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Abstract Affine varieties among all algebraic varieties have simple structures. For example, an affine

variety does not contain any complete algebraic curve. In this paper, we study affine-related properties of

strata of k-differentials on smooth curves which parameterize sections of the kth power of the canonical
line bundle with prescribed orders of zeros and poles. We show that if there is a prescribed pole of order

at least k, then the corresponding stratum does not contain any complete curve. Moreover, we explore

the amusing question whether affine invariant manifolds arising from Teichmüller dynamics are affine
varieties, and confirm the answer for Teichmüller curves, Hurwitz spaces of torus coverings, hyperelliptic

strata as well as some low genus strata.
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1. introduction

For a positive integer k, let µ = (m1, . . . ,mn) be an integral partition of k(2g− 2),
i.e., mi ∈ Z for all i and

∑n
i=1 mi = k(2g− 2). The stratum of k-differentials Hk(µ)

parameterizes pairs (C, ξ) where C is a smooth complex curve of genus g and ξ is a

(possibly meromorphic) section of K⊗k
C such that (ξ)0− (ξ)∞ =

∑n
i=1 mi pi for distinct

points p1, . . . , pn ∈ C . If we consider differentials up to scale, then the corresponding

stratum of k-canonical divisors Pk(µ) parameterizes the underlying divisors
∑n

i=1 mi pi ,

and Hk(µ) is a C∗-bundle over Pk(µ). We also write H(µ) and P(µ) for the case k = 1.

Abelian and quadratic differentials, i.e., the cases k = 1 and k = 2 respectively,

have broad connections to flat geometry, billiard dynamics, and Teichmüller theory.

Recently their algebraic properties (also for general k-differentials) have been investigated

intensively, which has produced fascinating results in the study of both Teichmüller

dynamics and moduli of curves. We refer to [2, 3, 5, 11–14, 28, 29] for related topics as

well as some recent advances.
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Let Mg be the moduli space of smooth genus g curves (and Mg,n the moduli space with

n ordered marked points). One of the central questions in the study of moduli of curves

is to determine complete subvarieties in Mg. Diaz [9] first proved that the dimension

of any complete subvariety in Mg is at most g− 2 (see [18, 23] for alternate proofs).

Nevertheless, it is unknown whether this bound is sharp. In particular, we do not know

whether M4 contains a complete algebraic surface.

Despite that little is known about the global geometry of the strata of differentials

(see [4, 17, 24] for some special cases), one can similarly ask the question about complete

subvarieties in the strata. Our first result is as follows.

Theorem 1.1. If µ has an entry mi 6 −k, then there is no complete curve in Hk(µ) and

Pk(µ).

The case k = 1 yields the following result.

Corollary 1.2. Every stratum of strictly meromorphic abelian differentials or canonical

divisors does not contain a complete curve.

Next we turn to the case of holomorphic abelian differentials, i.e., when k = 1 and

all entries of µ are positive. A novel idea in the study of Mg is to construct special

stratifications of Mg (see e.g., [16]). Denote by H the Hodge bundle parameterizing

holomorphic abelian differentials, which is a rank-g vector bundle over Mg, and let P be

the projectivization of H parameterizing holomorphic canonical divisors. Then the strata

P(µ) with holomorphic signatures µ form a stratification of P. For special µ, P(µ) can

have up to three connected components, due to hyperelliptic and spin structures [22],

and we label by hyp, even and odd to distinguish these strata (components). It was asked

in [26, Problem 3.7] whether the strata P(µ) are affine. If the answer is yes in general,

then it would follow that there is no complete curve in P(µ).
Knowing the affinity of the strata has another implication. The group GL+2 (R) acts

on the strata H(µ) of holomorphic abelian differentials by varying the shape of the

corresponding flat surfaces. By [11, 12] (the normalizations of) all GL+2 (R)-orbit closures

(under the analytic topology of H(µ)) are locally cut out by homogeneous real linear

equations of period coordinates; hence, they are also called affine invariant manifolds.

Here the term ‘affine’ is different from what it means in algebraic geometry, as it refers

to the locally linear structure. Nevertheless, one can ask the following question: are affine

invariant manifolds affine varieties? More precisely, we project a GL+2 (R)-orbit closure

to P(µ) by modulo scaling of the differentials. Note that any closed subset of an affine

variety is still affine (see e.g., [27, p. 106, Theorem 3]), and by [14] all GL+2 (R)-orbit

closures are closed subvarieties in the strata. Therefore, if P(µ) is affine as suspected

above, it would imply that all orbit closures in P(µ) are affine.

