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Abstract – The Ranomena ultramafic complex in NE Madagascar consists of layered gabbro, har-
zburgite, orthopyroxenite, clinopyroxenite, garnet websterite and chromitite-layered peridotite. This
study of the Ranomena chromite chemistry aims to better understand the petrogenesis and palaeotec-
tonic environment of the complex. The chromite from the Ranomena chromitite is unzoned/weakly
zoned and has a Cr# (Cr/(Cr + Al)) of 0.59–0.69, a Mg# (Mg/(Fe + Mg)) of 0.37–0.44, and low Al2O3

(15–23 wt %) suggesting derivation from a supra-subduction zone arc setting. Calculation of parental
melt composition suggests that the parental magma composition of the Ranomena chromitite was sim-
ilar to that of a primitive tholeiitic basalt formed at a high degree of mantle melting, suggesting the
parental melt composition was equivalent to that of an island-arc tholeiite (IAT). The parental magma
of the Ranomena chromite had a FeO/MgO ratio of 0.9 to 1.8, suggesting arc derivation. The parental
magma was Al- and Fe-rich, similar to a tholeiitic basaltic magma. The composition of orthopyroxene
from the chromitite indicates a crystallization temperature range of 1250–1300 °C at 1.0 GPa. The
chemistry of the chromite in the Ranomena chromitite further suggests that the complex formed in a
supra-subduction zone arc tectonic setting.

Keywords: Chromite, chromitite, Ranomena ultramafic complex, Betsimisaraka suture, NE
Madagascar.

1. Introduction

Chromite (chromian spinel, Cr-spinel) commonly oc-
curs as an accessory phase in mafic-ultramafic rocks
and as the major mineral in chromitite (e.g. Irvine,
1965; Arai, 1992, 1994; Rollinson, Appel & Frie,
2002). Chromite is one of the earliest minerals to
crystallize from a mafic-ultramafic magma and a
sensitive indicator of primary magma/melt compos-
itions; it has therefore been widely used to under-
stand the petrogenesis of its host rocks (Irvine, 1965;
Cameron, 1975; Roeder, Campbell & Jamieson, 1979;
Arai, 1994; Barnes & Hill, 1995; Rollinson, 1995,
2008; Barnes, 2000; Mukherjee et al. 2010; Arai
et al. 2011; González-Jiménez et al. 2014a,b, 2015;
Zhou et al. 2014; Ishwar-Kumar et al. 2016a). In-
terpretation of chromite chemistry becomes difficult
if it has undergone alteration (Evans & Frost, 1975;
Eales, Wilson & Reynolds, 1988; Burkhard, 1993) or
post-crystallization re-equilibration (Hamlyn & Keays,
1979; Scowen, Roeder & Heltz, 1991). Metamorph-
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osed chromite is generally richer in iron than its
unmetamorphosed equivalent because of Mg–Fe ex-
change with silicates (Barnes, 2000). The degree
of mantle melting, magma composition, crystalliz-
ation sequence and pressure–temperature conditions
can vary significantly among different geotectonic re-
gimes, leading to distinctive variations in the compos-
ition of chromite (Ahmed et al. 2005; Karipi et al.
2007; Aswad, Aziz & Koyi, 2011). The chemistry of
chromite is therefore a diagnostic indicator of differ-
ent tectonic settings (Irvine, 1967; Arai, 1980, 1994;
Barnes & Roeder, 2001; Arai et al. 2011; Dharma Rao
et al. 2013).

The Precambrian basement of Madagascar (Be-
sairie, 1967) is made up of several Mesoarchaean–
Neoproterozoic crustal blocks separated by
shear/suture zones. The Betsimisaraka suture zone
in NE Madagascar separates the Neoarchean Ant-
ananarivo block in the west from the Mesoarchean
Antongil-Masora blocks in the east (Collins et al.
2003; Kröner et al. 2000; Collins & Windley, 2002;
Raharimahefa & Kusky, 2009). The Betsimisaraka
suture zone consists predominantly of paragneisses
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Figure 1. (Colour online) Geological map of the Ranomena
complex and surrounding region, showing part of the west-
dipping Betsimisaraka suture, the Antananarivo block and the
Antongil block in NE Madagascar. The Ranomena complex
(modified after Collins and Windley, 2002; Bauer & Key, 2005;
Raharimahefa & Kusky, 2009) is situated in a slice of the Bet-
simisaraka suture that has been thrust eastwards over the Ant-
ongil block. A schematic geological cross-section along the AB
line is given below the map.

