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This paper proposes a metric bracket for representing Coulomb collisions in the so-called
guiding-centre Vlasov–Maxwell–Landau model. The bracket is manufactured to preserve
the same energy and momentum functionals as does the Vlasov–Maxwell part and
to simultaneously satisfy a revised version of the H-theorem, where the equilibrium
distributions with respect to collisional dynamics are identified as Maxwellians. This
is achieved by exploiting the special projective nature of the Landau collision operator
and the simple form of the system’s momentum functional. A discussion regarding a
possible extension of the results to electromagnetic drift-kinetic and gyrokinetic systems
is included. We anticipate that energy conservation and entropy dissipation can always be
manufactured whereas guaranteeing momentum conservation is a delicate matter yet to
be resolved.
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1. Introduction

Since the 1980s much effort has been devoted to the study of magnetized plasmas
to better comprehend the mechanisms that result in the confinement of particles and
transport phenomena inside fusion devices. The complexity of the particles’ trajectories in
relation to the wide gap of time scales spanning from the electron cyclotron motion to the
macroscopic phenomena has urged the development of perturbative time scale reduction
techniques (see e.g. Grebogi, Kaufman & Littlejohn 1979; Cary & Kaufman 1981; Hatori
& Washimi 1981; Kaufman & Holm 1984) to allow us to step over the computational
limitations set by the gyromotion of particles (Littlejohn 1981, 1982, 1983, 1984).

When dealing with the description of a plasma through the Vlasov–Maxwell–Landau
system, both gyrokinetic and guiding-centre theory are often applied to investigate solely
the Vlasov–Maxwell part and the collision operator is neglected or heavily approximated,
although the trend is starting to shift (see e.g. Bobylev & Nanbu 2000; Yoon & Chang
2014). While the complex character of the dissipationless dynamics may be addressed with
systematic reduction techniques via the Lie-transform perturbation theory (see e.g. Hahm,
Lee & Brizard 1988), following this approach for the dissipative part of the problem, the
collisions, leads to difficult truncation problems in trying to ensure that the effects of
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collisions do not violate, e.g. the laws of thermodynamics. Although gyrokinetic theory is
quite well-established in the collisionless case (Brizard 2000; Sugama 2000; Burby et al.
2015a; Burby & Brizard 2019), dealing with collisions has proven to be puzzling when
taking into account the non-uniformities of the background magnetic field.

After the initial work required to describe collisional test-particle guiding-centre
dynamics (Brizard 2004; Hirvijoki et al. 2013), the first step in solving this matter
was undertaken using electrostatic gyrokinetic theory (Burby, Brizard & Qin 2015b),
where a collision operator compatible with the first and second law of thermodynamics
as well as with conservation of the toroidal canonical momentum was found. Later, it
was shown that the modern formulation of collisional electrostatic gyrokinetics exhibits
a metriplectic structure (Hirvijoki & Burby 2020), which represents an extension of
the Poisson bracket formalism of classical mechanics to dissipative systems that obey
the laws of thermodynamics (see e.g. Kaufman & Morrison 1982; Grmela 1984a,b,
1985; Kaufman 1984; Morrison 1984a,b, 1986). Indeed, the metriplectic formulation has
found applications in theoretical studies involving fluids or plasmas. Examples include
magnetohydrodynamics (see e.g. Morrison & Greene 1980; Morrison 2009) and extended
magnetohydrodynamics (see e.g. Materassi & Tassi 2012; Lingam 2015; Coquinot &
Morrison 2020). In view of this, the possible existence of an asymptotic metriplectic
reduction scheme that could generalize the already established reduction techniques of
collisionless formulations as well as deal with the truncation problems that arise in the
current construction of the collisional gyrokinetic theory was speculated.

The present work provides yet another indication of the possible existence of a
metriplectic reduction theory and sheds further light on the issues of developing
a collision operator for electromagnetic reduced plasma theories. We construct an
energy and momentum conserving collisional bracket for the so-called guiding-centre
Vlasov–Maxwell model (Brizard & Tronci 2016) and expand the discussion initiated
by Hirvijoki & Burby (2020) on why extensions to drift-kinetic and gyrokinetic
electromagnetic theories are so difficult. We start by briefly reviewing the concept of
a collisional bracket in the context of particle phase space dynamics, i.e. with the
Vlasov–Maxwell–Landau system. After this, a collisional bracket for the guiding-centre
Vlasov–Maxwell system of Brizard & Tronci (2016) is given and conservation of
energy and momentum is demonstrated together with an H-theorem. Finally, the
successful treatment of electrostatic gyrokinetics (Hirvijoki & Burby 2020) is recalled to
contextualize the difficulties encountered in trying to construct a momentum conserving
bracket representative of collisions for electromagnetic drift-kinetic theory. Finding such
a bracket would likely lead to better numerical algorithms (Hirvijoki 2021).