Our next result provides evidence for two typical types of orbit closures. The first type

is called Teichmüller curves, which correspond to closed GL+2 (R)-orbits in the strata. The

other type arises from Hurwitz spaces of torus coverings with n branch points, and the

case n = 1 yields special Teichmüller curves.

Theorem 1.3. Teichmüller curves and Hurwitz spaces of torus coverings are affine.
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We also show that the hyperelliptic strata and some low genus strata of holomorphic

canonical divisors are affine, see § 4.

2. Complete curves in the strata

In this section we prove Theorem 1.1. The upshot is an intersection calculation, which was

also used to derive a relation between area Siegel–Veech constants and sums of Lyapunov

exponents for affine invariant manifolds (see [7, 8, 10]). The reason we need a pole of order

at least k will become clear in the proof. Recall first the following well-known result.

Lemma 2.1. Suppose π : X → C is a complete one-dimensional family of smooth genus g
curves for g > 2, and S is a section. Then the self-intersection S2 6 0. Moreover, S2

= 0
iff the family has constant moduli and S is a constant section.

Proof. By e.g., [20, p. 309] we know that S2 6 0, and if the family is nonconstant then

S2 < 0. Now suppose all fibers of π are isomorphic to a smooth curve X . Let f : X → X
be the natural projection. If S is not a constant section, then f |S is onto X , and let d be

the degree of this map. It follows that

−S2
= S · f ∗K X = f∗S · K X = d(2g− 2) > 0,

hence S2 < 0.

Proof of Theorem 1.1. Since Hk(µ) is a C∗-bundle over Pk(µ), a complete curve in Hk(µ)

maps to a complete curve in Pk(µ), hence it suffices to prove the claim for Pk(µ). We

can also assume that the zeros and poles as marked points are ordered, as it differs from

the unordered setting only by a finite morphism, which does not affect the (non)existence

of a complete curve in the respective moduli spaces. Suppose C is a complete curve in

Pk(µ). Let π : X → C be the universal curve and S1, . . . , Sn the sections corresponding

to the prescribed zeros and poles of order m1, . . . ,mn , respectively. Denote by ω the

divisor class of the relative dualizing line bundle of π .

Consider first the case g > 2. Since kω and
∑n

i=1 mi Si restricted to every fiber of π

both correspond to the kth power of the canonical line bundle of the fiber, there exists a

line bundle class L on C such that

kω = π∗L+
n∑

i=1

mi Si . (1)

Observe the following relations of intersection numbers:

Si ·ω = −S2
i ,

π∗L · Si = degL,
Si · S j = 0, i 6= j.

Intersecting (1) with Si and using the above relations, we obtain that

(mi + k)S2
i = − degL (2)
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for all i . Next take the square of (1). Using the above relations along with (π∗L)2 = 0,

we obtain that

k2ω2
=

n∑
i=1

(2mi degL+m2
i S2

i ). (3)

Suppose there exists some m j 6 −k. We discuss separately the cases m j = −k and m j <

−k. If m j = −k, then by (2) we have degL = 0, and (3) reduces to k2ω2
=

∑n
i=1 m2

i S2
i .

If C is not a constant family, by Lemma 2.1 we know that S2
i < 0 for all i . On the

other hand, ω2 equals the first κ-class (also equal to 12λ), which is ample on Mg and

hence has positive degree on C , leading to a contradiction. If the family is constant, then

there exists some nonconstant section Sh , for otherwise C would parameterize a single

point in Pk(µ), hence S2
h < 0 by Lemma 2.1. Moreover by (2) and degL = 0, we have

mh = −k. Since S2
j 6 0 for all j , we obtain that ω2 6 S2

h < 0, contradicting that ω2
= 0

on a constant family.

Now suppose mi 6= −k for all i and there exists some m j < −k. Since
∑n

i=1 mi = k(2g−
2) > 0, there exists some mh > 0. Since S2

i 6 0 for all i , m j + k < 0 and mh + k > 0, it

follows from (2) that degL = 0 and S2
i = 0 for all i . By Lemma 2.1, C parameterizes a

constant family and all sections Si are constant, leading to a contradiction.

