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This paper presents a detailed investigation of flow topologies in bubble-induced
two-phase turbulence. Two freely moving and deforming air bubbles that have been
suspended in liquid water under counterflow conditions have been considered for
this analysis. The direct numerical simulation data considered here are based on
the one-fluid formulation of the two-phase flow governing equations. To study the
development of coherent structures, a local flow topology analysis is performed. Using
the invariants of the velocity gradient tensor, all possible small-scale flow structures
can be categorized into two nodal and two focal topologies for incompressible
turbulent flows. The volume fraction of focal topologies in the gaseous phase is
consistently higher than in the surrounding liquid phase. This observation has been
argued to be linked to a strong vorticity production at the regions of simultaneous high
fluid velocity and high interface curvature. Depending on the regime (steady/laminar
or unsteady/turbulent), additional effects related to the density and viscosity jump
at the interface influence the behaviour. The analysis also points to a specific term
of the vorticity transport equation as being responsible for the induction of vortical
motion at the interface. Besides the known mechanisms, this term, related to surface
tension and gradients of interface curvature, represents another potential source of
turbulence production that lends itself to further investigation.

Key words: bubble dynamics, multiphase flow, vortex dynamics

1. Introduction
Bubbly flows play an essential role in a large number of technical applications,

such as in boiling water reactors (nuclear industry), in air lift pumps (oil industry)
and particularly so with chemical reactors (process industry). Computational fluid
dynamics (CFD) has become an indispensable engineering tool for the analysis and
design of such systems, due to the consistent rise of computational power over the
last decades. Direct numerical simulation (DNS), resolving all length and time scales
of fluid turbulence without significant modelling assumptions, is now feasible for
moderate Reynolds number or for reduced-complexity two-phase flows. The case
investigated here is of the latter category – technically relevant bubble Reynolds
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number, but of a limited complexity as it exhibits only two bubbles. While this study
is primarily aimed at improving the fundamental understanding of turbulent two-phase
flows, the insights are likely to be useful for usual CFD modelling methodologies,
e.g. large-eddy simulation (LES). A particular focus is placed on liquid–gas interface
dynamics and associated turbulence production (in the wake of the bubbles). An
accurate reproduction of such effects is of pivotal importance with regard to the
bubble–bubble interactions in swarm-like flows.

Having indicated that two-phase turbulence behaves differently from single-phase
turbulence in some aspects, several existing analyses are reviewed here. Particularly
in the case of the bubble-induced turbulence (BIT), at least three potential fluctuation
sources have to be taken into account: the unsteadiness of bubble deformation, the
bubble trajectory, and vortex shedding in the bubble wake. In the seminal work of
Lance & Bataille (1991) on bubbly air–water flows, it was found that the spatial
spectrum of the turbulent kinetic energy in the inertial subrange followed a −8/3
power law rather than the classical −5/3 power law known from single-phase
turbulence. Using a scaling argument, Lance & Bataille (1991) also arrived at a
power-law exponent of −3, which is close to the experimentally determined value
of −8/3. The structure and dynamics of bubble wakes were investigated in detail
by Brücker (1999). His experiments focused on ellipsoidal bubbles in the diameter
range of 4–8 mm, featuring spiral, zigzag and rock trajectories during their motion
in water under counterflow conditions. It was shown that the zigzagging motion was
associated with a regular generation and discharge of alternate, oppositely oriented,
hairpin-like vortex structures. For spiralling bubbles, the wake consisted of a twisted
pair of streamwise vortex filaments, which were wound in a helical path and attached
to the bubble base at an asymmetrical position. The relevance of vortical structures
for bubble interaction was studied by Brücker (1999) via the entrainment of two
succeeding bubbles, i.e. a similar set-up to this work.

In addition to experiments, a large variety of numerical simulations have concentrated
on this topic. The understanding of turbulent bubbly flows has notably been
advanced by the numerous studies of Tryggvason, Scardovelli & Zaleski (2011).
Representative of many related studies, some DNS-based investigations on the
dynamics of three-dimensional homogeneous bubbly flows are worth mentioning:
Bunner & Tryggvason (2002a) focused on the rise velocity and microstructure
of bubbles, and Bunner & Tryggvason (2002b) focused on associated velocity
fluctuations. Allowing a fully deformable interface, a finite-difference/front-tracking
method was used for the simulations, with the inclusion of up to several hundred
bubbles in some cases. By means of statistical turbulence quantities, like the turbulent
kinetic energy and Reynolds stress components, a thorough quantification of the
effects of bubble deformability, inflow turbulence intensity and relative velocity on
BIT behind a single bubble was recently provided by Feng & Bolotnov (2017).
A level-set interface-tracking method is applied for accurate capturing of bubble
dynamics. One step further towards computationally efficient CFD of two-phase flows
is taken by Ma et al. (2017), who developed a modelling methodology for BIT in the
Euler–Euler Reynolds-averaged framework. Budgets of the turbulent kinetic energy
from the DNS of disperse bubbly channel flows were evaluated, and an iterative
procedure was employed to derive the model coefficients of the BIT-related closure
terms. Consequently, good agreement compared to the DNS database, with a better
performance than with the standard closures, was achieved by Ma et al. (2017).

To obtain a comprehensive picture of the BIT phenomenon, this paper contributes
with a local flow topology analysis based on the invariants of the velocity gradient
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tensor. The methodology follows the pioneering work of Perry & Chong (1987) and
Chong, Perry & Cantwell (1990). In the case of incompressible flows, all possible
small-scale flow structures can be categorized into two nodal and two focal topologies.
To analyse the different manifestations of coherent structures, the methodology has
been applied to a variety of flows, including wall-bounded shear flows (Chong et al.
1998) and homogeneous isotropic turbulence (Elsinga & Marusic 2010). The authors
are not aware of any applications of this methodology to incompressible bubbly two-
phase flows. If the flow is compressible, e.g. in the context of turbulent premixed
combustion (Wacks et al. 2016), the first invariant (trace) of the velocity gradient
tensor assumes non-zero values. Consequently, eight, instead of four, flow topologies
have to be considered. Potential further analysis steps were demonstrated by Dopazo,
Martín & Hierro (2007), who studied the connection between local flow topologies
and local interface curvature. An extension of the snapshot-based topology analysis
is proposed by Ooi et al. (1999). Instead of only analysing separate snapshots of the
flow, the evolution of the invariants is included in the analysis.