2. Collision operator as a metric bracket

The Vlasov–Maxwell–Landau model describes the evolution of distribution functions
of species s and electromagnetic fields. In short, the model consists of the following
equations:

∂fs

∂t
+ v · ∇fs + es

ms

(
E + v

c
× B

)
· ∂fs

∂v
=

∑
s̄

Css̄[ fs, fs̄], (2.1)

1
c

∂E
∂t

+ 4π

c
j = ∇ × B, (2.2)

1
c

∂B
∂t

+ ∇ × E = 0, (2.3)

https://doi.org/10.1017/S0022377821000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000696


Collisional bracket for the guiding-centre Vlasov–Maxwell–Landau model 3

∇ · E = 4π�, (2.4)

∇ · B = 0, (2.5)

where �(x) = ∑
s es

∫
fs d v is the charge density and j(x) = ∑

s es
∫

vfs d v is the current
density.

The Landau operator, which describes the effects arising from small-angle Coulomb
collisions between the species s and s̄, can be expressed as

Css̄( fs, fs̄) = −
∑

s̄

νss̄

ms

∂

∂v
·
∫

δ(x − x̄)fs(z)fs̄(z̄)Q(v − v̄) · Γ ss̄(S, z, z̄) d z̄, (2.6)

where νss̄ = 2πeses̄ ln Λ, the functional S is the entropy

S = −
∑

s

∫
fs ln fs d z, (2.7)

and the vector Γ ss̄(A, z, z̄) is

Γ ss̄(A, z, z̄) = 1
ms

∂

∂v

δA
δfs

(z) − 1
ms̄

∂

∂ v̄

δA
δfs̄

(z̄). (2.8)

The coordinates z = (x, v) and z̄ = (x̄, v̄) refer to different phase-space locations and the
functional derivative is identified via the Fréchet derivative:

∂

∂ε

∣∣∣∣
ε=0

A[ fs + εδfs] =
∫

δA
δfs

δfs d z ≡ δA[δfs]. (2.9)

The matrix Q(ξ) is the familiar scaled projection matrix:

Q(ξ) = 1
|ξ |

(
I − ξξ

|ξ |2
)

, (2.10)

with I as the identity matrix, and the standard form of the collision operator is recovered
after computing the functional derivative of the entropy,

δS
δfs

= −(1 + ln fs), (2.11)

and then evaluating the expression:

fs(z)fs̄(z̄)Γ ss̄(S, z, z̄) = fs(z)
ms̄

∂fs̄

∂ v̄
− fs̄(z̄)

ms

∂fs

∂v
. (2.12)

If we multiply the collision operator with an arbitrary function gs and integrate over the
velocity space, partial integration provides∫

gs(z)Css̄( fs, fs̄) d z

=
∑

s̄

νss̄

ms

∫
∂gs(z)

∂v
·
∫

δ(x − x̄)fs(z)fs̄(z̄)Q(v − v̄) · Γ ss̄(S, z, z̄) d z̄ d z, (2.13)
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while after exchanging the species indices,

∫
gs̄(z)Css̄( fs, fs̄) d z

= −
∑

s

νss̄

ms̄

∫
∂gs̄(z̄)

∂ v̄
·
∫

δ(x − x̄)fs(z)fs̄(z̄)Q(v − v̄) · Γ ss̄(S, z, z̄) d z̄ d z. (2.14)

By summing over the different species we obtain the following expression:

∑
s

∫
gs(z)Css̄( fs, fs̄) d z

=
∑

ss̄

1
2

∫∫
Γ ss̄(G, z, z̄) · Wss̄(z, z̄) · Γ ss̄(S, z, z̄) d z̄ d z, (2.15)

where we used the functional G = ∫
gs(z)fs(z) dz. This rather peculiar form enables a

straightforward identification of a functional bracket,

(A,B) =
∑

s,s̄

1
2

∫∫
Γ ss̄(A, z, z̄) · Wss̄(z, z̄) · Γ ss̄(B, z, z̄) d z̄ d z, (2.16)

where the positive semidefinite matrix Wss̄(z, z̄) is

Wss̄(z, z̄) = νss̄δ(x − x̄)fs(z)fs̄(z̄)Q(v − v̄). (2.17)

In terms of the bracket (2.16), collisional evolution of arbitrary functionals can then be
generalized to the functional differential equation

dA
dt

∣∣∣∣
coll

= (A,S). (2.18)

A detailed account with intermediate steps is provided, e.g. by Morrison (1986) and Kraus
& Hirvijoki (2017), and it is straightforward to verify that the bracket has the kinetic
energy, momentum and mass functionals

K =
∑

s

∫
ms

2
|v|2fs d z, (2.19)

P =
∑

s

∫
msvfs d z, (2.20)

M =
∫

msfs d z, (2.21)

as invariants, and that the equilibrium state is a Maxwellian. This last step is accomplished
by noting that the functional derivatives of the total kinetic energy K, the momentum P
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and the mass M satisfy the identities:

δK
δfs

= ms

2
|v|2, δP

δfs
= msv,

δM
δfs

= ms, (2.22a–c)

which in turns yield the conditions:

Γ ss̄(M, z, z̄) = 0, δ(x − x̄)Γ ss̄(P, z, z̄) = 0, Γ ss̄(K, z, z̄) · Wss̄(z, z̄) = 0.

