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SUMMARY
In the past years a large number of new surgical devices
have been developed to improve the operation outcomes and
reduce the patient’s trauma. Nevertheless, the dexterity and
accuracy required in positioning the surgical tools are often
unreachable if the surgeons are not assisted by a suitable
system. Since a medical robot works in an operating room,
close to the patient and the medical staff, it has to satisfy
much stricter requirements with respect to an industrial one.
From a kinematic point of view, the robot must reach any
target position in the patient’s body, being as less invasive as
possible for the surgeon’s workspace. In order to meet such
requirements, the right robot structure has to be chosen by
means of the definition of suitable kinematic performance
indices.

In this paper some task-based indices based on the
robot workspace and stiffness are presented and discussed.
The indices will be used in a multiobjective optimization
problem to evaluate best robot kinematic structure for a given
neurosurgical task.

KEYWORDS: Medical robotics; Robot design; Robot
performances; Neurosurgery; Kinematics, Task-based index.

1. Introduction
Robotic systems were applied to surgery in the early
1980s.1 Initial experimentations with surgical robotics
largely consisted in adapting to this field the already-existing
industrial-robot technologies. If for industrial robotics,
repeatability, flexibility, and speed are usually the most
important concerns, surgical robots put instead patients’
safety above everything else.

In the last decade, within the medical community there
has been a growing awareness of the benefits offered by
using robots in various medical tasks.1 These benefits include
cost reduction, precision improvement, and even less pain
to the patient. Admittedly, robots can perform accurate and
repeatable tasks which would be impossible to be replicated
by any surgeon. Clearly, the potential interaction between
robotic systems and surgeons is producing a new worldwide
interest in the area of medical robotics. Medical robotics has
found a fruitful ground in neurosurgical applications, owing
to the accuracy in tool positioning2 required by the high
functional density of the central nervous system. Modern
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neurosurgery has reached a point at which the scale of
the operative field is so small that even skilled surgeons
are reaching the limits of their dexterity.3,4 Moreover
novel treatments, such as intracellular inclusion of genomic
subcellular implants used in transgenic technology, require
an accuracy of 10 μm. Currently, this technology is limited
to animal models, but if transposed to the operating room
on human subjects, such precision would be reachable only
through robotic assistance. This is due to the following:
(i) the brain is firmly held in a solid container, allowing
fixation of devices to hold it in position during procedures;
(ii) the anatomical topology is fairly stable, corresponding
to a rather well-known functional somatotopy; (iii) brain
imaging has been the most progressing field during the past
decades, combining several modalities; (iv) the brain is the
organ in which the highest precision is required for surgical
procedures; (v) stereotactic procedures have opened the way
to numerical approaches through minimally invasive routes.

Key neurosurgical applications include stereotactic
neurosurgery, robotized microscopes, endoscopic neurosur-
gery, tumor resection, and telepresence.

CT-guided stereotactic brain surgery5 was one of first
robotic-assisted applications in surgery. Stereotactic surgery
is a branch of neurosurgery that involves the use of a precision
apparatus to guide the surgical tool accurately into the brain,
so as to reach a deep target in safe conditions, with no direct
monitoring of the surgical site.6 Basically the frame-based
system allows the coordinate system of the frame to stay
with the patient’s head. The typical stereotactic frame-based
registration used in many hospitals is a base ring which is
positioned and secured to the skull using four screws. Thus
CT and MRI image slices can be accurately referred to the
frame in three dimensions. This has been used for many years
for stereotactic biopsies in which the extraction needle can
be positioned with good accuracy and reliability. In modern
frameless systems the coordinate system of the patient’s head
is registered just before or during surgery. In order to reduce
patient’s trauma, a frameless stereotactic system positioned
over the surgical area can be considered the best solution for a
stereotactic robotic system. However the frameless accuracy
for the robotic positioning should be within the tolerance
dictated by the surgical operation.

The first documented application of medical robotics in
neurosurgery was in 1985 when Know et al.7 used the
commercial robot PUMA 200 by Unimation as positioning
device for a biopsy instrument. In 1991 Drake8 used the
same robot as retraction device in the surgical management
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of thalamic astrocytomas. Despite their novel application,
both systems lacked the proper safety features needed for
widespread acceptance into neurosurgery. In the beginning of
1987, Benabid et al.9 experimented with an early precursor
to the robot marketed as NeuroMate (Integrated Surgical
Systems, Sacramento, CA). NeuroMate uses preoperative
image data for assisting with surgical planning and a passive
robotic arm to perform the procedure.10

NeuroMate is a five-axis open-chain robot. It can be
used both in frame-based and in frameless neurosurgical
operations. In frame-based operations, the patient’s head is
held by means of a mechanical frame which works as precise
reference for the tool positioning. In frameless operations,
on the other hand, there are no mechanical structures on
the patient’s head, but some special markers allow a vision
system to estimate the correct head position. Up until now,
the accuracy of NeuroMate in the frameless configuration
is not less than 2 mm (owing to the precision of the
vision system),11 while in the frame-based configuration the
positioning accuracy is better than 0.5 mm.

Neurobot12,13 is a manipulator made of two robots: the
first one is a gantry robot which works as gross-motion
positioner for the second one, a four-axis robot which moves
the surgical tool during the operations. The decoupling of the
two-robot motion increases the safety of the operation, since
it reduces the mechanical components moving close to the
patient. Moreover, since the number of actuators is reduced,
the system features a higher level of accuracy. Neurobot
is employed principally as an actuator for neurosurgical
endoscopes.

Evolution 1 is another example of robotized endoscope.14

It is made of a five-axis robot which moves a parallel robot,
on which a linear actuator moving the surgical tools is fixed.
The first robot acts as gross-motion positioner, while the last
allows a fine movement.

Liu et al.15 have presented a master–slave robotic system,
named NeuroMaster, developed at the Robotics Institute of
Beihang University, P. R. China. NeuroMaster is a five-axis
serial robot. The first axis is a prismatic joint, while the four
remaining joints are revolute. The prismatic joint allows a
high accuracy in the vertical positioning of the tool.

An up-to-date overview of the most significant researches
performed in this field can be found in ref. [1] and in the
references reported therein.

Many robot design variables such as structure (serial vs.
parallel), geometry, actuators (rotary vs. prismatic), and
reduction ratios are important to design a novel robot.
Unfortunately, any change that enhances one performance
attribute will almost always detract from another.

There is a close relationship between the kinematic
performance and design of robot manipulators. Because
of this, in the past decades, several robot design
criteria have been proposed for the kinematic evaluation
and for designing a well-conditioned robot manipulator
that has a dexterous workspace. The main objective
of these studies was to develop a dexterity measuring
system (manipulator singularity-avoidance capabilities) by
establishing a performance index.

Given the close relationship between kinematic design
and manipulator workspace, many authors have studied the

workspace and singularity analysis of robot manipulators,
performed a numerical approach to determining if the
workspace was formulated, and solved by tracing boundary
surfaces of a workspace, as in ref. [16]. Some authors
developed performance indices that could be used as an
optimization and design criteria and defined the determinant
of the Jacobian as the manipulability of a robot manipulator
and proposed it as a performance criterion. Another
performance index commonly used is the condition number
of the Jacobian matrix as reported in ref. [16]. It is possible
to define another global performance index as reported in ref.
[17], directly based on the condition number.