For g = 1, Pk(µ) parameterizes pointed genus one curves (E, p1, . . . , pn) such that∑n
i=1 mi pi is the trivial divisor class. Since the fibers of the forgetful map M1,n →M1,n−1

are not complete for all n and M1,1 is not complete, a complete curve C in Pk(µ)

must parameterize constant j-invariant, i.e., C is a complete one-dimensional family of n
distinct points p1, . . . , pn on a fixed genus one curve E such that

∑n
i=1 mi pi is trivial. Fix

p1 at the origin so that (E, p1) becomes an elliptic curve. Then there exists some other

pi , say p2, such that p2 varies in E with respect to p1. Since the family is complete, the

locus p2 traces out in (E, p1) is a complete one-dimensional subcurve, which must be E
itself. It follows that p2 will meet p1 at some point, contradicting that they are distinct

over the entire family.

Finally for g = 0, note that Pk(µ) is isomorphic to M0,n which is affine, hence it does

not contain any complete curve.

If ω is a k-differential on C , then there exists a canonical cyclic k-cover π : C̃ → C and

an abelian differential ω̃ on C̃ such that π∗ω = ω̃k (see e.g., [3]), where ω̃ is determined

up to the choice of a kth root of unity. A singularity of ω of order m gives rise to

singularities of ω̃ of order (m+ k)/ gcd(m, k)− 1. Therefore, if Hk(µ) has all entries > −k,

then via this covering construction it lifts (as an unramified k-cover) into a stratum

H(µ̃) of holomorphic abelian differentials (here we allow some entries of µ̃ to be zero).

In particular, a complete curve in Hk(µ) lifts to a union of complete curves in H(µ̃).
Combining with Theorem 1.1, we thus conclude the following result.

Proposition 2.2. If the strata of holomorphic abelian differentials (or canonical divisors)

do not contain any complete curve, then the strata of k-differentials (or k-canonical

divisors) do not contain any complete curve for all k.

The study of complete subvarieties in the strata of holomorphic abelian differentials is

more challenging and requires some new idea. Even for the minimal (non-hyperelliptic)

https://doi.org/10.1017/S1474748017000445 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000445


Affine geometry of strata of differentials 1335

strata P(2g− 2), three decades ago Harris [19, p. 413] asked about the existence of

complete families of subcanonical points, and it remains open as far as the author knows.

We plan to treat this question in future work.

3. Affine invariant manifolds

In this section we prove Theorem 1.3. The case of Teichmüller curves follows from

the fact that SL2(R)-orbits are never complete (see e.g., [28, Proposition 3.2]), as the

SL2(R)-action can make a saddle connection arbitrarily short so that the underlying

surface breaks in the end. Since any complete algebraic curve minus finitely many points

is affine, we conclude that Teichmüller curves are affine.

For the case of Hurwitz spaces, the idea of the proof is motivated by [15], which showed

that the top stratum of Arbarello’s Weierstrass flag of Mg is affine (though [1] showed

that the rest strata of the Weierstrass flag are almost never affine). We set up some

notation first. Let S be a subgroup of the symmetric group Sn which acts on M1,n by

permuting the n markings. In particular, M1,n/Sn is the moduli space of smooth genus

one curves with n unordered marked points. Let Hd(5) be the Hurwitz space of degree

d connected covers of genus one curves with a given ramification profile 5, that is, the

number of branch points and the ramification type over each branch point are fixed. There

is a finite morphism f : Hd(5)→M1,n/S for some subgroup S of Sn which permutes

branch points of the same ramification type, and the degree of f is the corresponding

Hurwitz number. It remains to prove the following.

Theorem 3.1. The Hurwitz space Hd(5) is affine.

Proof. The composition Hd(5)→M1,n/S→M1,n/Sn remains to be a finite morphism,

hence it suffices to show that M1,n/Sn is affine (see e.g., [21, Chapter II,

Corollary 1.5]). By [6, Theorem 5.1] the cone of effective divisors of the Deligne–Mumford

compactification M1,n/Sn is spanned by the boundary divisors, hence the class of an

ample divisor on M1,n/Sn must be a positive linear combination of the boundary divisor

classes, as any ample divisor class lies in the interior of the effective cone. Therefore,

M1,n/Sn is affine as the complement of an ample divisor in M1,n/Sn .