and mica-schists that dip shallowly to the west. In
recent studies, the existence and exact position, shape
and age of the Betsimisaraka suture has become
controversial (Tucker et al. 1999, 2011, 2014; Key
et al. 2011; Ishwar-Kumar et al. 2013, 2015,2016b;
Rekha et al. 2013; Rekha, Bhattacharya & Prabhakar,
2014; Ratheesh-Kumar et al. 2015). The Ranomena
complex consists of layered gabbro, harzburgite, or-
thopyroxenite, clinopyroxenite, garnet websterite and
chromitite-layered harzburgite (Hottin, 1969; Bauer
& Key, 2005; Grieco, Merlini & Cazzaniga, 2012;
Grieco et al. 2014). The chromite in the chromitite
may potentially reveal valuable information about
its petrogenesis and tectonic setting. In this study,
we present chromite chemical data from the Ranom-
ena chromitite to constrain its petrogenesis, parental
magma composition and crystallization temperature
in order to better understand its tectonic setting.

2. Geological background

The Ranomena ultramafic complex (hereafter Ranom-
ena complex) is located c. 25 km NW (17° 45′ S;
48° 06′ E) of Toamasina (Tamatave) town in northeast-
ern Madagascar (Fig. 1) (Kröner et al. 2000; Collins
& Windley, 2002). It is a c. 700 m long, 300 m
wide lens that consists of harzburgite, orthopyrox-
enite, clinopyroxenite, chromitite-layered harzburgite

and two pyroxene-hornblende gabbro (Hottin, 1969),
the chromitites occurring between alternating lay-
ers of harzburgite and pyroxenite (Grieco, Merlini &
Cazzaniga, 2012; Grieco et al. 2014). The Ranom-
ena complex occurs in garnet-sillimanite paragneiss,
amphibolite and c. 3100 Ma migmatitic gneiss (Bauer
& Key, 2005). The Betsimisaraka belt, which consists
largely of high-strain paragneisses that contain em-
erald mineralization, graphite-rich schists and several
major lenses of garnet-bearing mafic-ultramafic rocks
(Hottin, 1969; Besairie, 1970), is widely regarded as
a west-dipping suture zone between the Antongil and
Masora blocks to the east and the Antananarivo block
to the west (Kröner et al. 2000; Collins & Windley,
2002; Collins et al. 2003; Raharimahefa & Kusky,
2009). Tucker et al. (2011) suggested an alternative
model, according to which the zone was occupied
by a sedimentary basin (the Manampotsy Group) that
was deposited during the period 840–760 Ma and was
inter-thrust with the margins of the Antananarivo and
Antongil–Masora blocks during 560–520 Ma. Accord-
ing to these authors there was an ocean on the site of
the Manampotsy basin, which was destroyed during
Neoarchean time.

The Betsimisaraka suture contains several relict
mafic-ultramafic complexes (Hottin, 1969). From a
study of platinum-group minerals (PGM), Grieco,
Merlini & Cazzaniga (2012) and Grieco et al. (2014)
interpreted the Ranomena complex as a contin-
ental layered/stratiform intrusion. The Antananarivo
block to the west of the suture mainly consists of
Neoarchean (c. 2500 Ma) granulite to amphibolite fa-
cies orthogneisses intruded by arc-generated 820–
740 Ma aged granitic rocks and gabbros (Kröner et al.
1999, 2000; Tucker et al. 1999, 2011, 2014). On
the eastern side of the suture is a remnant, thin
quartzite-dominated shelf that has been imbricated
with gneisses from the under-thrusted Archean Ant-
ongil craton (Windley et al. 1994; Collins & Wind-
ley, 2002; Schofield et al. 2010). Figure 1 shows that
the Ranomena complex is situated in a small slice of
gneisses that has been thrust eastwards from the west-
dipping Betsimisaraka suture over the Antongil block.