Other approaches are based on the measure of isotropy,
for example, in ref. [18]. In ref. [19] four new performance
indices for control of 6R robots are presented. Two of them
depend on the end-effector and are based on the operation
ellipsoid and on an object-oriented metric in the workspace
respectively. Two other indices are independent of the end-
effector and reflect the distance of the actual posture from
the closest singularity. All these indices are characterized by
an invariance under similarities, have a geometric meaning,
and are computable in real time, so they can be used for
the control of manipulator in real time. About this argument,
other significant works can also be found in refs. [20–24].

2. Neurosurgical Robot Design Based on Task
Specifications
A universally optimum medical robot does not exist, but
optimality only exists in the context of a specific application,
since different applications have different performance
demands.

This paper describes how a robot can be designed for a
particular neurosurgical application.

In surgical robot design two goals have to be reached first,
the maximum robot workspace and the highest accuracy
in tool positioning. The first goal requires the preliminary
remarks to know the neurosurgical task to allow an optimum
criterion for choosing the suitable kinematic structure of the
robot. The second goal concerns the mechanical properties
of robot links and transmissions. Unfortunately, this usually
contradicts the workspace design goal. Therefore a suitable
optimization has to be defined to meet both the two goals.

Additional constraints arise when the robot works in
the frame-based configuration, since the stereotactic frame
restricts the robot workspace. As a result some robot
configurations belonging to the dexterous workspace become
unreachable, since the links collide against the stereotactic
frame. Therefore, in designing a new neurosurgical robot the
operative task has to be defined previously, making clear both
the operative space (tool positions and orientations) and the
position of the spatial constraints.

During a neurosurgical operation the patients lie on the
surgical bed and lean on their back or rest on one side. The
stereotactic frame is fixed to the patient’s head. During a
manual procedure the stereotactic frame works as an accurate
tool-holder. In a robotized neurosurgical procedure, on the
other hand, it works as reference frame which allows the
matching between the CT images and the current head
position. Typical surgical tools are biopsy cannula, drills,
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Fig. 1. EP and target.

electrodes, and probes. All the mentioned tools have axial
symmetry (around the main axis), thus have fixed only five
spatial constraints, the position, and the orientation of the
main axis of the tool. Moreover only two spatial points on
the patient’s head have to be stated by the surgeons. The first
one is the target point (TP), the center of the cerebral lesion
in which the tool has to be placed, while the second one
is the entry point (EP), the hole through which the surgical
instruments go into the skull (Fig. 1). The EP and TP define
the line of action (LoA) along which the tool should be
moved (Figs. 1 and 2). The TP can be localized in any region
belonging to the cerebral tissue. The EP, on the other hand,
has to be chosen carefully by the surgeon. The choice depends
both on the target position and on the linear trajectory that will
be followed by the surgical tool. The trajectory shall avoid
passing through any vital part. Hence both the deepness of
the surgical operation and the orientation of the surgical tool
depend on the position of the EP. The motion of the surgical
tool through the brain tissue follows a linear trajectory in
order to limit the trauma on the tissues. During a robotized
surgical operation making use of a usual neurosurgical robot,
such as NeuroMate, the surgical tool movements into the
skull are performed manually by the surgeon. On the robot
end-effector a suitable tool-holder is fixed. Once the tool-
holder has been moved close to the patient’s head and
has been oriented along the desired direction, the robot is
switched off. Therefore, the operation continues manually,
following the direction fixed by the tool-holder. Usually the
end-effector trajectory is planned so that the tool-tip position
coincides with the target when the extreme location of the
tool along the tool-holder has been reached.

Owing to safety reasons, no interpolated trajectories are
allowed into the cerebral tissues, since these depend on the
concurrent actions of several actuators; thus the risk for the
patient is too high. Therefore, such a procedure is named
passive, since the robot does not work actively during the
surgical operation.

In the active robotic procedure, on the other hand, a
linear actuator on the end-effector allows the precise and

Fig. 2. Virtual sphere centered on patient’s head.

Fig. 3. Virtual sphere, TS, and EPC.

controlled movement of the surgical tool along the desired
LoA. Therefore the robot is able to work during the surgical
operation too. However, for safety reasons, the robot shall
stay always away from the patient’s head, beyond a suitable
distance. It is useful to define a suitable region of safety
(Fig. 2), close to the patient’s head. Owing to the spatial form
of the head the shape of this region can be chosen spherical.
The safety region defines the area that shall be inaccessible
by the robot, and then it shall comprise the stereotactic frame
as well. The safety sphere is only a virtual entity; thus in
the following it will be referred to as virtual sphere. The
robot shall be able to move the surgical tool in the desired
configuration, keeping its links far from the virtual sphere.

It is useful to define a further virtual sphere, named target
sphere (TS), which depends on the mean length of the
standard surgical tools. The TS is concentric with the virtual
sphere, but its radius is smaller (Fig. 2). The TS defines the
region of the deepest TP and then fixes the robot’s worst
case working configuration. Clearly the TS depends on the
surgical-tool dimensions. The tip of the surgical tool shall
reach every point on the TS surface, and the tool shall be
oriented along any desired direction. The set of the required
tool orientations on the generic point of the TS surface is
bounded, since the distance between the EP and the target
shall be kept limited for the surgical reasons that have been
stated above. Therefore a suitable cone, named EP cone
(EPC) (Fig. 3), can be defined for every point P on the TS
surface. The vertex of EPC coincides with point P, and its
axis is oriented along the line perpendicular to the TS surface
in P. Consequently, the set of the overall tool orientations on
the generic point can be defined by means of the EPC.
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Fig. 4. TS surface grid.

Once the neurosurgical task has been defined, the
requirements of the working space can be accurately taken,
as will be discussed in the next section.

3. Task-Based Workspace Evaluation
The workspace is one of the main goals for the kinematic
design of surgical manipulators.

The workspace evaluation in this work follows the
approach defined in ref. [20]. The mapping for the forward
kinematics of a manipulator with n degrees of freedom
(DOFs), or an n-DOF manipulator, with r-dimensional task
space can be expressed in the form

FK : Rn → Rr | p = FK (q). (1)

The task space represents all task-allowed positions and
orientations of the manipulator end-effector. A general
numerical evaluation of the task space can be obtained by
formulating a suitable binary representation of the surface
of the TS. Once the inverse kinematic problem (IKP) has
been solved, it is possible to map each point (thought as
an r-dimensional vector comprising both the position and
the orientation of the surgical tool) belonging the robot
workspace to the corresponding set of points in the joints
space. Therefore, a binary matrix W can be defined on the
TS surface as follows.

For each grid pixel xij (Fig. 4) belonging to the surface of
the TS, all the (discrete) directions dkl belonging to the EPC
cone �(xij ) are considered.

If the IKP admits, at least, one configuration such that all
the links are external to the virtual sphere, the corresponding
matrix element wX,ij = WX(i, j ) is set to one; otherwise the
element is set to zero.