Remark 3.2. If Hd(5) is reducible, the above proof applies to each connected component

of Hd(5), hence every connected component of Hd(5) is affine.

Remark 3.3. Except Teichmüller curves and Hurwitz spaces of torus coverings,

GL+2 (R)-orbit closures (other than the strata) are quite rare to find. Recently a totally

geodesic Teichmüller surface was discovered in [25], which arises from the flex locus

F ⊂M1,3/S3. Since M1,3/S3 is affine, so is the closed subset F .

4. Affine strata

Recall that for special µ, the strata P(µ) can be disconnected, where additional connected

components are caused by hyperelliptic and spin structures. Here when we speak of a

stratum, we always mean one of its connected components and will label it by hyp, odd
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or even accordingly. It is known as folklore to experts that the hyperelliptic strata and

a number of low genus strata (components) of holomorphic canonical divisors are affine

(see [26, § 3.8]). For the sake of completeness, in this section we provide some detailed

proofs. In addition, we reduce the affinity of strata of k-canonical divisors to the case of

canonical divisors, see Proposition 4.4.

4.1. The hyperelliptic strata

The strata P(2g− 2)hyp and P(g− 1, g− 1)hyp parameterize hyperelliptic curves with

a marked Weierstrass point and a pair of distinct hyperelliptic conjugate points,

respectively. For a, b > 0, let M0,a;b be the moduli space of smooth rational curves

with a ordered marked points and b unordered marked points. Identifying a genus g
hyperelliptic curve with a smooth rational curve marked at the 2g+ 2 branch points, it

follows that P(2g− 2)hyp ∼=M0,1;2g+1 and P(g− 1, g− 1)hyp ∼=M0,1;2g+2. Let M0,n/Sn
be the moduli space of smooth rational curves with n unordered marked points, which is

isomorphic to Pn−3 minus a union of hypersurfaces, hence M0,n/Sn is affine. There is a

finite morphism M0,a;b →M0,a+b/Sa+b which forgets the orders of the markings, hence

M0,a;b is affine. In particular, P(2g− 2)hyp and P(g− 1, g− 1)hyp are affine.

4.2. The stratum P(4)odd

The first non-hyperelliptic stratum is P(4)odd in genus three, which parameterizes

non-hyperelliptic genus three curves C with a hyperflex p, i.e., 4p ∼ KC . Since C is

non-hyperelliptic, its canonical embedding is a smooth plane quartic. Then there exists

a line L tangent to C at p with contact order four. Projecting C through p to a general

line induces a triple cover of C to P1. By Riemann–Hurwitz, there exists (at least) two

other lines L1 and L2 through p, which are tangent to C at p1 and p2, respectively.

Consider the resulting point-line configuration in P2: (p ∈ L , L1, L2; p1 ∈ L1; p2 ∈ L2)

where p, p1, p2 are distinct points and L , L1, L2 are distinct lines. It is easy to check

that GL(3) acts on the set of such configurations transitively.

Let [X, Y, Z ] be the homogeneous coordinates of P2. Without loss of generality, we may

assume that L is defined by Y = 0, L1 is defined by X = 0, L2 is defined by X − Y = 0,

p = [0, 0, 1], p1 = [0, 1, 0] and p2 = [1, 1, 0]. The subgroup G of GL(3) preserving this

configuration consists of elements of the form diag(µ,µ, λ) where µ, λ ∈ C∗. Let F =∑i+ j+k=4
i, j,k>0 ai jk X i Y j Z k be the defining equation of C . The tangency conditions imposed

by the point-line configuration imply that

a004 = a103 = a202 = a301 = 0,

a040 = a031 = 0,

a400+ a310+ a220+ a130+ a040 = 0,

a301+ a211+ a121+ a031 = 0

which impose eight independent conditions to the space P14 of all plane quartics. We

can take a400, a310, a220, a211, a121, a022, a013 as free parameters and G acts on them by

taking ai jk to µi+ jλkai jk . Note that if a400 = 0, then F is divisible by Y , and C would

be reducible. Since affinity is preserved under finite morphisms and G takes a400 to
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µ4a400, after a degree four base change we can assume that a400 = 1 and µ = 1. Then

the space of remaining parameters with the G-action can be identified with C2
× (C4

\

{0}/G) minus a (possibly reducible) hypersurface which parameterizes singular quartics,

where the first term C2 parameterizes a310 and a220, the second term C4 parameterizes

(a211, a121, a022, a013) (not all zero for otherwise C would be reducible) and G acts on it

by taking ai jk to λkai jk for λ ∈ C∗. Since (C4
\ {0}/G) is a weighted projective space, the

complement of a hypersurface is affine. Therefore, up to the choice of the two specified

tangent lines L1 and L2, P(4)odd can be realized as the image of a finite morphism from

an affine variety, hence it is affine.