(2.23a–c)
The equilibrium state satisfies an energy principle, which arises from the existence of
invariants of the bracket being degenerate. Following the energy–Casimir principle (Holm
et al. 1985; Morrison 1998; Kraus & Hirvijoki 2017), the equilibrium condition is obtained
from (

δS
δfs

+ λs
δM
δfs

+ λP · δP
δfs

+ λK δK
δfs

)∣∣∣∣
f =feq

= 0, for all s, (2.24)

which leads to the condition for equilibrium distribution functions:

− (1 + ln fs) + λsms + λP · msv + λK ms

2
|v|2 = 0, for all s. (2.25)

From the latter it is straightforward to recognize that the equilibrium distributions are
identified as Maxwellians:

fs(z) = C eλsms+λP ·msv+λK(ms/2)|v|2, (2.26)

having common temperature and flow velocity but possibly different densities for each
species. The values of the coefficients λs,P,K and the factor C are computed from the
initial state.

The convenience of the bracket formulation is that it brings the collisional evolution on
equal footing with the infinite-dimensional Hamiltonian formulation of the dissipationless
Vlasov–Maxwell part (see Morrison 1980; Weinstein & Morrison 1981; Marsden &
Weinstein 1982). The kinetic system as a whole can then be formulated in terms
of the so-called metriplectic dynamics of arbitrary functionals (Kaufman & Morrison
1982; Grmela 1984a,b, 1985; Kaufman 1984; Morrison 1984a,b, 1986). In dealing
with perturbative reduction techniques for the dissipation-free Hamiltonian part, we are
often concerned with preserving the underlying mathematical structure in the resulting
dynamically reduced theories. We should aim at the same rigor also when accounting for
the collisional evolution.

3. Collisional bracket for the guiding-centre Vlasov–Maxell model

The guiding-centre Vlasov–Maxwell system described by Brizard & Tronci (2016)
consists of the following equations:

∂Fs

∂t
+ Ẋ s · ∇fs + v̇‖,s

∂Fs

∂v‖
= 0, (3.1)

1
c

∂E
∂t

+ 4π

c
(jgc + ∇ × Mgc) = ∇ × B, (3.2)

1
c

∂B
∂t

+ ∇ × E = 0, (3.3)

∇ · E = 4π�gc, (3.4)

∇ · B = 0. (3.5)
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The phase-space advection of individual guiding-centres is given by the equations of
motion:

Ẋ = v‖
B∗

B∗
‖

+ E∗ × cb
B∗

‖
, (3.6)

v̇‖ = eE∗

m
· B∗

B∗
‖
, (3.7)

where the so-called effective magnetic and electric fields are B∗ = B + (mc/e)v‖∇ × b
and E∗ = E − (μ/e)∇B − (mv‖/e)∂tb with B∗

‖ = b · B∗, and the guiding-centre current
and charge density are given by

jgc(x) =
∑

s

es

∫
δ(x − X )Ẋ sFs d Z gc

s , (3.8)

�gc(x) =
∑

s

es

∫
δ(x − X )Fs d Z gc

s . (3.9)

The magnetization in the system is given by

Mgc(x) =
∑

s

∫
δ(x − X )

(msv‖
B

1⊥ · Ẋ s − μb
)

Fs d Z gc
s , (3.10)

where 1⊥ = 1 − bb, and dZ gc
s is the phase-space volume-element including the

phase-space Jacobian that is proportional to B∗
‖. For more details and derivation of the

equations, see the paper by Brizard & Tronci (2016).
As demonstrated by Brizard & Tronci (2016), the guiding-centre Vlasov–Maxwell

system has a variational structure and conserved quantities that can be identified via
analysis of the system’s Noether symmetries. The global invariants are the total energy
and momentum functionals:

Hgc[F, E, B] =
∑

s

∫
KsFs dZ gc

s + 1
8π

∫
(|E|2 + |B|2) d x, (3.11)

Pgc[F, E, B] =
∑

s

∫
msv‖bFs d Z gc

s + 1
4πc

∫
E × B d x, (3.12)

with K being the individual guiding-centre kinetic energy,

K = 1
2 mv2

‖ + μB. (3.13)