The generic point xij on the surface of the TS is defined as
shown in Fig. 4:

xij = C +
⎧⎨
⎩

rT sin θi cos ϕj

rT sin θi sin ϕj

rT cos θi

⎫⎬
⎭ , θi ∈ [0, π], ϕj ∈ [−π, π],

(2)
where C is the center of the virtual sphere; rT is the TS radius;
(rT , θi, ϕj ) are the spherical coordinates of the generic point
on the TS surface; and

i =
[
θ + �θ

�θ

]
, j =

[
ϕ + �ϕ

�ϕ

]
(3)

Fig. 5. The required directions on the generic point of the TS
surface.

in which �θ and �ϕ are the resolution parameters of the
grid mesh for the scanning process.

In a similar way, the generic direction belonging to the
cone �(xij ) (Fig. 5) can be defined, in the local reference
frame, as

dkl =
⎧⎨
⎩

sin γk cos βl

sin γk sin βl

cos γk

⎫⎬
⎭ , γk ∈ [−α, α], βl ∈ [−π, π], (4)

where α is the characteristic angle of the TP cone, and

k =
[
γ + �γ

�γ

]
, l =

[
β + �β

�β

]
, (5)

where �γ and �β are the resolution parameters of the grid
mesh for scanning the directions belonging to the target cone.

The proposed binary representation is useful for a
numerical evaluation of the robot workspace area, referred
to the chosen TS:

AT =
imax∑
i=1

jmax∑
j=1

wij r
2
T sin θi�θ�ϕ. (6)

Therefore the first performance index can be defined as

IA = AT

4πr2
T

(7)

which describes the capabilities of the robot to reach every
point x on the TS surface along any direction belonging to
the associated EPC cone.

The workspace volume can be computed by spanning the
TSs and considering the sum of the corresponding workspace
areas:

V =
rT ,max∑
rT ,min

AT �r, (8)

where �r is the resolution for the TS radius. Therefore the
second performance index is

IV = 3V

4p
(
r3
T ,max − r3

T ,min

) , (9)
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Fig. 6. Robot invasiveness.

where rT ,min and rT ,max are the minimum and maximum radii
of the considered TSs respectively.

A further index to evaluate the robot performances can be
obtained if the function wij is modified in such a way that
the average number sij of solutions for each dkl ∈ �(xij ) is
returned from the inverse kinematic algorithm.

Therefore a new matrix ST = [sij ] can be defined for each
TS. This matrix allows the surgeon to know the number
of allowable configurations for each target and choose,
therefore, the suitable EP.

4. Robot Invasiveness Evaluation
In the robot design process particular attention must be given
in the robot invasiveness evaluation. The word refers, in this
work, to the portion of the surgeon workspace used by the
robot during the surgical task. Actually the invasiveness is
one of the obstacles which limit the use of medical robots.

Therefore, the goal is to reduce the robot invasiveness in
such a way that the surgeon and the medical staff are able
to move near the patient as though the robot were not in the
surgical room.

The invasiveness depends on the link arrangement, which,
on the other hand, depends on the current robot configuration.
Therefore a suitable index of invasiveness can be defined as

II = max
(Pt ,zt )

[
min
Cj

(
max

i=1,..., n
{di}

)]
, (10)

where di is the distance between the origin of the reference
frame of the ith link and the plane of symmetry of the surgical
bed (Fig. 6) and zt is the desired tool direction .

If the robot admits more than one configuration (Cj ) for
the same tool position, the index considers the one that is less
invasive.

Finally the index evaluation considers each couple point-
direction (Pt , zt ) belonging to the task-based workspace
defined in Section 3.

The invasiveness due to the trajectory followed by the robot
to reach the target configuration can be neglected, since it
takes much less time with respect to the surgical task.

Therefore the index evaluation can be done only on the
final robot configuration.

5. Stiffness Evaluation
When a manipulator performs a given task, the end-effector
exerts some forces and/or moments on its environment. This
contact force will cause the end-effector to be deflected

away from its desired location. Intuitively, the amount of
deflection is a function of the applied force and stiffness of
the manipulator. Thus the stiffness of a manipulator has a
direct impact on the position accuracy. The overall stiffness
of a manipulator depends on several factors, including the
size of and the material used for the links, the mechanical
transmission mechanism, the actuators, and the controller.

Several approaches to define the stiffness properties of a
manipulator have been proposed in the literature.25,26

In this work a simplified stiffness matrix, making use
of lumped parameters and superposition principle, will be
considered, in accordance with the approach presented in
ref. [20] and the assumptions taken therein.

The stiffness properties of a manipulator can be defined
through the “Cartesian stiffness matrix” K. This matrix
gives the relation between the vector of the compliant
displacements �S occurring at the end-effector when a static
wrench W acts upon it:

W = K�S. (11)

The stiffness matrix can be computed by defining a suitable
model of the manipulator, which takes into account lumped
stiffness parameters of links and motors. The stiffness models
with lumped parameters proposed in ref. [20] can take into
account the compliance of both actuators and links along and
about x, y, and z directions. They are based on the assumption
of small compliant displacements. Under this assumption
the superposition principle holds. Thus, the compliance of
each link and actuator can be considered as an additive
term to the overall compliance. Moreover, the effects of
tension/compression, bending, and torsion stiffness of a link
can be considered as additive terms to the stiffness of the
link itself. These additive terms can be defined as lumped
parameters, and they can be represented as linear or torsion
springs. A tensional spring will represent effects of torsion
and bending. Therefore, the stiffness matrix of a generic
beam element can be written as reported for example in ref.
[26].

A 6 × 6 stiffness matrix K of a manipulator can be
derived through the composition of suitable matrices. A first
matrix CF gives the relationship between the vector of all
the wrenches acting on each link when a wrench W acts on
the manipulator extremity according to the expression

W = CF WL. (12)

The matrix CF ∈ R6×N represents the force transmission
capability of the manipulator mechanism, with N being the
number of links of the manipulator. Therefore, for a six-DOF
PUMA-like robot, CF = J−T , where J is the manipulator
Jacobean matrix.

Also, WL ∈ RN can be written in a simplified form, as the
vector of motor torques when the only source of compliance
is assumed to be given by motors. The second matrix KP ∈
RN×N gives the possibility to compute the vector �v of all
the deformations of the links when each wrench WLi on the
ith link given by WL acts on the legs according to

WL = KP �v. (13)
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The matrix KP groups the values of the lumped stiffness
parameters for the deformable components of a manipulator
structure. The vector �v comprises the joint angular
displacements when the only source of compliance is
assumed to be given by motors. A third matrix CK gives
the vector �S of compliant displacements at the end-effector
due to the displacements of the manipulator links:

�v = CK�S. (14)

The matrix CK ∈ RN×6 expresses the kinematics of a
manipulator. Therefore, the stiffness matrix K can be
computed as

K = CF KP CK. (15)

The stiffness matrix K can be used to compute the accuracy
performance. In fact, the vector of compliant displacements
�S can be evaluated by using Eq. (11) once the matrix K is
determined and static wrench acting on the movable platform
is given.

