| > φ
, · · · (45)

where φ is the defibrillation factor, and φ = 0.01 is used in the simulation.

4.0 GUIDANCE LAW DESIGN
In this section, the proposed NSO-SMGL that considers autopilot lag and impact angle con-
straint is developed on the basis of sliding mode theory and the target observer technique. A
backstepping method is adopted to design the guidance law.

First, state variables are defined as follows:

x1 = q − qd , x2 = q̇, and x3 = q̈, · · · (46)

where qd is the expected LOS angle. Differentiating Equation (46) with respect to time yields
the following system equations with autopilot lag and impact angle constraint:

ẋ1 = x2, · · · (47)

ẋ2 = −2ṙ

r
x2 − 1

r
aMq + 1

r
aTq, · · · (48)

ẋ3 =
(

−2r̈

r
+ 2ṙ2

r2

)
x2 − 2ṙ

r
x3 +

(
ṙ

r2
+ 1

rτ

)
aMq − 1

rτ
u − ṙ

r2
aTq + 1

r
ȧTq. · · · (49)

Equation (50) is derived from Equation (48) as follows:

1

r
aTq = 2ṙ

r
x2 + 1

r
aMq + ẋ2. · · · (50)
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Substituting Equation (50) into Equation (49) yields

ẋ3 = −2r̈

r
x2 − 3ṙ

r
x3 + 1

rτ
aMq − 1

rτ
u + 1

r
ȧTq · · · (51)

Let f0
(
x3, aMq

)= − 3ṙ
r x3 + 1

rτ aMq be recorded as f0, and f1
(
x2, ȧTq

)= − 2r̈
r x2 + 1

r ȧTq be
recorded as f1; b = − 1

rτ .
Then, the preceding system can be organised as

⎧⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 = x3

ẋ3 = f0 + f1 + bu

. · · · (52)

Then, the sliding surface is defined as

s = m1x1 + x2. · · · (53)

Therefore, the first and second order derivatives of Equation (52) are

ṡ = m1x2 + x3, · · · (54)

s̈ = m1x3 + ẋ3. · · · (55)

Another sliding surface that contains the message of the first sliding surface is defined as
follows:

s2 = ṡ + ns

tr − t
. · · · (56)

Differentiating Equation (55) from Equation (34) with respect to time yields

ṡ2 = s̈ + nṡ (tr − t) + ns

(tr − t)2
= m1x3 + ẋ3 + nṡ (tr − t) + ns

(tr − t)2

= m1x3 + f0 + f1 + bu + nṡ (tr − t) + ns

(tr − t)2
, · · · (57)

where m1x3 + f0 is known, and f1 is a bounded uncertainty (which represents target manoeu-
vering). Therefore, from Theorem 2, the following guidance law:

u = −1

b

(
m1x3 + f0 + f1 + nṡ (tr − t) + ns

(tr − t)2
+ ηsgn

(
ṡ1 + ns

tr − t

))
· · · (58)

can make the system converge to zero in finite time, thereby guaranteeing accurate
interception and impact angle constraint.

Notably, f1 = − 2r̈
r x2 + 1

r ȧTq in guidance law Equation (58) is regarded as a system uncer-
tainty, which makes the guidance law difficult to implement. Considering ṙ exhibits minimal
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change, suppose ṙ ≈ const; hence, r̈ ≈ 0, then f1 = − 2r̈
r x2 + 1

r ȧTq ≈ 1
r ȧTq. Combining with

Assumption 1 yields

∣∣ḟ1∣∣=
∣∣∣∣ äTqr − ȧTqṙ

r2

∣∣∣∣
=
∣∣∣∣ äTq

r
− ȧTq (vT cos (q − θT ) − vM cos (q − θM ))

r2

∣∣∣∣ ,

≤ A2

r0
+ A1v

max
T

r2
0

+ A1v
max
M

r2
0

· · · (59)

= L

where vmax
M and vmax

T are the maximum velocities of the missile and the target, respectively;
therefore, ḟ1 is bounded.