If we are to add a collision operator to the right-hand side of (3.1), the same way that
there exists one in (2.1), we should make sure that the corresponding metric structure
preserves the functionals (3.11) and (3.12). However, such a procedure is not trivial when
dealing with dissipative phenomena. The perturbation theory compatible with preserving
Hamiltonian structures primarily operates at the level of the Lagrangian and not the
Poisson structure. While this arrangement guarantees that truncations introduced to the
perturbed Lagrangian facilitate a Poisson structure that satisfies the Jacobi identity, it does
not directly instruct us on how to transform general brackets and functional derivatives. If
the perturbation theory would directly operate on the Poisson structure, it might indicate
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how one could deal with the metric structure. Unfortunately, the truncation problem in
applying the Lie-transformation perturbation theory to the Poisson structure still persists
(Brizard et al. 2016). The alternative way is to use the particle phase-space collisional
bracket (2.16) as a guide and to appropriately modify parts of it while simultaneously
juggling with the conserved quantities. It is this latter route that we have adopted here.

Essentially, we look for a bracket that has a structure similar to the particle bracket,
namely

(A,B)gc =
∑

s,s̄

1
2

∫∫
Γ

gc
ss̄ (A, Z , Z̄) · W

gc
ss̄ (Z , Z̄) · Γ

gc
ss̄ (B, Z , Z̄) d Z̄

gc
s̄ d Z gc

s , (3.14)

where W
gc
ss̄ (Z , Z̄) is required to be positive semidefinite to guarantee entropy dissipation.

If we can have meaningful expressions for Γ
gc
ss̄ (A, Z , Z̄) and W

gc
ss̄ (Z , Z̄) which resemble

the analogous particle phase-space expressions, and guarantee that (3.11) and (3.12)
remain invariants of the bracket, then (3.14) will be representative of small-angle Coulomb
collisions and the form of the appropriate collision operator can be derived from the
bracket directly.

Luckily, we have identified a manner in which the bracket (3.14) can be constructed
to be compatible with the conserved total energy (3.11) and momentum (3.12) of the
guiding-centre Vlasov–Maxwell system. To see how this works out, we define first

Γ
gc
ss̄ (A, Z , Z̄) =

(
b
m

∂

∂v‖
+ Ωb × ρ0

B
∂

∂μ

)
δA
δF

∣∣∣∣
s,Z

−
(

b
m

∂

∂v‖
+ Ωb × ρ0

B
∂

∂μ

)
δA
δF

∣∣∣∣
s̄,Z̄

,

(3.15)
where Ω is the cyclotron frequency and ρ0 is the lowest-order expression for the
gyroradius. In the above expression, the first part is to be evaluated at the position Z
with respect to the species s parameters and the second part in a similar manner but at Z̄
and with respect to species s̄. Now, a direct computation provides

Γ
gc
ss̄ (Pgc, Z , Z̄) = b(X )b(X ) − b(X̄ )b(X̄ ). (3.16)

This expression closely resembles that encountered in the particle phase-space case.
Consequently, if W

gc
ss̄ were to be proportional to δ(X − X̄ ), the momentum functional

Pgc would be an invariant of the proposed metric bracket in the sense of (Pgc
,A) = 0

with respect to arbitrary A.
Next we perform a similar direct computation with respect to the total energy functional.

This provides

Γ
gc
ss̄ (Hgc, Z , Z̄) = (v‖b + Ωb × ρ0)|s,Z − (v‖b + Ωb × ρ0)|s̄,Z̄ , (3.17)

and is analogous to the expression one finds in the particle phase-space case: v‖b + Ωb ×
ρ0 is the familiar lowest-order expression for the particle velocity in the guiding-centre
coordinates including parallel streaming and Larmor rotation around the magnetic field
line but neglecting drifts across the field lines. Consequently, if we choose W

gc
ss̄ (Z , Z̄) so

that the vector Γ
gc
ss̄ (Hgc, Z , Z̄) will belong to its null space, then the bracket will have

the total energy functional an as invariant in the sense of (Hgc,A)gc = 0 with respect to
arbitrary A. A natural choice is to look for a solution that closely resembles the particle
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phase-space case, and this happens to be

W
gc
ss̄ (Z , Z̄) = νss̄δ(X − X̄ )Fs(Z)Fs̄(Z̄)Q(Γ

gc
ss̄ (Hgc, Z , Z̄)). (3.18)

The choices of (3.15) and (3.18) together with the general expression for the bracket (3.14)
now guarantee that if the collisional evolution of functionals were to be given by

dA
dt

∣∣∣∣
coll

= (A,S)gc, (3.19)

and driven by the entropy functional

S = −
∑

s

∫
Fs ln Fs d Z gc

s , (3.20)

both the energy and momentum conservation would be satisfied and the entropy
dissipation would be guaranteed.