Since vortical motion is inherently connected to the nature of turbulence, the
vorticity evolution equation serves as a theoretical basis in support of the observations
from DNS in this work – as is also popular in other fields, like turbulent premixed
combustion (Chakraborty et al. 2017). A related study on the vorticity generation and
conservation for both no-slip and stress-free interface conditions has been presented
by Brøns et al. (2014). It has been shown analytically, by means of jump conditions,
that the generation of vorticity at an interface or boundary was due to the relative
acceleration of the fluid(s) or a relative pressure gradient. The analysis has been
applied to several two-dimensional planar and axisymmetric flows, but more work
is required in order to fully understand the behaviour in three-dimensional turbulent
flows.

2. Direct numerical simulation database
2.1. Numerical methodology

The state-of-the-art, two-phase solver PARIS (PArallel Robust Interface Simulator,
written in Fortran, and developed by S. Zaleski et al. at Institut Jean Le Rond
d’Alembert, UPMC & CNRS, Paris, France) is used for the simulations considered
for this paper, with the code being based on the one-fluid formulation of the unsteady
incompressible Navier–Stokes equations, including the gravitational and capillary
forces. Two immiscible fluids are represented by a jump in density and viscosity.
Propagation of the phase interface is implicitly calculated by the advection equation

∂α

∂t
+ uj

∂α

∂xj
= 0 (2.1)

for the cell-based volume fraction α of the gaseous phase. Cell-averaged fluid
properties are then obtained from a weighted arithmetic mean for density,

ρ = α(ρg − ρl)+ ρl, (2.2)

and a weighted harmonic mean for dynamic viscosity,

µ=

(
α

(
1
µg
−

1
µl

)
+

1
µl

)−1

. (2.3)
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g

u0

(a) (b)

FIGURE 1. (Colour online) Three-dimensional inflow–outflow DNS configuration: red
bubble surface and semi-transparent grey Q = 10 isocontour for the initial state (a) and
the analysed snapshot of case A (b). Inflow velocity u0 and gravitational acceleration g
are oriented from left to right.

The subscripts g and l stand for gaseous air and liquid water, respectively. In terms of
in-cell interface treatment, advanced numerical techniques are applied: a geometrical
volume-of-fluid (VOF) method, including piecewise linear interface reconstruction,
and a height function method, combined with a continuous surface force balancing
for interface curvature determination. In the framework of the finite-volume method,
spatial discretization on a cubic staggered grid is implemented by the third-order
QUICK scheme for momentum advection and the second-order central differencing
scheme for diffusive fluxes. Volume fraction advection, equation (2.1), is implemented
by the CIAM scheme and explicit temporal discretization by a second-order accurate
Runge–Kutta scheme. The pressure projection method invokes a multi-grid Poisson
solver, which was provided by the HYPRE library. The code is parallelized by the
domain decomposition technique and the MPI processor communication. A detailed
description of the utilized numerical techniques can be found in Tryggvason et al.
(2011).

PARIS was successfully applied in several other publications on turbulent two-phase
flow DNS, such as those by Ling, Zaleski & Scardovelli (2015) and Ling et al.
(2017). Many of the numerical methods, particularly with regard to the discretization
of the singular surface-tension force, which is crucial in terms of accuracy (Popinet
2018), are inherited from the well-validated DNS code GERRIS. In this context,
Popinet (2009) also describes convergence tests, as well as convincing validation
and verification by means of simple academic problems, like a circular droplet in
equilibrium, a capillary wave, or a two-dimensional inviscid rising bubble.

2.2. Computational set-up
Characterized by a high density and viscosity ratio, as well as comparably strong
surface-tension forces, two air bubbles, featuring an initial diameter of Db = 5 mm,
are suspended in a continuous water medium. A counterflow set-up, as displayed in
figure 1, is chosen in accordance with a similar experimental configuration by Haase
et al. (2017). (For layout purposes, all figures directly visualizing the flow are rotated
in the following, i.e. the mean flow and the gravitational force are oriented from left
to right.) Likewise, the set-up is similar to a DNS study of Toutant et al. (2008),
which aimed at the interaction between a deformable bubble and spatially decaying
turbulence. In contrast to small bubbles (Db<1 mm), for which surface-tension effects
are dominant, the large bubbles investigated here imply strong interface deformations.
The separation distance of the two bubbles was 4Db initially, but decreases during
the course of the simulation. Such entrainment effects of two ellipsoidal bubbles
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in counterflow have been confirmed experimentally by Brücker (1999). The idea
behind the two-bubble configuration was to allow a simultaneous observation of the
differences in the behaviour of the leading bubble directly facing the laminar flow
from the inlet, and the succeeding bubble facing the turbulent wake of the leading
bubble. A higher number of bubbles would increase the complexity unnecessarily.
The constant inflow velocity of u0= 18.5 cm s−1 roughly corresponds to the terminal
velocity of a freely rising bubble in a globally stagnant flow, and therefore limits the
length of the three-dimensional computational domain (40 mm × 20 mm × 20 mm).
Koebe et al. (2002) demonstrated that a wall distance of four bubble diameters
together with slip boundary conditions was sufficient to compute the correct rise
velocity of a single bubble rising without wall influence. Owing to the bubble
Reynolds number of Reb= u0Db/νl= 921.5, wobbling ellipsoidal bubbles are observed
in the simulations, which is in agreement with the Grace regime diagram (Clift, Grace
& Weber 2005). Since Reb is based on the fluid properties of the liquid phase, it
is unaffected by the gas-phase modifications discussed later. At the boundaries of
the domain, classical inflow/outflow conditions are combined with slip conditions at
the channel sidewalls (for reasons of numerical robustness amongst others). Periodic
boundary conditions in the axial direction were avoided because the bubbles would
be facing their own turbulent wake from the inlet in this case.