3. Petrography and mineral chemistry

3.a. Petrographic and textural characteristics

The Ranomena chromitite mainly consists of c.
85 vol. % chromite, c. 10 vol. % olivine and c. 5 vol. %
orthopyroxene (Fig. 2a–c). Chromite grains are mostly
euhedral; grain size varies over the range 0.01–0.1 mm
and is characterized by a cumulate texture. Anhed-
ral olivine and orthopyroxene are main inter-cumulus
minerals.

3.b. Mineral compositions

The constituent minerals of the Ranomena chromi-
tite were analysed with a Cameca SX-100 electron-
probe micro-analyser at the Geological Survey of
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Figure 2. Thin section micrographs. (a) Chromitite from the Ranomena complex, showing the massive texture of a chromitite layer.
(b) Chromitite sample from the Ranomena complex, plane polarized light. (c) Backscattered electron image of chromite grains show-
ing the mineral inclusions and textures of chromitite. (d) Backscattered electron image of chromitite showing chromite, olivine and
orthopyroxene grains. Cr – chromite; Ol – olivine; OPX – orthopyroxene.

India, Bangalore, India, a JEOL JX8900 electron probe
micro-analyser in the Okayama University of Science,
Okayama, Japan (Tsujimori et al. 1998), and a Cameca
SX-100 electron probe micro-analyser at the National
Geophysical Research Institute, Hyderabad, India. The
inclusions in chromite were studied with a JEOL JXA
8300 at the Advanced Facility for Microscopy and
Microanalysis, Indian Institute of Science, Bangalore,
India. Analytical conditions in all instruments were
15 kV accelerating voltage and a probe current of
12 nA; natural silicate and oxide minerals were used
as standards. The data were reduced using ZAF (in
JX8900 and JXA 8300) and phi-rho-z (in SX100) cor-
rection procedures. SiO2, TiO2, Al2O3, Cr2O3, FeO,
MnO, MgO, CaO, Na2O and K2O were analysed for
all samples. Representative mineral chemical data are
given in Table 1 and a full dataset is provided in online
Supplementary Table S1 (available at http://journals.
cambridge.org/geo). Back-scattered images were taken
(Fig. 2c) with a JEOL JX8900 electron probe micro-
analyser at the Okayama University of Science with an
accelerating voltage of 15 kv and a 2.387e−7 Å beam
current.

3.b.1. Chromite

The chromites from the chromitite are weakly zoned.
The Cr# (Cr/(Cr + Al)) varies over the range 0.59–0.69
and the Mg# (Mg/(Mg + Fe2+)) over 0.37–0.44, with
little variation between cores and rims (Table 1).

3.b.2. Mineral inclusions in chromite

The chromite grains contain elongate orthopyroxene
inclusions (Fig. 2c), which are slightly poor in SiO2

(c. 53 wt %) and Al2O3 (c. 0.35 wt %) and weakly
enriched in Cr2O3 (c. 1.37 wt. %) compared with
the orthopyroxene in the matrix, which have SiO2

(c. 57 wt %), Al2O3 (1.0–1.4 wt %) and Cr2O3 (0.05–
0.15 wt %) (Fig. 2c, d).

3.b.3. Silicate mineral chemistry

In Ranomena chromitite the major intercumu-
lus minerals are olivine and orthopyroxene.
The olivine is highly magnesian forsterite with
FO92-93 (XMg= 0.92–0.93) and a low NiO content
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Table 1. Representative mineral chemistry of chromite, olivine
and orthopyroxene from chromitites, Ranomena complex.