The energy–Casimir principle in this case provides the equilibrium condition:(
δS
δFs

+ λPgc · δ

δFs
Pgc[F, E, B] + λHgc

δ

δFs
Hgc[F, E, B]

)∣∣∣∣
F=Feq

= 0, for all s.

(3.21)
which by means of the identities

δHgc[F, E, B]
δFs

= Ks,
δPgc[F, E, B]

δFs
= msv‖b, (3.22a,b)

leads to the condition for equilibrium distribution functions

− (1 + ln Fs) + λPgc · msv‖b + λHgc Ks = 0, for all s. (3.23)

The latter shows that the equilibrium distributions with respect to collisional dynamics
are identified as an exponentiation of the guiding-centre kinetic energy function divided
by a common temperature, with a possible common drift in the parallel direction of the
equilibrium magnetic field.

Finally, we point out that the choice of the vector Γ
gc
ss̄ (A, Z , Z̄) in (3.15) is not arbitrary.

It closely resembles that used by Hirvijoki & Burby (2020): from the guiding-centre
Poisson bracket

{F, G}gc
s,Z = e

mc

(
∂F
∂θ

∂G
∂μ

− ∂F
∂μ

∂G
∂θ

)

+ B∗

mB∗
‖

·
(

∇∗F
∂G
∂v‖

− ∇∗G
∂F
∂v‖

)

− cb
mB∗

‖
· ∇∗F × ∇∗G, (3.24)

using ∂ρ0/∂θ = b × ρ0, Ω = eB/mc and further assuming a locally homogeneous
background plasma, provides{

x + ρ0,
δA
δF

}gc

s,Z

≈
(

b
m

∂

∂v‖
+ Ωb × ρ0

B
∂

∂μ

)
δA
δF

∣∣∣∣
s,Z

. (3.25)

Despite this resemblance, if one were to construct the metric bracket with the exact
guiding-centre Poisson bracket as done by Hirvijoki & Burby (2020), the momentum
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functional Pgc[F, E, B] in (3.12) would not remain an invariant of the bracket. This
highlights the non-triviality of finding a collisional bracket with the correct functional
form and invariants.

4. Explicit expressions for the gyroaverages

While the structure of the collisional bracket (3.14) might appear somewhat
intimidating, parts of it can be handled analytically. The gyroangle dependency in the
bracket materializes in the expressions:

b|X ,X̄ · Q(Γ
gc
ss̄ (Hgc, Z , Z̄)) · b|X ,X̄ , (4.1)

b|X ,X̄ · Q(Γ
gc
ss̄ (Hgc, Z , Z̄)) · (b × ρ0/|ρ0|)|Z ,Z̄ , (4.2)

(b × ρ0/|ρ0|)|Z ,Z̄ · Q(Γ
gc
ss̄ (Hgc, Z , Z̄)) · (b × ρ0/|ρ0|)|Z ,Z̄ , (4.3)

where the syntax |X , |X̄ , |Z and |Z̄ refer to the different possible combinations of positions
with which the Landau operator can be evaluated. The presence of the localizing δ(X −
X̄ ) in the bracket, however, simplifies the above equations by forcing the guiding-centre
positions of the particles Z and Z̄ to the same configuration space position. In that specific
case, we can evaluate

Γ
gc
ss̄ (Hgc, Z , Z̄)|X=X̄ = (v‖−v̄‖)b + v⊥,s(X , μ)k(X , θ) − v̄⊥,s̄(X , μ̄)k(X , θ̄ ), (4.4)

with v⊥,s(X , μ) = √
2μB(X )/ms and the unit vector k = b × ρ0/|ρ0|, which is

perpendicular to the magnetic field.
This means that we can evaluate the double gyroaveages analytically. Defining the

operator 〈·〉 = 1/(4π2)
∫ · dθ dθ̄ and the parameter

s(X , μ, μ̄) = 2v⊥,s(X , μ)v̄⊥,s̄(X , μ̄)

(v‖ − v̄‖)2 + v2
⊥,s(X , μ) + v̄2

⊥,s̄(X , μ̄)
, (4.5)

we use the scalar identity k(X , θ) · k(X , θ̄ ) = cos(θ − θ̄ ) together with the expression for
Γ

gc
ss̄ (Hgc, Z , Z̄)|X=X̄ and the double gyroaverages of (4.1), (4.2), and (4.3) become

〈Qbb(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 1

π

(
s

2v⊥v̄⊥

)3/2

((v2
⊥ + v̄2

⊥)I2(s) − 2v⊥v̄⊥I3(s)), (4.6)