The target manoeuvering related variable f1 should be estimated to implement guidance
law Equation (58). The following is an estimation of f1:

Given Equation (57),

ṡ2 = m1x3 + f0 + f1 + bu + nṡ (tr − t) + ns

(tr − t)2
. · · · (60)

The target manoeuvering estimator presented in Section 3.1 is used; thus,

{
ż0 = z1 + k1|s2 − z0|1−1/psgn (x − z0) + m1x3 + f0 + bu + nṡ(tr−t) + ns

(tr−t)2

ż1 = k2|x − z0|1−2/psgn (x − z0)
· · · (61)

From Theorem 1, the variable z0 → s2, z1 → f1
(
x2, ȧTq

)
is in finite time.

Then, Equation (58) can be rewritten as

u = −1

b

(
m1x3 + f0 + z1 + nṡ (tr − t) + ns

(tr − t)2
+ ηsgn

(
ṡ1 + ns

tr − t

))
. · · · (62)

Precise interception with the expected impact angle can be achieved through command
Equation (62).

Remark 5. The guidance law is derived analytically when considering autopilot lag, so the
derivation process is complicated. However, the method is simple in practical application.
Another method to design the guidance law considering autopilot lag is the dynamic surface
control. The derivation process of this method is simple but its application is complex. Since
the differential operation is replaced by the low-pass filter, there are still some calculation
errors in this method.

5.0 SIMULATION AND ANALYSIS
The simulation results and analyses of the proposed NSO-SMGL are presented in this
section, where a self-seeking interceptor missile is launched by an airplane to intercept a
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Figure 2. Target manoeuver form in Case 3.

manoeuvering target. In the simulation, the missile and the target move on the vertical plane.
The initial position of the missile is xM (0) = 0m, yM (0) = 1000m. The initial position of the
target is xT (0) = 4330m, yT (0) = 3500m. The flight speed of the missile is vM = 600m/s, the
initial flight path angle of the missile is θM (0) = 40◦, and the autopilot dynamic lag constant
of the missile is τ = 0.5. The initial speed of the target is vT (0) = 300m/s, the initial flight
path angle of the target is θT (0) = 0◦, and the initial LOS angle is q0 = 30◦. The simulation
step size is 10ms, and the acceleration due to gravity g = 9.8m/s2. To verify the effective-
ness and superiority of NSO-SMGL, a target with different manoeuverings and a missile with
different expected impact angles are divided into the following three cases.

Case 1: The target performs a step manoeuver, i.e. aT = 5g. The expected LOS angle is
0◦ ≤ qd ≤ 90◦ for every 30◦.

Case 2: The target performs a periodic waving manoeuver, i.e., aT = 5gsin (t). The expected
LOS angle is 0◦ ≤ qd ≤ 90◦ for every 30◦.

Case 3: The target performs random step manoeuvers as shown in Fig. 2. The expected LOS
angle is 0◦ ≤ qd ≤ 90◦ for every 30◦.

The target estimation parameters are k1 = 4, k2 = 10, and p = 4.5. NSO-SMGL with
parameters m1 = 1 and n = 1.5 is applied to the simulation.

The simulation results, including the trajectories of the missile and the target on the verti-
cal plane, missile overload commands, sliding surface profiles, LOS angular velocity profiles,
LOS angle profiles, and target manoeuvering estimations (uncertainty) are presented under
different conditions in Figs. 3–5. NSO-SMGL can achieve high-precision interceptions to
various types of manoeuvering targets within a wide range of expected impact angles as illus-
trated in the three figures. In Figs. 3(b)–5(b), the missile demands high control energy in the
beginning of the terminal guidance phase because system states are far from the equilibrium.
However, the overload commands are evidently reduced to a relatively lower level within an
extremely short period. Such variation is beneficial for the guidance process, because the
missile could produce high energy in the beginning of process and then gradually decrease

https://doi.org/10.1017/aer.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.28


ZHANG ET AL NOVEL SECOND-ORDER SLIDING MODE GUIDANCE LAW... 1365

0 1000 2000 3000 4000 5000 6000 7000
0

2000

4000

6000

8000
y/

m

x/m

Target

0 3 6 9 12 15 18 21
–20

–10

0

10

20

t/s
u/

g

0 3 6 9 12 15 18 21
–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

s

t/s

0 3 6 9 12 15 18 21
–6

–4

–2

0

2

4

6

t/s
0 3 6 9 12 15 18 21

0

10

20

30

40

50

60

70

80

90

t/s

q/
(°

)