Chromite core

Analysis No. 160 169 224 245 384

SiO2 0.10 0.00 0.00 0.00 0.01
TiO2 0.34 0.27 0.58 0.55 0.59
Al2O3 17.05 16.26 16.17 15.12 15.25
Cr2O3 42.61 44.64 44.55 44.83 43.50
FeO 28.96 28.88 28.52 29.41 31.41
MnO 0.62 0.58 0.68 0.68 0.74
MgO 9.23 9.17 9.49 8.91 8.71
CaO 0.06 0.00 0.00 0.00 0.00
Na2O 0.00 0.01 0.01 0.01 0.00
K2O 0.05 0.00 0.05 0.01 0.02
NiO 0.06 0.21 0.07 0.12 0.11
Total 99.06 100.01 100.12 99.64 100.33
O 4
Si 0.003 0.000 0.000 0.000 0.000
Ti 0.008 0.006 0.014 0.013 0.014
Al 0.650 0.618 0.612 0.580 0.582
Cr 1.089 1.138 1.132 1.154 1.113
Fe 0.783 0.779 0.766 0.801 0.850
Fe3+ 0.238 0.226 0.229 0.238 0.275
Fe2+ 0.569 0.576 0.560 0.587 0.605
Mn 0.017 0.016 0.018 0.019 0.020
Mg 0.445 0.441 0.455 0.432 0.420
Ca 0.002 0.000 0.000 0.000 0.000
Na 0.000 0.000 0.001 0.001 0.000
K 0.002 0.000 0.002 0.001 0.001
Ni 0.001 0.005 0.002 0.003 0.003
Total cation 3.001 3.005 3.002 3.003 3.003
Cr# (Cr/ Cr + Al) 0.626 0.648 0.649 0.665 0.657
Mg# (Mg/ Mg + Fe) 0.362 0.361 0.372 0.351 0.331
Al2O3 in melts 12.899 12.649 12.620 12.275 12.319
FeO/MgO in melts 1.790 1.783 1.710 1.826 1.899

Orthopyroxene
Analysis No. 334 326 319 344 325
SiO2 57.27 56.99 56.90 56.76 57.49
TiO2 0.09 0.07 0.08 0.04 0.07
Al2O3 1.13 1.05 1.20 1.37 1.02
Cr2O3 0.07 0.13 0.18 0.14 0.13
FeO 6.28 6.38 6.22 6.48 6.41
MnO 0.20 0.27 0.22 0.21 0.19
MgO 35.10 35.12 35.23 34.76 35.23
CaO 0.16 0.25 0.17 0.16 0.20
Na2O 0.00 0.00 0.00 0.02 0.00
K2O 0.00 0.01 0.04 0.00 0.02
NiO 0.04 0.03 0.01 0.00 0.02
Total 100.33 100.30 100.24 99.93 100.77
O 6
Si 1.967 1.962 1.958 1.960 1.968
Ti 0.002 0.002 0.002 0.001 0.002
Al 0.046 0.043 0.049 0.056 0.041
Cr 0.002 0.004 0.005 0.004 0.003
Fe 0.180 0.184 0.179 0.187 0.184
Mn 0.006 0.008 0.006 0.006 0.006
Mg 1.797 1.802 1.807 1.789 1.797
Ca 0.006 0.009 0.006 0.006 0.007
Na 0.000 0.000 0.000 0.001 0.000
K 0.000 0.001 0.002 0.000 0.001
Ni 0.001 0.001 0.000 0.000 0.000
Total cation 4.007 4.014 4.014 4.010 4.009
Cr# (Cr/ Cr + Al)
Mg# (Mg/ Mg + Fe) 0.909 0.908 0.910 0.905 0.907
Fs 0.091 0.092 0.090 0.094 0.092
En 0.906 0.903 0.907 0.902 0.904
Wo 0.003 0.005 0.003 0.003 0.004

Olivine
Analysis No. 375 355 356 357 358
SiO2 40.65 41.05 41.32 41.01 40.76
TiO2 0.00 0.01 0.01 0.00 0.01
Al2O3 0.02 0.00 0.03 0.00 0.00
Cr2O3 0.02 0.07 0.12 0.00 0.00
FeO 7.51 7.25 7.51 7.35 7.39
MnO 0.14 0.16 0.14 0.21 0.09

Table 1. Continued

Olivine

Analysis No. 375 355 356 357 358

MgO 50.81 51.95 51.42 51.41 51.17
CaO 0.01 0.00 0.00 0.00 0.00
Na2O 0.00 0.01 0.00 0.00 0.01
K2O 0.02 0.03 0.03 0.02 0.02
NiO 0.24 0.21 0.21 0.27 0.26
Total 99.43 100.73 100.78 100.28 99.71
O 4
Si 0.993 0.989 0.995 0.993 0.992
Ti 0.000 0.000 0.000 0.000 0.000
Al 0.001 0.000 0.001 0.000 0.000
Cr 0.000 0.001 0.002 0.000 0.000
Fe 0.153 0.146 0.151 0.149 0.150
Mn 0.003 0.003 0.003 0.004 0.002
Mg 1.850 1.866 1.846 1.855 1.857
Ca 0.000 0.000 0.000 0.000 0.000
Na 0.000 0.001 0.000 0.000 0.001
K 0.001 0.001 0.001 0.001 0.001
Ni 0.004 0.004 0.004 0.005 0.005
Total cation 3.007 3.011 3.003 3.007 3.008
Mg# (Mg/ Mg + Fe) 0.923 0.927 0.924 0.926 0.925

(0.21–0.27 wt %). Orthopyroxene is highly magnesian
enstatite that is depleted in iron (Mg# 0.90–0.91)
and is slightly enriched in silica (52.00–57.80 wt %)
(Table 1).