Meshing by a uniform Cartesian grid yields Db/1x= 40, which is assumed to be
a sufficiently high resolution of the bubble, as discussed in the following. According
to Koebe, Bothe & Warnecke (2003), there is hardly any difference in terms of the
rise velocity between 16 and 32 cells per bubble diameter. The bubble Weber number
We= ρlu2

0Db/σ and the grid Weber number We1x= ρlu2
01x/σ can be calculated to be

2.348 and 0.059, respectively. The latter value is sometimes applied in the literature, as
can be seen in Desjardins & Pitsch (2010), to evaluate the grid spacing with respect
to droplet stability resolution requirements. The value of We1x achieved here is far
smaller than the critical value of 10. Bubble breakup, bubble coalescence and other
complex phenomena are not investigated here. According to the universal equilibrium
theory by Kolmogorov, the smallest dissipative length scale that has to be resolved for
the DNS can be estimated by η ≈ LtRe−3/4

t using the integral turbulent length scale
Lt and the turbulent Reynolds number Ret = u′Lt/νl (Batchelor 1953). Assuming, in a
conservative manner, that Ret=Reb and Lt=Db yields η≈29.9 µm. Alternatively, one
may estimate ε ≈ u0g (Koebe et al. 2003) and use ν = νl to obtain the Kolmogorov
length scale η= (ν3/ε)1/4≈ 27.3 µm. The achieved grid spacing is of the same order
of magnitude as η and therefore can be considered sufficient for the evaluation of first-
and second-order statistics (Grötzbach 2011).

Spanning at least 10 bubble overflow times, the simulation duration is comparable
in all cases, except when analysing the time history of bubble entrainment in case A.
Visualizing an isosurface of the second invariant Q (defined in § 3), figure 1(b) gives
an impression of the highly unsteady, irregular and three-dimensional vortex structures
in the wake of the wobbling bubbles.

An overview of the examined cases is provided in table 1. Only the reference
case, case A, agrees with the physical reality in terms of the fluid properties and
the degrees of freedom of bubble motion. All other cases might be characterized as
‘numerical experiments’. In the sense of the process of elimination, specific parameters
of the problem are manipulated successively to exclude or minimize their influence
on the observed phenomena, which will subsequently be explained. The gas density
and viscosity, and consequently the liquid-to-gas ratios, are adjusted in the cases B
and C, respectively. For the cases D and E, the surface-tension forces are switched
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Case ρl/ρg νl/νg σ (s2 kg−1) Mode

A 8.318× 102 6.607× 10−2 7.275× 10−2 Free
B 8.318 6.607× 10−2 7.275× 10−2 Free
C 8.318× 102 1.0 7.275× 10−2 Free
D 8.318× 102 6.607× 10−2 0 Frozen (ellipsoidal)
E 8.318× 102 6.607× 10−2 0 Frozen (spherical)

TABLE 1. DNS case overview in terms of liquid-to-gas density ratio ρl/ρg, kinematic
viscosity ratio νl/νg, surface tension σ and mode of bubble motion.

off. This is only possible for frozen bubble shapes, as the bubbles would disintegrate
immediately otherwise. From a technical point of view, the update of the volume
fraction field (equation (2.1)) is stopped at two different points in time, resulting in
two different frozen bubble shapes: ellipsoidal versus spherical. Hence, the density
and viscosity field are kept constant and the capillary pressure jump vanishes when
the simulation is continued.

3. Mathematical background
According to Perry & Chong (1987) and Chong et al. (1990), amongst others, the

invariants of the velocity-gradient tensor Aij = ∂ui/∂xj = Sij + W ij give rise to a set
of local flow topologies. Here, Sij = 0.5(Aij + Aji) and W ij = 0.5(Aij − Aji) represent
the tensor’s symmetric and antisymmetric components, respectively. The corresponding
characteristic equation is given by λ3

+ Pλ2
+Qλ+ R= 0, with

P=−Sii =−(λ1 + λ2 + λ3), (3.1)
Q= (P2

− SijSij +W ijW ij)/2, (3.2)
R= (−P3

+ 3PQ− SijSjkSki − 3W ijW jkSki)/3, (3.3)

being the invariants of Aij, and exhibiting three solutions, i.e. the eigenvalues λ1, λ2
and λ3 of Aij. The characteristic equation’s discriminant D= (27R2

+ (4P3
− 18PQ)R+

4Q3
− P2Q2)/108 divides the P–Q–R phase space into two regions:

(i) D > 0, where Aij shows one real eigenvalue and two complex conjugate eigen-
values, and therefore focal topologies; and

(ii) D< 0, where Aij shows three real eigenvalues, and therefore nodal topologies.

Corresponding to D = 0, two surfaces separating the topologies in the phase space
are given by r1a = P(Q− 2P2/9)/3− 2(−3Q+ P2)3/2/27 and r1b = P(Q− 2P2/9)/3+
2(−3Q+ P2)3/2/27. In the region D> 0, Aij has purely imaginary eigenvalues on the
surface r2=PQ. The surfaces r1a, r1b and r2 divide the P–Q–R phase space into eight
flow topologies in the general case.