From the above-mentioned considerations four indices that
take into account stiffness performance can be defined:

√
�S2

x + �S2
y + �S2

z = �pos, |�Sϕ|, |�Sψ |, |�Sθ |, (16)

where �pos is the compliant linear displacement and
�Sϕ, �Sψ, �Sθ are the errors on tool orientation.

6. Optimization Problem
The indices defined in Sections 3–5 can be used to describe an
optimization problem able to maximize the performances for
the given robot kinematic structure and the desired surgical
task, by choosing the suitable links length (
1, . . . , 
k).

The optimization problem can be expressed as follows:

p = max

1, ... , 
k

(
IA(r̄T ) + ξ

II

+ IV

)
s. t.

(a) �pos < �pos,max,

(b) �Sϕ, �Sψ, �Sθ < �or,max, (17)

(c) 
j ∈ Lj = [
j,min, 
j,max], and

(d) rT ∈ [rT ,min, rT ,max].

The cost function considers the workspace area index IA
computed in the nominal TS (r̄T ), while the volume index IV
and the invasiveness index II are evaluated on the nominal
target volume defined by [rT ,min, rT ,max].

The factor ξ has been introduced to make homogeneous
the terms of the cost function.

Constraints (a) and (b) concern the robot accuracy stated
in Section 5.

7. Robot Design Procedure
The design procedure described below can be followed
to choose the suitable robot structure and the right link
dimensions:

1. Define the robot accuracy by specifying the upper limits
�pos,max and �or,max.

2. Choose a trial robot kinematic structure.
3. Solve the optimization problem of the previous section.
4. Repeat steps 2 and 3 for different robot structures.
5. Compare the p indices obtained and choose the suitable

robot structure.

8. Numerical Example
The design procedure and the indices defined in the previous
sections will be implemented in the next to found the
optimal robot structure for a particular neurosurgical task.
The task makes use of a robotic tool-holder which moves
a miniaturized X-ray source named Photon Radiosurgery
System (PRS, by Carl Zeiss).27 The aim is to design the
robotic arm able to move the tool-holder in such a way that the
probe of the X-ray source can reach each point in the cerebral
tissue, according to what has been defined in Section 3.

8.1. Neurosurgery by means of PRS and two special
tool-holders
The Mechatronics Research Group (composed of researchers
of the University of Padova, the University of Udine, and
the University of Trieste, all in Italy) with the assistance of
the Neurosurgical Department of the University of Florence
(Italy) has developed two master–slave robotic systems for
minimally invasive neurosurgical operations.

The first robot, named Linear Actuator for NeuroSurgery
(LANS28) has been conceived specifically to perform
biopsies and neurosurgical interventions by means of PRS,
whose emitting tip must be placed accurately inside the
patient’s brain tissues.27 The LANS robotic system is
composed of a haptic master module, operated by the
surgeon, and a slave mechatronic module (Fig. 7) moving the
PRS probe, or a biopsy needle, along a predefined emission
axis in accordance with the master position imposed by the
surgeon. In order to orient the LANS along the established
emission axis, a robotic arm is needed. The currently used
arm is a commercial NeuroMate robot, employed in a frame-
based configuration which ensures the highest possible
accuracy. The system has been designed assuming that
during the surgical operation, only the LANS (which is
very accurate and provides the surgeon with force feedback)
is in active mode while NeuroMate is powered off. This
allows overcoming much of the problems associated with
the complex nature of this surgical therapy. Moreover, very
precise and repeatable movements of the biopsy needle and of
the X-ray source can be obtained, thus improving the overall
intervention outcomes.

Double Action Actuator for NeuroSurgery (DAANS29) is
the second robot (Figs. 8 and 9) built by the Mechatronics
research group. The aim of the system is to provide another
DOF to the PRS source about the emission axis. The
system allows extending the therapy with PRS also to
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Fig. 7. LANS actuator fixed on the NeuroMate arm.

Fig. 8. DAANS actuator.

Fig. 9. DAANS schematic.

irregular-shape tumorous lesions, by integrating translation
and spin movements of the source. Nevertheless, LANS
and DAANS limit the NeuroMate mobility, owing to their
geometrical dimension, which can interfere with the robot
arm movements. In this manner the NeuroMate workspace
is reduced and some tool configurations are not reachable.

In the next sections, first the proposed indices will be used
to evaluate the performances of the actual robotic system;
then they will be employed to choose the optimal robot
kinematic structure to perform the surgical task by PRS and
DAANS. Owing to the constraints on the robot invasiveness,
only serial kinematic structures will be considered. For
the same reason, spherical manipulators have been not
contemplated, even though the shape of the surgical task
could suggest the use of this kind of robot. Moreover, the
mechanical stiffness of a spherical manipulator is low, and
the wrist positioning accuracy decreases as the radial stroke

Table I. DAANS Denavit–Hartenber parameters.

i−1Ti σi ai(mm) αi (rad) di (mm) θi (rad)

baseP0 1 0 π
2 942 π

2
0P1 0 125 0 0 q1

Table II. Virtual sphere and TSs parameters.

Parameter Value

α 30◦
Rvirtual sphere 250 mm
rT 100 ÷ 130 mm
r̄T 130 mm
C [1034 mm, 0, 942 mm]T

Fig. 10. NeuroMate, DAANS, and PRS.

increases. These considerations become a strong limit for the
use of spherical manipulator in the mentioned neurosurgical
task and suggest the use of a different kinematic structure, as
will be presented in next sections.

The Denavit–Hartenberg parameters of the DAANS
are described in Table I, while the dimensions and the
characteristics of the virtual spheres and the TSs are defined
in Table II.

8.2. Surgical task by means of NeuroMate
NeuroMate is a five-link commercial robot (shown in
Fig. 10) specifically conceived to perform neurosurgical
interventions. As a matter of fact, the number of DOFs
matches exactly the dimension of a usual neurosurgical
task (Section 3). The aim of this section is to evaluate the
NeuroMate performance when it performs the surgical task
as has been defined in the previous section, which requires the
use of DAANS and PRS (Fig. 10). The Denavit–Hartenberg
parameters of the robot are described in Table III(a) (where
the “standard Denavit–Hartenberg notation” has been used;
σi describes the kinematic of the current joint: σi = 1 stands
for a prismatic joint, while σi = 0 stands for a revolute joint).
The accuracy properties of the NeuroMate can be found in
ref. [11], and they will be not discussed in this work. The
IKP, on the other hand, will be solved in the Appendix, since
nowadays, no literature exists for the NeuroMate IKP.