4. Discussion: petrogenesis and tectonic setting of the
Ranomena complex

Many studies of ultramafic rocks have long established
that chromite can be a useful petrogenetic and tectonic
indicator (Irvine, 1967; Ahmed, Arai & Attia, 2001;
Ahmed et al. 2005; Hellebrand et al. 2001, 2002).
The composition of chromite depends strongly on its
parental magma composition and its magma evolution
(e.g. Irvine, 1965; Thayer, 1970; Roeder, 1994; Barnes
& Roeder, 2001); the Cr# of chromite can therefore be
used to calculate the degrees of partial melting exper-
ienced by ultramafic rocks (e.g. Dick & Bullen, 1984;
Michael & Bonatti, 1985; Arai, 1994; Hellebrand et al.
2002). The Cr# of chromite increases with increas-
ing degrees of melting, which reduces the Al contents
of orthopyroxene and the host rock (Jaques & Green,
1980; Ohara & Ishi, 1998). Furthermore, the tectonic
setting of a particular chromite can be evaluated by
geochemical modelling of the liquidus chromite com-
position (e.g. Roeder & Reynolds, 1991). The applic-
ation of chromite composition as a petrogenetic and
geotectonic indicator therefore needs thorough petro-
graphic and textural observations to recognize periods
of magmatic and post-magmatic events experienced by
the host rock (e.g. Rollinson, 1995; Suita & Streider,
1996).

4.a. Implications from chromite chemistry

The chromitite in the Ranomena complex has
undergone greenschist to lower amphibolite
facies metamorphism. A Cr/(Cr + Al) (Cr#) v.
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Figure 3. (Colour online) Mineral chemistry of chro-
mite showing the effect of alteration. (a) Cr/(Cr + Al) v.
Fe3+/(Cr + Al + Fe3+) plot defining the alteration trend of the
Ranomena chromites (modified after Ahmed et al. 2009). (b)
The Al–Cr–Fe3+ ternary diagram for chromite compositions
from the Ranomena complex, which plot on the spinel stability
boundary (Sack & Ghiorso, 1991), calculated for spinel in
equilibrium with Fo90 olivine.

Fe3+/(Cr + Al + Fe3+) plot (Ahmed et al. 2009)
(Fig. 3a) illustrates the alteration trend. All the chro-
mite values from the Ranomena chromitite plot within
the spinel core field (from Ahmed et al. 2009). The
development of Fe3+-enriched spinel is controlled by
a decrease in size of the miscibility gap between a
chromite core and a magnetite rim with increasing
temperature (Barnes, 2000), where a complete solid
solution between chromite and magnetite occurs at
600 °C. However, the compositions of the cores of
chromite in the Ranomena chromitite plot outside the
600 °C field (the spinel stability field was calculated
for equilibrium with Fo90 olivine) of Sack & Ghiorso
(1991) (Fig. 3b). This indicates that the chromite cores
were not affected by post-magmatic re-equilibration,
and therefore preserve their primary compositions.

The alteration trend of the Ranomena chromites is
shown in Cr/(Cr + Al) v. Fe3+/(Cr + Al + Fe3+) space
(Fig. 3a; Ahmed et al. 2009). On an Al–Cr–Fe3+ tern-