For incompressible fluids, the three-dimensional P–Q–R phase space is reduced to
the two-dimensional Q–R phase space since P = −∇ · u = 0. The number of flow
topologies is consequently reduced from eight to four. Both the topology borders r1a,
r1b and r2 in the Q–R phase space, as well as a graphical representation of topologies
S1–S4, are shown in figure 2. To simplify the interpretation, the second invariant of
Aij, Q, can be split into two parts:

Q=QS +QW =−SijSij/2+W ijW ij/2, (3.4)
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Q

r2 S1S4

S3

R

S2
r1br1a

S1: UF/C S2: UN/S/S

S3: SN/S/S S4: SF/ST

FIGURE 2. (Colour online) Classification of topologies S1–S4 (top): projection of topology
borders r1a, r1b and r2 in the Q–R plane for P= 0. Dashed lines indicate Q= 0 and R= 0,
respectively. Graphical representation (bottom), corresponding to UF = unstable focus, UN
= unstable node, SN = stable node, SF = stable focus, C = compressing, S = saddle,
ST = stretching.

where QS and QW denote the second invariant of Sij and W ij, respectively. The latter
part QW is directly related to vorticity ω and enstrophy Ω according to

W ijW ij/2=ωiωi/4=Ω/2. (3.5)

Thus, Q < 0 is indicative of strain-dominated regions and Q > 0 is indicative of
vorticity-dominated regions. In a similar manner, the expression of the third invariant
R may be restated as

R= RS −W ijW jkSki =−SijSjkSki/3−W ijW jkSki, (3.6)

where RS is the third invariant of the strain-rate tensor Sij. The second term on the
right-hand side (without the negative sign) could be linked to the vortex-stretching
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term of the enstrophy transport equation (Tsinober 2000). Owing to their prominent
roles, the isosurfaces specified by Q = 0 and R = 0 are included in the subsequent
invariant plots.

To compute the velocity vector u, the momentum balance equation for two-phase
flows can generally be written as

Dui

Dt
≡
∂ui

∂t
+ uj

∂ui

∂xj
=−

1
ρ

∂p
∂xi
+

1
ρ

∂τij

∂xj
+ gi +

1
ρ
σκniδS, (3.7)

in which the interface Dirac function δS≡ δ(x− xS) is approximated by |∇α|, and thus
nδS=−∇α, according to the continuum surface force (CSF) methodology as proposed
by Brackbill, Kothe & Zemach (1992). The quantities σ , κ and n = −∇α/|∇α|
denote the surface tension, the interface mean curvature and the interface normal
vector, respectively. The viscous stress tensor τij is formulated on the basis of Stokes’
hypothesis, which reduces to

τij =µ

(
∂ui

∂xj
+
∂uj

∂xi
−

2
3
δij
∂um

∂xm

)
=µ

(
∂ui

∂xj
+
∂uj

∂xi

)
(3.8)

for incompressible flows (∇ · u= 0).
An evolution equation for the vorticity ω≡∇×u can be derived by taking the curl

of (3.7) (eijk stands for the Levi-Civita symbol):

Dωi

Dt
=−ωi

∂uj

∂xj︸ ︷︷ ︸
T1

+ωj
∂ui

∂xj︸ ︷︷ ︸
T2

−
eijk

ρ2

∂ρ

∂xj

∂τkm

∂xm︸ ︷︷ ︸
T31

+
eijk

ρ

∂2τkm

∂xj∂xm︸ ︷︷ ︸
T32

+
eijk

ρ2

∂ρ

∂xj

∂p
∂xk︸ ︷︷ ︸

T4

+T5. (3.9)

In the order given, the terms on the right-hand side of (3.9) represent the following:

(i) T1 = vorticity destruction by dilatation rate;
(ii) T2 = vortex stretching;

(iii) T31 = misalignment between the gradients of density and viscous stress;
(iv) T32 = viscous diffusion and dissipation of vorticity;
(v) T4 = baroclinic effects arising from the misalignment of density and pressure

gradients;
(vi) T5 = effects related to the surface tension.

Term T1 vanishes for incompressible flows. Regarding term T4, it should be mentioned
that the pressure gradient resulting from the capillary pressure jump (1p∼ σκ) alone
would be theoretically aligned with the density gradient at the interface. However,
dynamic pressure variations in the flow can lead to a misalignment of both gradients
and consequently give rise to vorticity deposition at the interface. Compared to single-
phase flows, another potential vorticity production term occurs due to the capillary
force itself,

T5 = eijk
σ

ρ2

∂ρ

∂xj

∂α

∂xk
κ︸ ︷︷ ︸

T51

− eijk
σ

ρ

∂2α

∂xj∂xk
κ︸ ︷︷ ︸

T52

− eijk
σ

ρ

∂α

∂xk

∂κ

∂xj︸ ︷︷ ︸
T53

, (3.10)

with the interface mean curvature generally given by

κ =
∂nj

∂xj
=−

1
|∇α|

∂2α

∂xj∂xj
+

1
|∇α|2

∂|∇α|

∂xj

∂α

∂xj
. (3.11)
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Term T51 vanishes since ∇ρ= (ρg−ρl)∇α∝∇α, according to (2.2) and ∇α×∇α= 0
(i.e. absence of misalignment). Term T52 is equal to zero, since the curl of gradients
vanishes, ∇× (∇α)= 0. Similarly, the conservative gravitational force does not affect
the vorticity field and hence does not appear in (3.9). Interestingly, the remaining
term T53 does not scale with density gradients, unlike the other relevant production
terms of (3.9). Regarding the geometric interpretation of term T53, it is instructive to
think in terms of interface-normal (subscript n) and interface-tangential (subscript t)
components of ∇α and ∇κ . Since ∇t α = 0, the non-zero contribution of ∇κ × ∇α
arises from the perpendicular vectors ∇n α and ∇t κ . Term T53 gains in importance
for (heavily) deformed bubbles as ∇t κ = 0, and thus T53 = 0 for perfectly spherical
bubbles.

In the following analysis, a direct quantitative evaluation of these terms, particularly
for term T5, has not been conducted, as the calculation of third-order derivatives
of the discrete representation of a discontinuous function (α here) is extremely
challenging from a numerical point of view. For the aforementioned reasons, an
indirect assessment is preferred instead.