〈Qbk(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 1

π

(
s

2v⊥v̄⊥

)3/2

(v‖ − v̄‖)(v̄⊥I3(s) − v⊥I2(s)), (4.7)

〈Qbk(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 〈Qkb(Γ

gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ , (4.8)

〈Qbk̄(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 1

π

(
s

2v⊥v̄⊥

)3/2

(v‖ − v̄‖)(v̄⊥I2(s) − v⊥I3(s)), (4.9)

〈Qbk̄(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 〈Qk̄b(Γ

gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ , (4.10)

〈Qkk(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 1

π

(
s

2v⊥v̄⊥

)3/2 (
(v‖ − v̄‖)2I2(s) + v̄2

⊥I1(s)
)
, (4.11)
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FIGURE 1. The functions I1(s), I2(s) and I3(s).

〈Qk̄k̄(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 1

π

(
s

2v⊥v̄⊥

)3/2 (
(v‖ − v̄‖)2I2(s) + v2

⊥I1(s)
)
, (4.12)

〈Qkk̄(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 〈Qk̄k(Γ

gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ , (4.13)

〈Qkk̄(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 1

π

(
s

2v⊥v̄⊥

)3/2 (
v⊥v̄⊥I1(s) + (v‖ − v̄‖)2I3(s)

)
. (4.14)

The notation with the superscripts refers to the double contraction of the matrix Q with
respect to b and k etc. The functions Ii(s) are defined in terms of the complete elliptic
integrals of the first and second kind:

I1(s) = 4

s2
√

1 − s

(
K

[
2s

s − 1

]
− (1 − s)E

[
2s

s − 1

])
, (4.15)

I2(s) = 2

(1 + s)
√

1 − s
E

[
2s

s − 1

]
, (4.16)

I3(s) = 2

s(1 + s)
√

1 − s

(
E

[
2s

s − 1

]
− (1 + s)K

[
2s

s − 1

])
. (4.17)

The functional form of (4.15)–(4.17), is such that all these expressions share a common
singularity at the point s = 1 (see figure 1). The singularity results from the condition:

(v‖ − v̄‖)2 + (v⊥ − v̄⊥)2 = 0, (4.18)

which corresponds to the same singularity that appears in the projection matrix (2.10).
From a physical standpoint, the singularity at s = 1 correspond to the colliding particles
residing at the same point in the velocity space. Instructions on performing the double
gyroaveraging are provided in Appendix A.
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5. Discussion

The collisional bracket for the guiding-centre Vlasov–Maxwell–Landau system that
we have presented and analysed in the previous sections is the first one of its kind for
any temporally reduced electromagnetic kinetic plasma model. As there nevertheless
exists a collisional bracket for the electrostatic gyrokinetic model (Hirvijoki & Burby
2020), one can only wonder why have we not encountered analogous brackets or
energetically-consistent collision operators for other reduced electromagnetic kinetic
plasma theories, namely the electromagnetic drift-kinetic and gyrokinetic models. What
are we missing?

Dropping all the extra indices and species labels for clarity, we know that the particle
velocity can be represented in the reduced coordinates to a reasonable accuracy as v =
Ẋ + ρ̇0, where Ẋ captures the parallel streaming and the slower drifts while ρ̇0 captures
the fast Larmor rotation. In an electrostatic theory, it then makes sense to write the particle
velocity as

v = {X + ρ0, H}, (5.1)
with H the single drift-centre or gyrocenter Hamiltonian. Further, we know that the
velocity-space derivative of a particle phase-space function f can be expressed in terms
of the non-canonical particle phase-space Poisson bracket. This admits the transformation
of the velocity derivatives in the Landau operator to the reduced coordinates in a manner
which circumvents much of the difficulties in the underlying asymptotic transformation:

1
m

∂f
∂v

�→ {X + ρ0, F}. (5.2)

Here F is the distribution function and {·, ·} is the Poisson bracket in the reduced
coordinates. For details, see the paper by Brizard (2004). Combining this information with
how the single-particle velocity can be expressed in the electrostatic case, it then seems
logical to express the vector Γ (A) in the collisional bracket as

Γ (A) =
{

X + ρ0,
δA
δF

}
z

−
{

X + ρ0,
δA
δF

}
z̄

. (5.3)

Because the Hamiltonian functional in the electrostatic case satisfies δH/δF = H, an
energy-conserving collisional bracket for electrostatic theories can then be found simply
by choosing Q(Γ (H)) in the matrix W. Furthermore, if the background magnetic vector
potential A0 present in the unperturbed guiding-centre one-form is axially symmetric and
the one-form itself gyrogauge independent, then

{X + ρ0, pφ} = ẑ × (X + ρ0), (5.4)

where pφ is the single guiding-centre canonical toroidal momentum. As the canonical
toroidal momentum functional in the electrostatic case also satisfies δPφ/δF = pφ , the
bracket will satisfy canonical toroidal momentum conservation as long as the localizing
delta-function in the matrix W is chosen with respect to the difference in the particle
positions X + ρ0 and X̄ + ρ̄0 (see the papers by Burby et al. 2015b and Hirvijoki & Burby
2020 for details).