0 3 6 9 12 15 18 21
–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

t/s

Estimate
Real

U
nc

er
ta

in
ty

q 
/ (
(°
).
s–
1 )

q
d
=0°

q
d
=30°

q
d
=60°

q
d
=90°

q
d
=0°

q
d
=30°

q
d
=60°

q
d
=90°

q
d
=0°

q
d
=30°

q
d
=60°

q
d
=90°

q
d
=0°

q
d
=30°

q
d
=60°

q
d
=90°

q
d
=0°

q
d
=30°

q
d
=60°

q
d
=90°

(a) (b) (c)

(d) (e) (f)

Figure 3. Simulation results of Case 1: (a) trajectories of missile and target, (b) missile overload com-
mands, (c) sliding surface profiles, (d) LOS angular velocity, (e) LOS angle, and (f) target manoeuvering

estimations.
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Figure 4. Simulation results of Case 2: (a) trajectories of missile and target, (b) missile overload com-
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estimations.
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Figure 5. Simulation results of Case 3: (a) trajectories of missile and target, (b) missile overload com-
mands, (c) sliding surface profiles, (d) LOS angular velocity, (e) LOS angle, and (f) target manoeuvering

estimations.

during the flight. In Figs. 3(c)–5(c), the sliding surfaces gradually converge to zero, thereby
avoiding oscillations between positive and negative values and preventing the unexpected
chattering phenomenon. With the sliding surfaces converging to zero, the missile could hit
the target at the desired angles. In Figs. 3(d), 3(e), 4(d), 4(e), 5(d), and 5(e), the LOS angu-
lar rate converges to zero and the LOS angle converges to expected values regardless of the
target manoeuver, and the goal of the guidance law design is accomplished by considering
autopilot lag. The estimation of uncertainty is f1 ≈ (1/r)ȧTq in theory, but uncertainty is mini-
mal except at the end of the guidance process; therefore, the estimation results are multiplied
by r. In Figs 3(f)–5(f), the performance of the target manoeuvering estimator achieves rel-
atively satisfactory results. In the simulation, the missile could hit the manoeuvering target
precisely, because the estimator obtains the target’s acceleration effectively and compensates
in guidance law. Even if there exists noises, the estimator can acquire the target’s acceleration
and noises together, and eliminate their influences in the final guidance law.

To further verify the efficiency of the proposed NSO-SMGL, the LSMGL proposed in(39),
which considers the autopilot lag algorithm, is also used in the simulations for comparison.
For the design of LSMGL, Equation (63) is selected as the sliding mode.

s = b1x1 + b2x2 + x3. · · · (63)

The definitions of x1, x2, and x3 are the same as those in Section 4. The design parameters
are b1 and b2.
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Figure 6. Comparison between LSMGL and NSO-SMGL: (a) trajectories of missile and target, (b) missile
overload commands, (c) sliding surface profiles, (d) LOS angular velocity, (e) LOS angle, and (f) target

manoeuvering estimations.

Differentiating Equation (63) yields

s = b1x2 + b2x3 + ẋ3. · · · (64)

The approach law is selected as follows:

ṡ = −ks − σ |s|γ sgn (s). · · · (65)

LSMGL is deduced by substituting Equation (51) into Equation (64) and combining with
Equation (65)

u = −1

b

(
b1x2 + b2x3 + f0

(
x3, aMq

) + f1
(
x2, ȧTq

)+ ks + σ |s|γ sgn (s)
)
, · · · (66)

where f0
(
x3, aMq

)
and f1

(
x2, ȧTq

)
are the same as those in Section 3. Let f̂1

(
x2, ȧTq

)
be an

estimation of f1
(
x2, ȧTq

)
. Then, guidance can be rewritten as

u = −1

b

(
b1x2 + b2x3 + f0

(
x3, aMq

) + f̂1
(
x2, ȧTq

)+ ks + σ |s|γ sgn (s)
)