4. Analytical solution

Although turbulent flows cannot be described by the analytical creeping-flow
solution of Hadamard and Rybczynski (Clift et al. 2005; Sadhal, Ayyaswamy &
Chung 2012), it is still discussed here, as it offers insights into the understanding
of bubble-affected flows. The solution strictly holds only for inertialess spherical
bubbles at a very low Reynolds number. An extension that accounts for inertia
effects and small interface deformation is given by Taylor & Acrivos (1964), but
this does not provide significant further insights in the context of this work. It is
important to mention that the streamfunction-based analytical solution by Hadamard
and Rybczynski does not represent a potential flow, which is irrotational by definition.

Starting from the general ansatz

ψ = sin2(θ)

(
A
r
+ Br+Cr2

+Dr4

)
(4.1)

for the Stokes streamfunction of both phases, eight constants (A, B, C, D, all ×2)
need to be determined. This can be achieved by requiring continuity at the interface
in terms of normal velocity, tangential velocity, shear stress and normal stress, along
with the corresponding conditions in the far field. Since the solution is axisymmetric
with respect to the axis pointing in the mean flow direction, there is a dependence not
on azimuthal direction ϕ, but on radius r and inclination θ in spherical coordinates.
The velocity components can then be obtained from

ur =
1

r2 sin θ
∂ψ

∂θ
(4.2)

for the radial direction, and

uθ =−
1

r sin θ
∂ψ

∂r
(4.3)

for the circumferential direction.
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Given the unperturbed inflow velocity u0, bubble radius Rb and dynamic viscosity
ratio φ =µg/µl, the streamfunctions ψ of the liquid and gaseous phases finally read

ψl(r, θ)=−
1
2

u0R2
b sin2(θ)

[(
r

Rb

)2

−

(
2+ 3φ

2(1+ φ)

)(
r

Rb

)
+

(
φ

2(1+ φ)

)(
Rb

r

)]
(4.4)

and

ψg(r, θ)=
1
4

u0R2
b sin2(θ)

(
1

1+ φ

)[(
r

Rb

)2

−

(
r

Rb

)4
]
, (4.5)

respectively.
Inserting (4.4) and (4.5) into the fundamental relation

ω(r, θ)=−
1

r sin θ

(
∂2ψ

∂r2
+

sin θ
r2

∂

∂θ

(
1

sin θ
∂ψ

∂θ

))
, (4.6)

where ω denotes the only non-zero component of ω (perpendicular to the r–θ plane),
it can be derived, through reorganization and application of algebra, that the vorticity
distribution in both phases is given by the comparably simple equations

ωl(r, θ)= u0
Rb

r2
sin(θ)

(
2+ 3φ

2(1+ φ)

)
, (4.7)

ωg(r, θ)=
5
2

u0
r

R2
b

sin(θ)
(

1
1+ φ

)
. (4.8)

Owing to the viscosity jump, the vorticity field is generally discontinuous at the
interface (r= Rb). Only if φ = 1 is the vorticity field continuous at the interface. As
demonstrated in figure 3, the vorticity peaks at an inclination of θ = 90◦ and reaches
zero at the symmetry axis. It should be noted that the bubble radius Rb can be
interpreted as an inverse measure of the interface curvature. When transferred to the
situation studied numerically in the following (predominantly ellipsoidal bubbles), the
vorticity is expected to reach the highest values at the regions involving simultaneously
high fluid velocity and high interface curvature.

The semi-analytical solution, in terms of local flow topologies, is shown in figure 4.
The solution is characterized as semi-analytical, since the underlying velocity field
is analytical but the invariants analysis is performed with the same numerical tool
as used for the DNS data. Only the bubble-interior gaseous flow is analysed here,
as this is at the focus of interest for the interpretation of the subsequent (turbulent)
simulations. Nodal topologies S2 and S3, and correspondingly focal topologies
S4 and S1, can be observed in the upstream and downstream part of the bubble,
respectively. According to their nature, focal topologies prevail in the high-vorticity
region. It can be summarized that a nodal-to-focal-to-nodal transition occurs within
the bubble. The narrow band of intermediate topologies, S3 in the upstream part of
the bubble and S2 in the downstream part of the bubble, might be influenced by the
finite resolution and machine accuracy.

The analytical solution is analysed at this juncture, as the comparison of different
regimes of bubbly flows, namely the laminar creeping-flow solution versus turbulent
DNS cases, provides additional insights, as will be shown in the following. On the
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FIGURE 3. (Colour online) Analytical solution: axisymmetric vorticity field in the vicinity
of the bubble; the mean flow direction is oriented from left to right.
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FIGURE 4. (Colour online) Semi-analytical solution: axial volume fraction distribution
of flow topologies for the gaseous phase (a) and corresponding topology field in the
gaseous phase (b), where 1–4 in the colour bar refer to S1–S4, respectively. The green
line indicates the phase interface; the mean flow direction is oriented from left to right.

one hand, striking similarities can be observed: the dominance of focal topologies in
the gaseous phase and the switch from diverging flow topologies ahead of the bubble
to converging flow topologies behind the bubble. On the other hand, some aspects
are changing: regarding the jump of fluid properties at the interface, the dominant
influence parameter, with respect to flow topologies, is the viscosity ratio in laminar
flows but the density ratio is also important in turbulent flows.