Once the IKP has been solved, it is possible to estimate
the workspace performance indices following the definition
given in Section 3. In particular, considering the matrix WX
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Table III. (a) NeuroMate Denavit–Hartenber parameters.

i−1Ti σi ai[mm] αi (rad) di (mm) θi (rad)

baseP0 1 0 π
2 942 π

2
0P1 0 a1

a 0 0 q1
1P2 0 0 − π

2 d2
a q2

2P3 0 a3
a 0 0 q3

3P4 0 a4
a 0 0 q4

4P5 0 85 π
2 0 q5

5Ptool tip 1 0 0 138 0

aThe numerical values have been omitted, since they are
property of Integrated Surgical Systems Inc. (ISS).

for the given TS (Table II) and introducing the suitable
surface SW , described through the points

SW (i, j ) = (1 + wij )

⎡
⎣sin θi cos ϕj

sin θi sin ϕj

cos θi

⎤
⎦ ,

θi ∈ [0, π], ϕj ∈ [−π, π], (18)

it is possible to have a graphical representation of the robot
workspace (Fig. 11). It can be shown that only a subregion of
the target surface (corresponding to the parietal and occipital
regions of the skull) can be reached by the overall robotic
system (NeuroMate and DAANS).

Fig. 13. Index IA in function of the TS radius.

In a similar manner, it is possible to define the surface SS

corresponding to the matrix ST of Section 3:

SS(i, j ) = sij

⎡
⎣sin θi cos ϕj

sin θi sin ϕj

cos θi

⎤
⎦ , θi ∈ [0, π], ϕj ∈ [−π, π].

(19)
From surface SS it is possible to highlight the robot
capabilities: the best performances can be obtained on the
occipital region, on which the robot admits, on average, three
different solutions for the same tool configuration (Fig. 12).

Figure 13 shows the performance index IA as a function
of the TS radius. It can be observed that the index decreases
when the radius drops to lower values, and it remains always
well under the unit.

Fig. 11. NeuroMate SW surface.

Fig. 12. NeuroMate SS surface.

https://doi.org/10.1017/S026357470999035X Published online by Cambridge University Press

https://doi.org/10.1017/S026357470999035X


Toward an optimal performance index for neurosurgical robot’s design 287

Fig. 14. Index II in function of the TS radius.

The index IV for NeuroMate is IV = 0.19. Therefore only
one fifth of the considered target volume (Table II) can be
reached by the robot.

The invasiveness index II is shown in Fig. 14. Its value
varies linearly with the TS radius, since it depends principally
on the same critical tool configuration, which corresponds to
the parietal region of the skull.

It must be recalled that these values have been computed
only on the reachable configurations, which are a subset of the
required robot configurations. Therefore the comparison with
those that will be obtained in the next sections is misleading.

From the above analysis appears that NeuroMate has been
conceived to work only on a particular region of the patient’s
head, which corresponds to occipital and parietal zones.
Moreover the invasiveness index is up to 250 mm, which
means that the surgeon’s workspace is still preserved in spite
of the robot presence.

8.3. Toward an optimal robotic arm design
In this section the procedure described in Section 7 will be
followed to optimize the design of a new robotic arm able to
overcome the limits on the target workspace pointed out in the
previous paragraph for the NeuroMate arm. The procedure
starts with the design optimization of two different well-
known robots: the anthropomorphic arm and the Stanford
manipulator. Then the results will be compared with those
obtained with a special robot, named Neurobud, whose
particular kinematic structure has been conceived at the
University of Udine.

All the robots feature six DoFs, resulting to be redundant
with respect to the task space dimension (Section 3). The
redundancy is a very useful property for surgical robots,
since the additional DoF can be properly used to improve the
invasiveness performances, as has been discussed in ref. [30].
Nevertheless the choice of the additional DoF must be done
with care, since it may imply accuracy errors due the reduced
robot stiffness.

8.3.1. Anthropomorphic manipulator. The first robot under
optimization is a usual six-DoF anthropomorphic manipu-
lator, (Fig. 15) whose Denavit–Hartenberg parameters are
shown on Table III(b). The IKP can be solved as in ref. [31].

The optimization problem works on the second and third
links, since the robot workspace depends mainly on their
lengths (a2 and d4). No constraints have been taken on joint
mobility to avoid additional requirements on the optimization

Table III. (b) Anthropomorphic arm Denavit–Hartenber
parameters.

i i−1Ti σi ai (mm) αi (rad) di (mm) θi (rad)

0 baseP0 1 0 0 272 0
1 0P1 1 0 0 670 0
2 1P2 0 0 π

2 0 q1

3 2P3 0 a2 0 0 q2

4 3P4 0 0 − π
2 0 q3

5 4P5 0 0 π
2 d4 q4

6 5P6 0 0 − π
2 0 q5

7 6P7 0 0 0 0 q6

8 7P8 1 0 π
2 85 π

2
8Ptool tip 1 0 0 138 0

Fig. 15. Anthropomorphic arm.

Fig. 16. Functions of IA and IA,S for the anthropomorphic arm.

problem. A suitable simplified stiffness model for this
manipulator can be found in ref. [20]. The matrix KP defined
in Section 3 becomes a diagonal matrix whose elements are
assumed be equal to kT 1 = kT 2 = kT 3 = 4.67 × 108 Nm and
kT 4 = kT 5 = kT 6 = 4.67 × 106 Nm, according to what has
been discussed in ref. [20].

Figure 16 shows the workspace index IA versus link
lengths. The TS (defined in Table II) is completely reachable
(IA = 1) only for the link length on the bounds of the
considered intervals (a2 = d4 = 800 mm).

Nevertheless, assuming the accuracy constraints on
the optimization problem, as specified in Table III, the
reachability drops drastically, as can be shown by the function
IA,S in Fig. 16. The function IA,S considers the index IA
filtered by the effects of robot stiffness which limits accuracy.
The maximum, IA,S = 0.51, is achieved for a2 = 500 mm
and d4 = 800 mm.
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Fig. 17. Anthropomorphic arm SS surface.

Fig. 18. Anthropomorphic arm SS surface filtered by the accuracy constraints.

Fig. 19. Anthropomorphic arm IA index.

Figure 17 shows the surface SS (defined in Section 8.2).
The link length has been derived from the values at which
the effects of the robot stiffness are minimized (i.e., at which
IA,S meets the maximum; Fig. 16).

As can be observed from Fig. 16 these link values allow
94% of the desired target surface to be reached by the
manipulator.

Therefore Fig. 17 becomes the goal surface the designer
has to achieve by modifying the mechanical properties of the
robot, which influence the lumped parameters of the stiffness
matrix.

Figure 18 shows the same surface under the effects of
the robot accuracy. It can be observed that the reachability
drops under 51% of the desired target surface, and the robot
workspace becomes similar to that of NeuroMate for the
considered surgical task.

Figure 19 shows the performance index IA as a function of
the radius of the TS. As for the NeuroMate manipulator the

Table IV. Values of the displacements limits.

Compliant displacements Limits√
�S2

x + �S2
y + �S2

z ≤0.01 mm∣∣�Sϕ

∣∣ , ∣∣�Sψ

∣∣ , |�Sθ | ≤0.1◦

Fig. 20. Anthropomorphic arm II index.

index decreases with the TS radius; then the deepest points
on the cerebral tissue are unreachable.

The volume index for the considered lengths is IV = 0.91.
Therefore only one quarter of the considered target volume
(Table IV) cannot be reached by the robot.