, · · · (67)

where b1 = 1, b2 = 1, k = 1, σ = 1, and γ = 0.5. The simulation with terminal condition
qd = 0◦ cannot be accomplished via guidance law Equation (67); therefore, the terminal con-
dition is modified to qd = 10◦ . Other conditions are the same as those in Case 2. Figure 6
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presents the simulation results. Both methods enable the LOS angle to approach the desired
value and the LOS angular velocity to approach zero. However, the sliding surface of LSMGL
rapidly converges to zero and oscillate between positive and negative values, thereby mak-
ing the overload in the beginning of the guidance process immense and trajectory bending
evident. The high-frequency chattering phenomenon occurs in LSMGL guidance law. The
results illustrate the drawbacks of the first-order sliding mode. The trajectory of NSO-SMGL
is smooth, and the guidance law exhibits no chattering, because the sliding surface has a rel-
ative degree of 2 and the observer is finite-time convergence and exhibits strong robustness
against the variation of target manoeuverings. The simulation results verify the validity of
the theory in Section 3.2, i.e., the advantage of the proposed NSO-SMGL is ensuring that
the sliding surface and its derivative converge to zero in finite time and guaranteeing that the
sliding surface does not cross zero until the ultimate time. Moreover, the proposed guidance
law achieves a wider range of intercept angles than LSMGL. In summary, the performance of
the proposed NSO-SMGL Equation (62) is superior to that of the general LSMGL Equation
(67) and the associated drawbacks of LSMGL are overcome.

6.0 CONCLUSIONS
This study presents NSO-SMGL for intercepting manoeuvering targets by considering autopi-
lot lag and terminal impact angle constraint. The proposed NSO-SMGL is constructed by
combining a target manoeuvering estimator and a novel smooth second-order sliding mode
through the application of a backstepping technique. The guidance law ensures that the sliding
surface and its derivative converge to zero in finite time while guaranteeing that the sliding
surface will not cross zero until the ultimate time, thereby effectively eliminating undesired
chattering. Depending on the advantages of the target estimator, the presented NSO-SMGL
requires no information regarding the target and provides a relatively effective estimation of
the target manoeuvering, thereby making its implementation possible. The convergence of the
guidance system is proven on the basis of Lyapunov stability theory. The simulation results
of the comparisons with LSMGL validate the effectiveness and superiority of the proposed
guidance system. Our future research will concentrate on the actuators saturation, dynamic
characteristics of higher order autopilots and the guidance law in three-dimensional plane.

REFERENCES
1. KIM, M. and GRIDER, K.V. Terminal guidance for impact attitude angle constrained flight

trajectories. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9, (6), pp 852–859.
2. BRYSON, A.E. Jr. AND HO, Y.C. Applied Optimal Control, Wiley, 1975, New York, NY, US.
3. CHO, H. Navigation constants in PNG law and the associated optimal control problems (in

Korean), In Proceedings of Korean Automatic Control Conference, Seoul, Korea, Oct. 1992,
pp 578–583.

4. RYOO, C.K., CHO, H. and TAHK, M.J. Optimal guidance laws with terminal impact angle constraint.
J Guidance, Control, and Dynamics, 2005, 28, (4), pp 724–732.

5. RATNOO, A. and GHOSE, D. State-dependent Riccati-equation-based guidance law for impact angle
constrained trajectories. J Guidance, Control, and Dynamics, 2009, 32, (1), pp 320–325.

6. LEE, Y.I., KIM, S.H. and TAHK, M.J. Optimality of linear time-varying guidance for impact angle
control. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48, (3), pp 2802–2817.

7. MAITY, A., OZA, H.B. and PADHI, R. Generalized model predictive static programming and angle-
constrained guidance of air-to-ground missiles, J Guidance, Control, and Dynamics, 2014, 37,
(6), pp 1897–1913.

https://doi.org/10.1017/aer.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.28


ZHANG ET AL NOVEL SECOND-ORDER SLIDING MODE GUIDANCE LAW... 1369

8. OZA, H.B. and PADHI, R. Impact angle constrained suboptimal model predictive static program-
ming guidance of air-to-ground missiles, J Guidance, Control, and Dynamics, 2012, 35, (1)
pp 153–164.

9. KIM, B.S., LEE, J.G. and HAN, H.S. Biased PNG law for impact with angular constraint. IEEE
Transactions on Aerospace and Electric Systems, 1998, 34, (1), pp 277–288.

10. RATNOO, A. and GHOSE, D. Impact angle constrained interception of stationary targets. J Guidance,
Control, and Dynamics, 2008, 31, (6), pp 1816–1821.

11. RATNOO, A. and GHOSE, D. Impact angle constrained guidance against nonstationary non-
maneuvering targets. J Guidance, Control, and Dynamics, 2010, 32, (1), pp 269–275.
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