5. Results and discussion
5.1. Case A (reference)

Case A agrees with the physical reality in terms of the fluid properties and the
degrees of freedom of the bubble motion. It is used as a reference case that is
compared with the cases involving the manipulation of the mathematical model.
Figure 5 shows the axial volume fraction distribution of the flow topologies S1–S4,
i.e. conditional averages (separately for the liquid and gaseous phases) with respect to
both spanwise directions. The same approach has been adopted in subsequent similar
figures, i.e. figures 11, 13 and 15. In the liquid phase, the level of focal topologies S1
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FIGURE 5. (Colour online) DNS case A: axial volume fraction distribution of flow
topologies for the liquid phase (a) and gaseous phase (b).
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FIGURE 6. (Colour online) DNS case A: overall volume fraction of flow topologies for
the liquid phase (a) and gaseous phase (b) during the bubble entrainment process, i.e. at
different normalized bubble separation distances h/Db.

and S4 is generally increasing in the downstream direction because of the turbulence
induced by bubbles. Their location can be inferred from the corresponding plot of the
gaseous phase. The non-zero volume fraction of focal topologies at the inlet boundary
must be assessed as spurious behaviour, which stems from the ill-conditioned velocity
gradient tensor at the laminar inflow. In terms of the nodal topologies, an exchange of
topologies S2 and S3 seems to occur at the bubble locations. Case E is designed to
explain that observation. In general, the situation in the liquid phase strongly depends
on the analysed snapshot and the overall gas fraction in the domain, e.g. determined
by the bubble size or number. In the gaseous phase, a different behaviour is observed.
Although the kinematic viscosity is higher (νg>νl) and, as such, the viscous damping
is stronger, the level of focal topologies is clearly above the liquid phase. At the
same time, there is no considerable difference between the first and second bubble.

The axial distribution of topology volume fractions provides several insights, but the
interpretation must be done with caution. The spanwise averages of the gaseous phase
are particularly difficult to evaluate, since there is a clearly lower number of samples
available at the front and rear part compared to the centre of the bubbles. Thus, the
total percentage of topologies S1–S4, separately for the gaseous and liquid parts of
the domain, is additionally given in table 2.

Owing to entrainment effects mentioned earlier, the second bubble is closing
up with the first bubble compared to the initial condition (cf. figure 1). Figure 6
shows the overall topology volume fractions of both phases as a function of the
bubble separation distance h. Representing the time history of bubble entrainment,
h is measured as the axial bubble distance in the liquid, i.e. between both bubble
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DNS Gas Liquid
case S1 S2 S3 S4 S1 S2 S3 S4

A 31.5 19.1 10.4 39.0 15.2 42.8 28.7 13.3
B 25.3 20.7 17.4 36.6 16.9 41.4 27.6 14.0
C 37.0 18.3 10.5 34.2 12.1 46.3 29.6 12.0
D 20.5 45.8 6.7 27.0 8.7 46.7 35.0 9.6
E 31.0 16.4 3.4 49.2 2.5 49.0 46.3 2.2

TABLE 2. Total percentage of topologies S1–S4 in the gaseous and liquid parts of the
domain for the analysed snapshot of each DNS case.

t/tb 5.1 6.3 7.2 8.3 9.4
h/Db 3.2 2.8 2.5 2.1 1.5

TABLE 3. DNS case A: relation between the normalized simulation time t/tb and the
normalized bubble separation distance h/Db during the bubble entrainment process.

surfaces (not between the centres of gravity). As demonstrated by table 3, h/Db
inversely correlates with time t, which is normalized by the bubble overflow time
tb = Db/u0. Despite a certain degree of variation in figure 6, the dominance of the
focal topologies in the gaseous phase and the dominance of the nodal topologies in
the liquid phase appears consistently. One may perhaps recognize the development
towards a converged state with increasing time and decreasing bubble distance. Indeed,
it is worth noting here that the topology classification does not make a statement
about turbulence intensity, e.g. expressed by the turbulent kinetic energy, which
decreases rapidly behind the bubbles.

Slices of the three-dimensional fields of the second invariant Q and the third
invariant R can be seen in figure 7. The laterally oriented vortex tail of the first
bubble originates due to the periodic non-straight trajectory of the freely moving and
deforming bubbles. Distinct peaks of Q can be identified close to regions of high
interface curvature and in the proximate bubble wakes. Particularly in the mean flow
direction, there appears to be significant transport of vorticity across the interface,
indicated by Q> 0. Agreeing with the diffusive and dissipative nature of turbulence,
the intensity of Q decreases generally downstream of the bubbles. The blue Q = 0
isoline gives an indication whether the flow is locally strain-dominated (Q < 0) or
vorticity-dominated (Q> 0). However, R is additionally necessary for the completion
of the flow topology classification as depicted in figure 8(a), since the Q and R fields
are obviously not congruent. Besides larger regions of R< 0 (vortex stretching) and
R> 0 (vortex compression) in the bubble wake, distinct peaks of R are restricted to
the immediate vicinity of the interface.

A second spanwise slice of the topology field (rotated by 90◦ around the channel
axis compared to the first slice) in figure 8(b) provides an impression as to how the
flow behaviour changes in the azimuthal direction. While the behaviour in the gaseous
phase is very similar in both slices, it is clearly different in the liquid phase, which is
mainly a consequence of the non-straight bubble trajectory. In addition to the topology
field, the vorticity field is presented in figure 9(a) to point out the strong link between
the two fields, as elaborated in § 3.

An overall picture of the topology distribution in the liquid phase is given by the
joint probability density function of Q∗=Q/〈Q〉 and R∗=R/〈R〉, the mean-normalized
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FIGURE 7. (Colour online) DNS case A: slices of the Qs2 field (a) and the magnified
Rs3 field (b) in the x–y direction. Green and blue lines indicate the phase interface and
the Q= 0 or R= 0 isocontour, respectively.
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FIGURE 8. (Colour online) DNS case A: slices of the flow topology field in the
x–y direction (a) and x–z direction (b), where 1–4 in the colour bar refer to S1–S4,
respectively. The green line indicates the phase interface.
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FIGURE 9. (Colour online) DNS case A: slice of the |ω| s field in the x–y direction (a),
where the green line indicates the phase interface, and joint probability density function
with common logarithmic scale of Q∗ = Q/〈Q〉 and R∗ = R/〈R〉 for the liquid phase (b);
the blue lines indicate the topology borders r1a, r1b and r2.

equivalents of the second and third invariant, in figure 9(b). Owing to the large scale
disparity, a logarithmic scale (base 10) is used. For the examined configuration, it can
be stated that S2 and S3 are the dominant topologies in the liquid phase. Besides
the dominant peak that is close to the origin, a tail to the bottom right, as for the
typical teardrop shape in single-phase turbulence (Davidson 2015), becomes evident.
However, the strong alignment with the topology borders r1a and r1b is unknown from
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FIGURE 10. (Colour online) DNS case B, modified gas density (a), and DNS case C,
modified gas viscosity (b): slices of the flow topology fields, where 1–4 in the colour bar
refer to S1–S4, respectively.

single-phase flows, or at least less pronounced. Owing to the much smaller number of
samples, the joint probability density function of the gaseous phase is less reliable and
therefore not included here. It is the primary goal of the following cases to explain
the higher volume fraction of focal topologies inside the air bubbles, and the major
vorticity accumulation at regions of high interface curvature.