The invasiveness index II is shown in Fig. 20. Its value
varies linearly with the TS radius. It must be recalled that
the index is evaluated for all the reachable configurations
without considerations of stiffness effects.

https://doi.org/10.1017/S026357470999035X Published online by Cambridge University Press

https://doi.org/10.1017/S026357470999035X


Toward an optimal performance index for neurosurgical robot’s design 289

Table V. Stanford arm Denavit–Hartenber parameters.

i i−1Ti σi ai (mm) αi (rad) di (mm) θi (rad)

0 baseP0 1 0 0 530 0
1 0P1 0 0 − π

2 412 q1

2 1P2 0 0 π
2 154 q2

3 2P3 1 0 0 q3 0
4 3P4 0 0 − π

2 0 q4

5 4P5 0 0 π
2 0 q5

6 5P6 0 0 0 263 q6
6Ptool tip 1 −85 0 138 0

The optimal cost function for the anthropomorphic
manipulator is p = 1.88.

From the above analysis the anthropomorphic arm seems
to allow better workspace performances in comparison to
NeuroMate, but it requires much care to choose the suitable
robot stiffness. The invasiveness index is up to 260 mm and
is comparable to that of NeuroMate, if it refers to a wider
workspace.

8.3.2. Stanford manipulator. The second robotic arm under
analysis is the Stanford manipulator (Fig. 21), whose
Denavit–Hartenberg parameters are shown in Table V and
whose IKP can be solved by following the algorithm
discussed in ref. [31].

The optimization problem works on d2 and q3max , since
the robot workspace depends mainly on these values. As for
the anthropomorphic arm, no constraints have been taken on
the joint mobility. The elements of the diagonal matrix KP

are assumed be equal to kT 1 = kT 2 = 4.67 × 108 Nm, kT 3 =
4.67 × 1020 Nm, and kT 4 = kT 5 = kT 6 = 4.67 × 106 Nm in
accordance with ref. [20].

Figure 22 shows the workspace index IA versus the link
lengths. It can be shown that the index IA remains always
much under the unit, so the robot does not allow reaching
every point in the TS.

Figure 23 shows the surface SS for the Stanford arm. As has
been done for the anthropomorphic arm, the link length has
been obtained from the links values at which the function
IA,S achieves the maximum (Fig. 22). When the accuracy
constraints are taken into consideration, the reachable surface
must be reduced as in Fig. 24.

Figure 25 shows the performance index IA as function of
the radius of the TSs. The corresponding volume index for
the Stanford arm is IV = 0.11.

Fig. 21. Stanford arm.

Fig. 22. Functions of IA and IA,S.

The invasiveness index II is shown in Fig. 26. Its value
varies linearly with the TS radius as for NeuroMate and the
anthropomorphic arm.

The cost object for the Stanford manipulator is p = 0.24.
By analyzing the index for Stanford arm it appears that

this kinematic structure is not suitable for the considered
neurosurgical task.

8.3.3. Neurobud manipulator. Neurobud is a special robot for
neurosurgery whose particular structure has been conceived
at the University of Udine. The robot kinematic is shown in
Fig. 27, and its Denavit–Hartenberg parameters are described

Fig. 23. Stanford arm SS surface.
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Fig. 24. Stanford arm SS surface filtered by the accuracy constraints.

Fig. 25. Stanford arm IA index.

Fig. 26. Stanford arm II index.

on Table VI. The complete analysis of Neurobud as well as
the IKP solution can be found in ref. [30]. Owing to the
particular kinematic structure, the optimization problem can
search the optimal solution varying only the lengths of the

Table VI. Neurobud Denavit–Hartenber parameters.

i i−1Ti σi ai (mm) αi (rad) di (mm) θi (rad)

1 0P1 1 0 0 q1 0
2 1P2 0 0 π

2 450 q2

3 2P3 0 0 − π
2 0 q3

4 3P4 0 0 π
2 L2 q4

5 4P5 0 L3 0 0 q5

6 5P6 0 85 π
2 0 q6

6Ptool tip 1 0 0 138 0

Fig. 27. Neurobud manipulator.

Fig. 28. Representation of IA and IA,S.

second and third links. The elements of the diagonal matrix
KP have been assumed equal to kT 1 = 4.67 × 1020 N m, kT 2

= kT 3 = 4.67 × 108 N m, and kT 4 = kT 5 = kT 6 = 4.67 ×
106 Nm according to those that have been used for the
anthropomorphic arm.

Figure 28 shows the workspace index IA versus the length
of the chosen links. The complete reachability (IA = 1) is
achieved for L2 = L3 = 800 mm as for the anthropomorphic
arm. From the function IA,S in Fig. 28 it can be observed
that if the accuracy constraints are taken into account, the
reachability drops as for the anthropomorphic arm. The
maximum, IA,S = 0.65, is achieved for L2 = 500 and
d4 = 800. Figure 29 shows the surface SS (defined in Section
8.3.1). The link length has been obtained, as in the previous
case, from the values at which the function IA,S achieves the
maximum (Fig. 28). Figure 30 shows the stiffness effects
which reduce the extension of the surface SS .
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Fig. 29. Neurobud arm SS surface.

Fig. 30. Neurobud arm SS surface filtered by the accuracy constraints.

Fig. 31. For the Neurobud arm, IA(rT ).

The dependency of the performance index IA on the radius
of the TSs is shown in Fig. 31. The corresponding volume
index is IV = 0.97.

The invasiveness index II is shown in Fig. 32. It can
be noted that different from what occurs for the previous
robots, the invasiveness index stays near the same value
into the considered range for the TS radius. Therefore the
invasiveness is almost constant even if the radius increases.

The cost object for the Neurobud is p = 1.97.
From the analysis of the indices it appears that

the Neurobud performances are similar to those of the
anthropomorphic robot. Nevertheless as far as the stiffness
effects are considered, the Neurobud allows a better accuracy
in tool positioning.

Moreover the invasiveness index does not depend linearly
on the TS radius, allowing a nearly constant value of
invasiveness.

Fig. 32. For the Neurobud arm, II (rT ).

9. Conclusion
A large number of new surgical devices have been developed
in the past decades in order to improve the operation
outcomes. The dexterity and accuracy required by such
devices are often unreachable if the surgeons are not
assisted by a suitable system. This requirement explains the
recent progress of the medical robotics. Therefore, several
research groups focus their attention on the development
of new surgical manipulators. Nevertheless, in the literature
a design procedure for medical robotics is still missing.
The novel contribution of this work consists in defining
some performance indices which can be used to design
new medical robots. In particular, this paper focused on the
design of neurosurgical manipulators, since the neurosurgical
requirements are more and more restrictive with respect the
other surgical fields.
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The proposed indices can be used in a multiobjective
optimization problem, which helps the designer to choose
the suitable robot configuration.

The feasibility of such indices has been demonstrated
first in analyzing the performances of the commercial
neurosurgical robot named NeuroMate. Then, through a
suitable optimization problem, the indices have been used
to choose the optimal robot kinematic structure for the given
neurosurgical task. Once the suitable kinematic structure has
been found for the particular surgical task, it is possible to re-
use the performance indices defined above to further optimize
the robot link lengths according to the constraints on the joint
movements imposed by the physical properties of the joints.