4.3. The stratum P(3, 1)

This stratum parameterizes non-hyperelliptic genus three curves C with two distinct

points p and q such that 3p+ q ∼ KC . In terms of the canonical embedding of C as a

smooth plane quartic, there exists a line L tangent to C at p with contact order three,

and q is determined by the other intersection point of L with C . Take the same point-line

configuration as in the previous case to impose tangency conditions to C . Then we have

a004 = a103 = a202 = 0,

a040 = a031 = 0,

a400+ a310+ a220+ a130+ a040 = 0,

a301+ a211+ a121+ a031 = 0

which impose seven independent conditions to the space P14 of all plane quartics. We can

take a130, a220, a310, a301, a211, a121, a022, a013 as free parameters and G acts on them by

taking ai jk to µi+ jλkai jk . Note that if a130 = 0, then C would be singular at p1 = [0, 1, 0].
Since affinity is preserved under finite morphisms and G takes a130 to µ4a130, after a

degree four base change we can assume that a130 = 1 and µ = 1. Then the space of

remaining parameters with the G-action can be identified with C2
× (C5

\ {0}/G) minus

a union of hypersurfaces which parameterize singular quartics and quartics that have

contact order four to L at p, where the first term C2 parameterizes a220 and a310, the

second term C5 parameterizes a301, a211, a121, a022, a013 (not all zero for otherwise C would

be reducible) and G acts on it by taking ai jk to λkai jk for λ ∈ C∗. Since (C5
\ {0}/G) is

a weighted projective space, the complement of hypersurfaces is affine. Therefore, up to

the choice of the two specified tangent lines L1 and L2, P(3, 1) can be realized as the

image of a finite morphism from an affine variety, hence it is affine.

4.4. The stratum P(2, 2)odd

This stratum parameterizes non-hyperelliptic genus three curves C with two distinct

points p1 and p2 such that 2p1+ 2p2 ∼ KC . In terms of the canonical embedding of C
as a smooth plane quartic, there exists a line L tangent to C at p1 and p2. Since every

smooth plane quartic has 28 distinct bitangent lines, let M be another bitangent line that

intersects C at q1 and q2. Denote by r the intersection of L with M . Note that r is distinct

from pi and q j . Consider the resulting point-line configuration in P2: (p1, p2 ∈ L; q1, q2 ∈

M; r = L ∩M), where p1, p2, q1, q2, r are distinct points and L ,M are distinct lines. It
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is easy to check that GL(3) acts on the set of such configurations transitively. Without

loss of generality, we may assume that L is defined by Y = 0, M is defined by Z = 0,

r = [1, 0, 0], p1 = [0, 0, 1], p2 = [1, 0, 1], q1 = [0, 1, 0] and q2 = [1, 1, 0]. The subgroup

G of GL(3) preserving this configuration consists of scalar matrices only. Following the

previous notation, a routine calculation shows that these bitangency requirements impose

eight linearly independent conditions to the coefficients ai jk , hence in the total space of

plane quartics these conditions cut out a subspace P6 which contains a hypersurface

of singular quartics. Therefore, up to the choice of the two specified bitangent lines,

P(2, 2)odd can be realized as the image of a finite morphism from an affine variety, hence

it is affine.