5.2. Cases B and C (modified gas properties)
The fluid properties of the gaseous phase are modified successively in order to
understand the origin of the difference in flow topologies between the liquid and
gaseous phases. Several non-zero terms of the vorticity transport equation (3.9) are
directly dependent on the density or on the density gradients. Instead of setting equal
densities, which would prevent a buoyancy-driven motion of the bubbles, the gas
density is increased by two orders of magnitude (ρg= ρl/8.318) in case B. In case C,
identical kinematic viscosities in both phases (νg = νl) are imposed. According to
Davies & Taylor (1950), the terminal rise velocity of large bubbles, which are similar
to this study, can be approximated by uT = 0.707

√
gDb, i.e. it is largely independent

of the density and viscosity. However, viscous damping and the Kolmogorov length
scale η = (ν3/ε)1/4 in the gaseous phase are decreased by the viscosity modification.
Influences on vorticity production may come from the changed velocity field and
its boundary layer at the interface, with a particular relation to terms T2 and T31.
Term T32 also gets affected but it only diffuses and dissipates vorticity instead of
generating it.

Figure 10 shows no significant changes for case B, whereas the size of topology
islands in the gaseous phase is clearly affected in case C. The first bubble is not
intersected by the visualized slice in case C. The decreased viscous dissipation in
the bubble obviously leads to enhanced turbulent ‘mixing’, which, together with the
large number of small topology islands, gives rise to a more uniform distribution of
topology volume fractions (figure 11b). The dominance of focal topologies inside the
bubble is maintained for both cases; cf. table 2. As is apparent from figure 12, the
qualitative behaviour in terms of distinct Q peaks at the regions of high interface
curvature is unaffected as well. It can be concluded that the variation of density and
viscosity, and thus the corresponding gradients at the interface, influence the situation
only to a limited degree.

As discussed in § 6, Tripathi, Sahu & Govindarajan (2014) argued that vorticity
would eventually accumulate in the lighter fluid independent of the viscosity ratio.
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FIGURE 11. (Colour online) DNS case B, modified gas density (a), and DNS case C,
modified gas viscosity (b): axial volume fraction distribution of flow topologies for the
gaseous phase.
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FIGURE 12. (Colour online) DNS case B, modified gas density (a), and DNS case C,
modified gas viscosity (b): slices of the Qs2 field. The green and blue lines indicate the
phase interface and the Q= 0 isocontour, respectively.

However, there is numerical evidence, with some analytical support, showing that
the vorticity maximum can appear in the denser fluid as well (Farsoiya, Mayya
& Dasgupta 2017). Using a linearized prediction applicable only to the vorticity
values immediately above and below the interface, Farsoiya et al. (2017) found that
the vorticity jump across the interface generally depends on both the density and
viscosity ratio of the two fluids. Furthermore, vorticity can be produced in the bulk
of both phases and, therefore, vorticity peaks can also appear in the denser fluid. Such
behaviour can actually be seen in the vorticity field of the reference case (case A)
in figure 9(a). The nonlinear accumulation effect due to density differences could
not be entirely excluded in case B, as the density in the gaseous phase is still lower
than in the liquid phase. It is however worth noting that the dominance of the focal
topologies is also observed for the analytical creeping-flow solution (§ 4), where the
density plays no role.

5.3. Case D (neglected surface tension, ellipsoidal bubble shape)
After inspecting the jump of fluid properties at the interface, the influences of the
capillary force in terms of vorticity production can now be analysed. While ρg and
νg are reset to their original values, σ = 0 was imposed as soon as a characteristic
ellipsoidal bubble shape was reached. To prevent the immediate disintegration of the
bubbles, the phase interface (i.e. the α field) was frozen at the same time, and the
flow simulation was continued for at least one through-flow time. Varying σ smoothly
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FIGURE 13. (Colour online) DNS case D: axial volume fraction distribution of flow
topologies for the liquid phase (a) and gaseous phase (b).
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FIGURE 14. (Colour online) DNS case D: slices of the flow topology field (a), where
1–4 in the colour bar refer to S1–S4, respectively, and corresponding Qs2 field (b). The
green and blue lines indicate the phase interface and the Q= 0 isocontour, respectively.

was not considered an option because of the interconnected strong impact on bubble
deformability. According to (3.9), term T53 can produce vorticity even in the absence
of a jump of fluid properties at the interface. Case D does not solely show the
effect of missing term T53, as further potential fluctuation sources are missing in this
simulation: the unsteadiness of bubble deformation and the bubble trajectory.

The axial volume fraction distribution in figure 13 reveals a generally lower level
of focal topologies in the liquid phase, when compared to the reference case with
free bubble motion and non-zero σ (case A). The corresponding distribution in the
gaseous phase suggests a largely different behaviour of the first and second bubble,
which is confirmed by figure 14. Nodal topology S2 prevails in the laminar flow facing
first bubble, whereas the topology distribution in the second bubble is similar to the
reference case (case A). For both bubbles, no distinct peaks of Q can be observed in
the regions of highest interface curvature. To facilitate a direct comparison with the
other cases, the colour scale is identical in all Q plots. Some mechanism of vorticity
production is apparently suppressed (by exclusion of T53 and modification of the flow
field due to the absence of the capillary pressure jump), but turbulence is still being
induced by vortex shedding in the wake of the bubbles. This behaviour at the trailing
edge of the bubble might be promoted by the decrease of kinematic viscosity.