Appendix: Inverse kinematics solution for NeuroMate
Let 0T4 describe the desired configuration (position and
orientation) of a four-joint robot end-effector:

0T4 =

⎡
⎢⎣

sx nx ax px

sy ny ay py

sz nz az pz

0 0 0 1

⎤
⎥⎦ .

In general, the inverse kinematics problem of a four-joint
robot, as presented in [Manseur], consists of solving the
following matrix equation:

0T4 =0 A1
1A2

2A3
3A4.

Now, we derive a four-joint reduced set of equation with a
choice of end-effector frame in which a4 = d4 = 0 e α4 = 0
without any loss of generality. Recall that the equations ex-
pressing the quantities tz, pz, p·a, and p·p are independent of
the first and last joint variables when those joints are revolute.

The az Equation
The pose vector 0a4 is a unit vector given by

0a4 = 0R4z = 0R1
1R2

2R3
3R4z = 0R1

1R2
2R3z, (A1)

where the fact that α4 = 0 leads to

3R4z =
⎛
⎝ sin(α4)s4

−sin(α4)c4

cos(α4)

⎞
⎠ =

⎛
⎝0

0
1

⎞
⎠ = z

has been recognized.
Since az = 0a4 · z,

az = 0a4 · z = 0R1
1R2

2R3z · z. (A2)

Equation (A2) can be modified by matrix manipulations as
follows:

0R−1
1

0a4 =1 R2
2R3z · z, 0R−1

1
0a4 · z =1 R2

2R3z · z,
0a4 · 0R1z =2 R3z · 1R−1

2 z

or

0a4 · 0R1z − 2R3z · 1R−1
2 z = 0. (A3)

Equation (A3) involves only joint variables 1 and 3, since

1R−1
2 z =

⎛
⎝ 0

sin(α2)
cos(α2)

⎞
⎠

is a constant vector.

The pz Equation
The position vector of the end-effector for a four-joint robot
is given by

0p4 =0 R1
(

1R2
(

2R3
3p4 + 2p3

) + 1p2
) +0p1 (A4)

which reduces to

0p4 =0 R1
(

1R2
2p3 + 1p2

) +0p1 (A5)

with a choice of F4 that leads to a4 = d4 = 0, since that makes
3p4 = 0. Equation (A5) can be manipulated as:

0R1
(

1R2
2p3 + 1p2

)
=0 p4 − 0p1

(
1R2

2p3 +1p2
) =0 R−1

1

(
0p4 −0p1

)
(A6)

Taking the inner product with z yields

1R2
2p3 · z +1 R2

1p2 · z =0 R−1
1

0p4 · z − 0R−1
1

0p1 · z.
(A7)

Since rotations leave inner products invariant, the following
equalities can be used:

1R2
2p3 · z =2 p3 · 1R−1

2 z

and

0R−1
1

0p4 · z =0 p4 · 0R1z

in Eq. (A7) to provide

0R1z · 0p4 −1 R−1
2 z · 2p3 =0 R−1

1
0p1 · z +1p2 · z. (A8)

The left-hand side of Eq. (A7) is a function of only the first
and third joint variables, while the right-hand side is

0R−1
1

0p1 · z + 1p2 · z =
⎡
⎣c1 − cos(α1)s1 sin(α1)s1

s1 cos(α1)c1 − sin(α1)c1

0 sin(α1) cos(α1)

⎤
⎦

×
⎛
⎝a1c1

a1s1

d1

⎞
⎠ ·

⎛
⎝0

0
1

⎞
⎠ +

⎛
⎝a2c2

a2s2

d2

⎞
⎠ ·

⎛
⎝0

0
1

⎞
⎠ = d1 cos(α1) + d2

and is independent of any revolute joint variable.

The a·p equation
The next equation is derived from the inner product 0a4 · p.
Left-multiplying both sides of Eq. (A6) by 1R−1

2 gives

2p3 +1 R−1
2

1p2 =1 R−1
2

0R−1
1

(
0p4 −0p1

)
. (A9)
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Equation (A1) gives an expression for end-effector frame
unit vector 0a4 and can be modified into

1R−1
2

0R−1
1

0a4 =2 R3z (A10)

by left-multiplication with 1R−1
2

0R−1
1 . The inner product of

opposite sides of Eqs. (A9) and (A10) provides(
2p3 +1R−1

2
1p2

) ·2 R3z =1 R−1
2

0R−1
1

× (
0p4 − 0p1

) · 1R−1
2

0R−1
1

0a4

which simplifies to

2p3 · 2R3z + 1R−1
2

1p2 · 2R3z = 0p4 · 0a4 − 0p1 · 0a4

or

0p1 · 0a4 +1R−1
2

1p2 · 2R3z =0 p4 · 0a4 −2R−1
3

2p3 · z.
(A11)

Equation (A11) is also independent of joint variables 2
and 4.

The p·p equation
From Eq. (A5), the length squared of the end-effector position
vector p is

0p4 · 0p4 = [0
R1

(1
R2

2p3 +1p2
)

+ 0p1
] · [0R1

(
1R2

2p3 +1p2
) +0p1

]
. (A12)

By use of inner-product invariance under rotation, Eq. (A12)
can be expressed as

2p3 · 1R−1
2

1p2 + 0p4 · 0p1

=
[

0p4 · 0p4 + 0p1 · 0p1 − 1p2 · 1p2 − 2p3 · 2p3
]

2
.

(A13)

The right side of Eq. (A13) is constant, and the left side
depends only on joint variables 1 and 3.

Equations (A3), (A8), (A11), and (A13) form a linear
system of four equation in sines and cosines of θ1 e θ3.
Indeed, the equations provide

sin(q4) sin(α4)a3 + a2(cos(q2)ax + sin(q2)ay)

− cos(q4) sin(α3) sin(α4)d3 = e1, (A14)

cos(q4) sin(α3) sin(α4) + sin(q2) sin(α2)ax

− cos(q2) sin(α2)ay = e2, (A15)

sin(α2)(sin(q2)px − cos(q2)py)

− sin(q4) sin(α3)a4 = e3, (A16)

cos(q4)a3a4 + sin(q4) sin(α3)d3a4

+ a2(cos(q2)px + sin(q2)py) = e4, (A17)

with the right-side constants given by

e1 = − cos(α3) cos(α4)d3 − cos(α4)d4

+ axpx + aypy + az(pz − d2),

e2 = cos(α3) cos(α4) − cos(α2)az,

e3 = cos(α2)(d2 − az) + d3 + cos(α3)d4,

e4 = 1

2

(
a2

2 − a2
3 − a2

4 + d2
2 − d2

3 − d2
4 + p2

x

+ p2
y + p2

z − 2 cos(α3)d3d4 − 2d2pz

)
.

The linear system of Eqs. (A14) – (A17) can be expressed in
matrix form using

H =⎡
⎢⎣

a2ay a2ax sin(α4)a3 − sin(α3) sin(α4)d3

sin(α2)ax − sin(α2)ay 0 sin(α3) sin(α4)
sin(α2)px − sin(α2)py − sin(α3)a4 0

a2py a2px sin(α3)a4d3 a3a4

⎤
⎥⎦

as

H ·

⎛
⎜⎝

s1

c1

s3

c3

⎞
⎟⎠ =

⎛
⎜⎝

e1

e2

e3

e4

⎞
⎟⎠ .