In perturbed electromagnetic theories, such as the drift-kinetic and gyrokinetic ones,
things are different. The single drift-centre or gyrocentre Lagrangian is presented as

L = ϑα żα − K(E1, B1) + (e/c)A1,iẊi − eϕ1, (5.5)

with ϑα the six time-independent components of the unperturbed guiding-centre
one-form, K is the kinetic energy function, and (A1, ϕ1) and (B1, E1) are the perturbed
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electromagnetic potentials and fields, respectively. In this case, the particle velocity in
reduced coordinates becomes

v = {X + ρ0, K} − {X + ρ0, X } · eE1. (5.6)

An analogous expression was used also by Brizard & Chandre (2020) in a different
context. Also note that now the Poisson bracket contains contributions from the
time-dependent perturbation B1 as well. Formally, the electrostatic case is recovered by
simply setting the perturbations A1 and B1 to zero, moving the electrostatic part of the
electric field inside the bracket, and by combining K and ϕ1 into H = K(E1) + eϕ1.

Imagine now that we were to try a similar route as in the electrostatic case. We shall use
the drift-kinetic system documented by Hirvijoki et al. (2020) as an example. In this case,
the canonical toroidal momentum and energy functionals conserved by the collisionless
dynamics can be expressed in the following form:

Pφ[F, E1, B1] =
∫ (

pφ − ∂K
∂E1

× B1

c
· eφ

)
F d Z + 1

4π

∫
E1 × B1

c
· eφ d x, (5.7)

H[F, E1, B1] =
∫ (

K − ∂K
∂E1

· E1

)
F d Z + 1

8π

∫ (|E1|2 + |B0 + B1|2
)

d x, (5.8)

From where, we infer

δPφ

δF
= pφ − ∂K

∂E1
× B1

c
· eφ, (5.9)

δH
δF

= K − ∂K
∂E1

· E1. (5.10)

Most importantly, this means that

δPφ

δF
= pφ, (5.11){

X + ρ0,
δH
δF

}
= v. (5.12)

There does not appear to be an immediate, simple way to modify (5.3) so that one would
recover Γ (H) = v − v̄, where v is given by (5.6), and Γ (Pφ) = {X + ρ0, pφ}, which
guarantee the conservation laws in the electrostatic case.

Were we to, e.g. add some operator to the expression (5.3), we would need to find a way
to cancel the inequalities above while acting only on the functional derivatives,

δPφ

δE1
= B1 × eφ

4π
−

∫
δ(x − X )

∂2K
∂E1∂E1

× B1 · eφF d Z , (5.13)

δPφ

δB1
= −D × eφ

4π
−

∫
δ(x − X )

∂2K
∂B1∂E1

× B1 · eφF d Z , (5.14)

δH
δE1

= D
4π

−
∫

δ(x − X )
∂2K

∂E1∂E1
· E1F d Z , (5.15)

δH
δB1

= B0 + B1

4π
−

∫
δ(x − X )

∂2K
∂B1∂E1

· E1F d Z , (5.16)

where the electric displacement field is D1(x) = E1(x) − ∫
δ(x − X )∂K/∂E1F d Z . It

is, however, difficult to imagine how the expression −(∂K/∂E1) × (B1/c) · eφ , which
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appears to be preventing momentum conservation, could be expressed in terms of some
operator acting on δPφ/δE1 and δPφ/δB1. The operator would also need to be linear in
its action to preserve the bilinearity of the total bracket. Even if such an operator could
be found, it is difficult to imagine it to simultaneously address the other inequality when
acting on H instead of Pφ .

Finally, we note that because the electric perturbation E1 in the kinetic energy function
K often appears at second order, one could imagine using δH/δF = K − ∂K/∂E1 · E1 as
an approximation of K. Further, if the E × B velocity could be neglected in collisions,
then using the Γ (A) of (5.3) together with Q(Γ (H)) for the matrix W would guarantee
energy conservation and entropy dissipation, even if momentum conservation would not be
achieved. In general, though, resolving these issues rigorously calls for a more systematic
approach to performing asymptotic dynamical reduction of metric brackets.

6. Summary

In this paper, we have presented a metric bracket to account for Coulomb collisions in
the so-called guiding-centre Vlasov–Maxwell–Landau model. The bracket has been shown
to preserve the system energy and momentum functionals, and to satisfy an H-theorem.
We have also discussed in detail the issues that arise if the same concept is to be applied
to electromagnetic drift-kinetic or gyrokinetic theories: while we are, in principle, able to
manufacture an energy conserving and entropy dissipating bracket, we have not found a
way to guarantee momentum conservation, regardless of whether energy is conserved or
not.