5.4. Case E (neglected surface tension, spherical bubble shape)
The set-up of case E is identical to case D, with the exception of the frozen bubble
shape. Instead of ellipsoidal, it is spherical, i.e. identical to the initial condition in
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FIGURE 15. (Colour online) DNS case E: axial volume fraction distribution of flow
topologies for the liquid phase (a) and corresponding slice of the topology field (b), where
1–4 in the colour bar refer to S1–S4, respectively.

terms of the α field. A steady quasi-laminar solution develops, which makes it easier
to interpret than the fully turbulent cases. It is especially suited to explaining the
exchange of nodal topologies S2 and S3 in the liquid phase at the bubble locations,
which occurs also in the turbulent cases. The obtained velocity field (not shown here)
shows qualitative agreement with the analytical creeping-flow solution by Hadamard
and Rybczynski (Clift et al. 2005; Sadhal et al. 2012), which strictly holds only for
inertialess spherical bubbles at a very low Reynolds number; cf. § 4. The solution is
surely different from the flow around rigid spheres, for which an unsteady von Kármán
vortex street develops in the wake (Sakamoto & Haniu 1990). Owing to the absence
of the capillary pressure jump (σ = 0), the obstacle effect of the bubbles is reduced
to some degree. However, as argued in § 3, the capillary pressure jump itself does not
generate any vorticity. Term T53 of the vorticity transport equation (3.9) is irrelevant
to this case since it is identically zero for perfectly spherical bubbles, even for σ > 0.

The axial evolution of the topology volume fractions in the liquid phase and a
slice of the flow topology field are depicted in figure 15. A regular oscillating pattern
of nodal topologies S2 and S3 evolves in the liquid phase while the (spurious) focal
topologies S1 and S4 remain at a very low level. It can be understood that flow
topologies S2 (unstable node) and S3 (stable node) correspond to the streamline
divergence ahead of the bubble centre and streamline convergence behind the bubble
centre, respectively. Similar to the steady semi-analytical solution discussed in § 4, a
nodal-to-focal-to-nodal topology transition seems to occur in the gaseous phase. The
first and second bubble do not show any differences in that regard.

6. Closing remarks
The purpose of this study is to shed some light on the mechanism of turbulence

production in bubbly two-phase flows. Several physical insights have been obtained
on the basis of a local flow topology analysis. Whereas the volume fraction of
nodal or focal topologies in the liquid phase is largely a consequence of the specific
simulation set-up, the dominance of the focal topologies in the gaseous phase is
expected to appear consistently. As such, in order to find the main reason for this
behaviour, the mathematical model has been successively manipulated with respect to
the fluid properties of the gaseous phase (i.e. by employing the process of elimination).
Increasing the gas density by two orders of magnitude (case B), as well as imposing
equal kinematic viscosities in both phases (case C), influences the topology budgets
only to a limited degree. If the capillary force is artificially set to zero while freezing
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the bubble shape (ellipsoidal bubble in case D, spherical bubble in case E), the
vorticity level is generally lower in both phases when compared to the physical
reference case (case A). However, both phases still contain focal topologies, even for
the steady quasi-laminar flow in case E (spherical bubble shape).

As long as the flow is stable, as in the steady analytical solution discussed in § 4,
the dynamic viscosity ratio would determine whether the vorticity maximum in the
bubble vicinity is located in the liquid or gaseous phase. According to Tripathi et al.
(2014), it follows from stability arguments (Dixit & Govindarajan 2010) that vorticity
tends to accumulate in the lighter fluid independent of the viscosity ratio and the
concaveness/convexness of the interface. It can be speculated that this nonlinear
accumulation effect is particularly important when the bubble-affected flow becomes
unstable, like in the unsteady and turbulent cases A, B, C and D. The vorticity and
topology distributions are obviously strongly linked, as elaborated in § 3.

7. Conclusions and outlook

The dominance of focal topologies in the gaseous phase of bubbly flows seems
to be connected to strong vorticity budgets at the regions of simultaneous high fluid
velocity and high interface curvature. This general behaviour is already evident from
the analysis of the analytical creeping-flow solution for very low Reynolds numbers. In
the same vein, additional nonlinear effects in unsteady turbulent flows are responsible
for the tendency of vorticity accumulation in the lighter fluid. Nevertheless, there is
a strong commonality between laminar and turbulent flows regarding the dominant
topologies: nodal topology S2 ahead of the bubble due to streamline divergence, focal
topologies S4 and S1 within the bubble, and nodal topology S3 in the wake of the
bubble due to streamline convergence. Furthermore, it is observed that the vorticity is
also transported across the interface in the turbulent cases.

Imposing certain bubble shapes and setting the capillary force to zero significantly
changes the vorticity and topology distribution in both phases. More than one
influencing factor is affected by this modification. On the one hand, the flow field
especially within the bubble is altered due to the absence of the capillary pressure
jump. On the other hand, a specific term of the vorticity transport equation related to
surface tension and gradients of interface curvature, responsible for the induction of
vortical motion directly at the interface, is excluded. Besides the known mechanisms
(unsteadiness of bubble deformation, the bubble trajectory and vortex shedding in
the bubble wake), the latter term represents another potential source of turbulence
production that lends itself to further investigation.

It is likely that a combination of different effects has to be considered to fully
explain the generation of turbulence by bubbles – a thorough quantification is required.
Since the additional mechanism for vorticity production is absent in single-phase
flows, state-of-the-art modelling strategies should be reassessed in that regard. For
example, in the LES context, the interface micro-curvature remains unresolved and
corresponding subgrid modelling might be necessary.
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