Now we consider 0P5 as the matrix that describes the desired
configuration (position and orientation) of the NeuroMate
end-effector,

0P5 =

⎡
⎢⎣

sx nx ax px

sy ny ay py

sz nz az pz

0 0 0 1

⎤
⎥⎦ ,

which can be manipulated into

1Q5 =

⎡
⎢⎣

mx cx ux qx

my cy uy qy

mz cz uz qz

0 0 0 1

⎤
⎥⎦ = 0A−1

1
0P5 = 1A2

2A3
3A4

4A5

=

⎡
⎢⎢⎣

cos(q1)sx + sin(q1)sy cos(q1)nx + sin(q1)ny cos(q1)ax + sin(q1)ay cos(q1)px + sin(q1)py − 125

cos(q1)sy − sin(q1)sx cos(q1)ny − sin(q1)nx cos(q1)ay − sin(q1)ax cos(q1)py − sin(q1)px

sz nz az pz

0 0 0 1

⎤
⎥⎥⎦ . (A18)
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Considering now 1Q5, instead of 0T4, Eq. (A18) can be
rewriten as

H ·

⎛
⎜⎝

s2

c2

s4

c4

⎞
⎟⎠ =

⎛
⎜⎝

e1

e2

e3

e4

⎞
⎟⎠ (A19)

with the new matrix H, equal to

H =⎡
⎢⎣

a2uy a2ux sin(α4)a3 − sin(α3) sin(α4)d3

sin(α2)ux − sin(α2)uy 0 sin(α3) sin(α4)
sin(α2)qx − sin(α2)qy − sin(α3)a4 0

a2qy a2qx sin(α3)a4d3 a3a4

⎤
⎥⎦ ,

and vector e,

e =

⎛
⎜⎜⎝

e1

e2

e3

e4

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

− cos(α3) cos(α4)d3 − cos(α4)d4 + uxqx + uyqy + uz(qz − d2)
cos(α3) cos(α4) − cos(α2)uz

cos(α2)(d2 − uz) + d3 + cos(α3)d4
1
2 (q · q + a2

2 − a2
3 − a2

4 + d2
2 − d2

3 − d2
4 − 2 cos(α3)d3d4 − 2d2pz)

⎞
⎟⎟⎠ .

Substituting the expressions of ux , uy , qx , and qy and
calculating the matrix H with the NeuroMate parameters
results i

H =⎡
⎢⎢⎣

0 0 0 0
− cos(q1)ax − sin(q1)ay cos(q1)ay − sin(q1)ax 0 0

− cos(q1)px − sin(q1)py + 125 cos(q1)py − sin(q1)px 0 0
0 0 0 122500

⎤
⎥⎥⎦

and vector e results in

⎛
⎜⎜⎝

e1

e2

e3

e4

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎣

ax (px − 125 cos(q1)) + ay (py − 125 sin(q1)) + az(pz − 148)
1
0

1
2

(
p2

x − 250 cos(q1)px + p2
y + p2

z − 250 sin(q1)py − 296pz − 207471
)
⎤
⎥⎥⎥⎦ .

The matrix Eq. (A19) calculated for robot NeuroMate gives
the following four equations:

0 = (px − 125 cos(q1))ax + (py − 125 sin(q1))ay

+ (pz − 148)az, (A20)

cos(q1 + q2)ay − sin(q1 + q2)ax = 1, (A21)

125 sin(q2) − sin(q1 + q2)px + cos(q1 + q2)py = 0,

(A22)

122500 cos(q4) = 1

2

(
p2

x − 250 cos(q1)px + p2
y

+ p2
z − 250 sin(q1)py − 296pz − 207471

)
. (A23)

The solutions for the joint variable q1 are computed from Eq.
(A20) and result in

q1,1 = − arccos

[
1

125
(
a2

x + a2
y

) (pxa
2
x + pyayax + pzazax − 148azax + ..

−
√

−a2
y(
(
p2

x − 15625
)
a2

x + 2px

(
pyay + (pz − 148)az

)
ax + (

p2
y − 15625

)
a2

y + (pz − 148)2a2
z + 2py(pz − 148)ayaz))

]
,

q1,3 = − arccos

[
1

125
(
a2

x + a2
y

) (pxa
2
x + pyayax + pzazax − 148azax + ..

+
√

−a2
y(
(
p2

x − 15625
)
a2

x + 2px

(
pyay + (pz − 148)az

)
ax + (

p2
y − 15625

)
a2

y + (pz − 148)2a2
z + 2py(pz − 148)ayaz))

]
,

q1,2 = −q1,2, q1,4 = −q1,3.

The values of the two joint variables, q2 and q4, can be
computed from Eqs. (A21) and (A22), as follows:

q2,1 = − arccos

×
(

cos(q1)px + sin(q1)py − 125

(125 sin(q1) − py)ax + (px − 125 cos(q1))ay

)
,

q2,2 = −q2,1.

The values of the remaining joint variable q3 can be computed
expanding vector Eq. (A6) (referred to the matrix 1Q5, instead
of 0T4) and obtaining the following two component equations
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with the NeuroMate parameters:

cos(q3)(350 cos(q4) + 350) − 350 sin(q3) sin(q4)

= sin(q2)(cos(q1)py − sin(q1)px)

+ cos(q2)(cos(q1)px + sin(q1)py − 125) (A24)

and

(350 cos(q4) + 350) sin(q3)

+ 350 cos(q3) sin(q4) = 148 − pz. (A25)

Equations (A24) and (A25) can be easily solved to provide
the follows two solutions for q3:

q3,1 = − arccos

(
1

700

(
− 125 cos(q2) + cos(q1 + q2)px

+ sin(q1 + q2)py −pz tan

(
q4

2

)
+ 148 tan

(
q4

2

)))
,

q3,2 = arccos

(
1

700

(
− 125 cos(q2) + cos(q1 + q2)px

+ sin(q1 + q2)py −pz tan

(
q4

2

)
+ 148 tan

(
q4

2

)))
.

The last joint variable, θ5, can then be obtained by
considering the first column vector 0s5 of the orientation
matrix 0R5 as

4R5x =
(

c5
s5
0

)
= 3R−1

4
2R−1

3
1R−1

2
0R−1

1
0R−1

4 x

= 3R−1
4

2R−1
3

1R−1
2

0R−1
1

(
sx

sy

sz

)
,

where

x =
⎛
⎝1

0
0

⎞
⎠ ,

and solving for

c5 = cos(q1 + q2) cos(q3 + q4)sx

+ cos(q3 + q4) sin(q1 + q2)sy − sin(q3 + q4)sz,

s5 − co = s(q1 + q2) sin(q3 + q4)sx

− sin(q1 + q2) sin(q3 + q4)sy − cos(q3 + q4)sz,

q5 = a tan 2(s5, c5).

Observing the solutions reported above, we can say
that in general four different robot configurations
exist, corresponding to the solution vectors Qi =
[q1, q2, q3, q4, q5], i = 1 ÷ 4, of the IKP.
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