Remark 4.1. An alternative argument for the affinity of P(3, 1), P(2, 2)odd and P(4)odd

was suggested to the author by the referee. Let Hypg ⊂Mg be the locus of genus g
hyperelliptic curves. For g = 3, the locus of non-hyperelliptic curves M3 \Hyp3 is affine,

as the class of Hyp3 is proportional to the ample class λ on M3 (see [20, p. 164]). Note that

curves parameterized in P(3, 1) and P(4)odd are non-hyperelliptic, whose plane quartic

models correspond to possessing a flex point with a distinct residual point and a hyperflex

point (when the flex point coincides with the residual point), respectively. Therefore,

P(3, 1)tP(4)odd admits a finite surjective morphism (of degree 24) to M3 \Hyp3, hence

P(3, 1)tP(4)odd is affine. Since P(4)odd is a closed hypersurface in P(3, 1)tP(4)odd, it

follows that P(3, 1) and P(4)odd are affine. Similarly P(2, 2)odd
tP(4)odd admits a finite

surjective morphism (of degree 28) to M3 \Hyp3, which is induced by the 28 bitangents

of a smooth plane quartic, hence P(2, 2)odd
tP(4)odd and P(2, 2)odd are affine.

Remark 4.2. For the two remaining strata P(2, 1, 1) and P(1, 1, 1, 1) in genus three, they

both contain hyperelliptic curves whose canonical maps are double covers of plane conics,

hence the plane quartic model does not directly apply to these cases. Nevertheless, one

can use the above method to show that the complements of the hyperelliptic locus in

these two strata are affine.

4.5. The stratum P(6)even

This stratum parameterizes non-hyperelliptic genus four curves C with a point p such

that 6p ∼ KC and h0(C, 3p) = 2. In terms of the canonical embedding of C in P3, there

exists a unique quadric cone Q containing C such that a ruling L of Q cuts out 3p with C .

Let v be the vertex of Q. There exists (at least) two other rulings L1 and L2 through v

such that L i is tangent to C at pi for i = 1, 2. Consider the resulting configuration:

(p ∈ L , p1 ∈ L1, p2 ∈ L2; L , L1, L2 ⊂ Q), where p, p1, p2 are distinct points from v

and L , L1, L2 are distinct lines. It is easy to check that GL(4) acts on the set of

such configurations transitively. Let [X, Y, Z ,W ] be the homogeneous coordinates of

P3. Without loss of generality, we may assume that Q is defined by XY − Z2
= 0, L

is defined by X = Y = Z , L1 is defined by Y = Z = 0, L2 is defined by X = Z = 0,

p = [1, 1, 1, 0], p1 = [1, 0, 0, 0] and p2 = [0, 1, 0, 0]. The subgroup G of GL(4) preserving

this configuration consists of elements of the form diag(λ, λ, λ, µ) where λ,µ ∈ C∗. Let

F =
∑

i+ j+k=3 ai jk X i Y j W k
+ Z

∑
i+ j+k=2 bi jk X i Y j W k be the cubic equation that cuts
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out C in Q. A routine calculation shows that these tangency requirements impose seven

linearly independent conditions to the coefficients ai jk and bi jk :

a300 = a201 = a030 = a021 = 0,

a210+ a120+ b200+ b110+ b020 = 0,

a111+ b101+ b011 = 0,

a102+ a012+ b002 = 0.

We can take a003, a120, b200, b110, b020, b101, b011, a012, b002 as free parameters and G acts

on them by taking ai jk and bi jk to λi+ jµkai jk and λi+ j+1µkbi jk , respectively. Since C does

not contain v, it implies that a003 6= 0. After a degree three base change we can assume

that a003 = 1 and µ = 1. Then the space of remaining parameters with the G-action can

be identified with a weighted projective space C8
\ {0}/G, where it contains a hypersurface

parameterizing singular curves and G takes ai jk and bi jk to λi+ j ai jk and λi+ j+1bi jk ,

respectively. Therefore, up to the choice of the specified rulings, P(6)even can be realized

as the image of a finite morphism from an affine variety, hence it is affine.

Remark 4.3. For the other strata in genus four, they may contain both hyperelliptic

and non-hyperelliptic curves, or both Gieseker–Petri general and Gieseker–Petri special

curves, hence one cannot use a single quadric surface to treat them.

4.6. Strata of k-canonical divisors

One can similarly ask if the strata of (possibly meromorphic) k-canonical divisors Pk(µ)

are affine. Via the canonical cyclic k-cover discussed at the end of § 2, Pk(µ) lifts into a

stratum of canonical divisors P(µ̃) as a closed subset. We thus conclude by the following

result.

Proposition 4.4. If the strata of canonical divisors are affine, then the strata of

k-canonical divisors are affine for all k.
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