Based on our findings, we conclude that a systematic tool for performing asymptotic
dynamical reduction of collisional process, or more precisely of metric brackets, is
necessary. Although Lie-transform perturbation theory is an established tool to handle
asymptotic dynamical reduction of dissipation-free dynamics, no similar compatible
theory exists yet to handle structure-preserving dissipative dynamics.
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Appendix A. Computation of the gyroaverages

The computation of the gyroaverages involves contracting the Landau tensor with the
unit vectors b and k = b × (ρ0/|ρ0|) evaluated at the positions |X , |X̄ , |Z and |Z̄ . In
principle the following combinations are needed:

b|X ,X̄ · Q(Γ
gc
ss̄ (Hgc, Z , Z̄)) · b|X ,X̄ ,

b|X ,X̄ · Q(Γ
gc
ss̄ (Hgc, Z , Z̄)) · k|Z ,Z̄ ,

k|Z ,Z̄ · Q(Γ
gc
ss̄ (Hgc, Z , Z̄)) · k|Z ,Z̄ ,

⎫⎪⎬
⎪⎭ (A1)
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but in practice the condition X = X̄ can be applied, credited to the presence of the
localizing delta function in the bracket. Then double integration on the angular variables
is performed with the operator 〈·〉 = 1/(4π2)

∫ · dθ dθ̄ .
For the computation, one needs expressions involving the vector Γ

gc
ss̄ (Hgc, Z , Z̄). The

norm of the vector can be expressed as

|Γ gc
ss̄ (Hgc, Z , Z̄)|X=X̄ =

(
2v⊥,sv̄⊥,s̄

s

)1/2 √
1 − s cos(θ − θ̄ ), (A2)

with v⊥,s = v⊥,s(X , μ), v̄⊥,s̄ = v̄⊥,s̄(X , μ̄) and s = s(X , μ, μ̄) the parameters defined in
(4.5). As the scaled projection matrix Q(Γ

gc
ss̄ (Hgc, Z , Z̄)) takes the form

Q(Γ
gc
ss̄ (Hgc, Z , Z̄)) = 1

|Γ gc
ss̄ (Hgc, Z , Z̄)|

[
I − Γ

gc
ss̄ (Hgc, Z , Z̄)Γ

gc
ss̄ (Hgc, Z , Z̄)

|Γ gc
ss̄ (Hgc, Z , Z̄)|2

]
, (A3)

also the following dyad is needed:

Γ
gc
ss̄ (Hgc, Z , Z̄)Γ

gc
ss̄ (Hgc, Z , Z̄)|X=X̄

= (v‖−v̄‖)2bb + v2
⊥,skk − v⊥,sv̄⊥,s̄(kk̄ + k̄k) + v̄2

⊥,s̄k̄k̄

+ (v‖ − v̄‖)[v⊥,s(bk + kb) − v̄⊥,s̄(bk̄ + k̄b)]. (A4)

It is also useful to note the identity k · k̄ = cos(θ − θ̄ ).
As an example, suppose we wish to evaluate the average related to the contraction of the

Landau tensor with the unit vector b, namely 〈Qbb(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ . The contraction

with b provides

b · Q(Γ
gc
ss̄ (Hgc, Z , Z̄)) · b|X=X̄ = |Γ gc

ss̄ (Hgc, Z , Z̄)|2
X=X̄

− (v‖ − v̄‖)2

|Γ gc
ss̄ (Hgc, Z , Z̄)|3

X=X̄

, (A5)

substituting the relevant expressions, one identifies two integrals

∫ 2π

0

∫ 2π

0

dθ dθ̄

[1 − s cos(θ̄ − θ)]3/2
= 8π

(s + 1)
√

1 − s
E

(
2s

s − 1

)
,∫ 2π

0

∫ 2π

0

cos(θ̄ − θ) dθ dθ̄

[1 − s cos(θ̄ − θ)]3/2
= 8π

√
1 − s

s(s2 − 1)

[
(s + 1)K

(
2s

s − 1

)
− E

(
2s

s − 1

)]
,

⎫⎪⎪⎬
⎪⎪⎭

(A6)

after which the result from § 4 is recovered

〈Qbb(Γ
gc
ss̄ (Hgc, Z , Z̄))〉|X=X̄ = 1

π

(
s

2v⊥v̄⊥

)3/2

((v2
⊥ + v̄2

⊥)I2(s) − 2v⊥v̄⊥I3(s)). (A7)

The rest of the gyroaverages are computed in exactly the same manner by contracting the
appropriate unit vectors with the projection matrix and performing the angular integrals.
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