ary diagram (Fig. 3b; Jan & Windley, 1990; Barnes &
Roeder, 2001) the rims of chromites plot in the Cr–
Al field and the chromite cores in the ophiolite field.
In a Cr/(Cr + Al) v. Mg/(Mg + Fe2+) diagram (Fig. 4a;
after, Tamura & Arai, 2006; Oh et al. 2012) the chro-
mites fall close to the peridotite field of a supra-
subduction zone. On a TiO2 v. Al2O3 diagram (Fig. 4b;
Kamenetsky, Crawford & Meffre, 2001) the chromites
plot in the arc field. The Al2O3 (wt %) v. Cr2O3 (wt %)
relations of Franz & Wirth (2000) (Fig. 4c), which
discriminate arc cumulate spinels from mantle arrays,
suggest that the Ranomena chromite cores are arc cu-
mulate spinels (Fig. 4c). In a Fe2+/Fe3+ v. Al2O3 (wt %)
plot (Fig. 4d) (after, Kamenetsky et al. 2001) the
Ranomena chromites plot within the fields of supra-
subduction zone peridotite and volcanic spinel. The
low TiO2 content also indicates that the ultramafic
rocks formed in an arc-tectonic setting. In summary,
the composition of chromite cores from the Ranom-
ena chromitite indicates that they evolved in a supra-
subduction zone arc setting (Fig. 4a–d) and the chro-
mites have low NiO (c. 0.2 wt %), suggesting an ophi-
olitic origin (Fig. 5b).

4.b. Pressure–temperature estimations

Directly estimating the pressure and temperature of
crystallization of mafic-ultramafic rocks is difficult,
especially in metamorphosed rocks. We have there-
fore calculated empirically the P–T conditions of
the Ranomena ultramafic rocks. Basu & McGregor
(1975) proposed that the crystallization pressure of
ultramafic rocks can be estimated using the relation-
ship between Mg# and Cr# because there is a dis-
tinct variation of these parameters in chromite com-
positions between alkali-basalt and kimberlite xen-
oliths. Generally, chromite textures are related to
their tectonic environments. The chromites from the
Ranomena complex have a euhedral texture, which
is a characteristic of spinels in xenoliths from kim-
berlite pipes. These euhedral spinels have higher
Cr/(Cr + Al) (0.62–0.68) and lower Mg/(Mg + Fe2+)
(0.40–0.44) ratios, which is a characteristic of euhed-
ral spinels. The xenoliths from kimberlites have higher
Fe3+/(Cr + Al + Fe3+) values than alkali olivine basalt
xenoliths. The high Cr/(Cr + Al + Fe3+) values also in-
dicate that the spinels formed at a high pressure. The
Ranomena chromites have Cr/(Cr + Al + Fe3+) values
ranging over 0.55–0.65, indicating a medium- to high-
pressure origin. The chromites from the ultramafic
rocks in this study plot very close to the kimberlite
xenolith field in the Mg# v. Cr# diagram of Basu &
McGregor (1975), suggesting a high-pressure (a min-
imum of 1.0 GPa) origin (Fig. 5a). The absence of
plagioclase in the Ranomena ultramafic rocks sug-
gests that the pressure conditions during crystallization
were higher than those of the plagioclase peridotite
field (e.g. Green & Ringwood, 1970; Schmidt & Poli,
1998). The estimated crystallization pressure at or over
1.0 GPa for the chromite corresponds to the melting
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Figure 4. (Colour online) Tectonic discrimination diagrams for chromite. (a) Cr/(Cr + Al) v. Mg/(Mg + Fe2+) (after Tamura & Arai,
2006; Oh et al. 2012). (b) TiO2 (wt %) v. Al2O3 (after Kamenetsky et al. 2001). (c) Al2O3 (wt %) v. Cr2O3 (wt %) (after Franz & Wirth,
2000). (d) Fe2+/ Fe3+ v. Al2O3 (wt %) (after Kamenetsky et al. 2001).

conditions in the spinel peridotite field (Dick & Bul-
len, 1984). To calculate the crystallization temperat-
ure, the Fe and Mg mole fractions of orthopyroxene
were plotted in an experimentally contoured pyroxene
quadrilateral (pyroxene-solvus thermometer of Lind-
sley, 1983) at 1.0 GPa. The orthopyroxenes from the
Ranomena chromitite give a crystallization temperat-
ure of 1300-1250 °C (Lindsley, 1983) (Fig. 5c). This
high value is interpreted as the igneous crystallization
temperature of the residual mantle, and the lower tem-
perature as a result of sub-solidus re-equilibration. The
above results suggest that the Ranomena ultramafic
rocks formed under upper mantle pressure and tem-
perature conditions.

4.c. Parental magma composition

We used the mineral chemistry of the primary phases
of chromite and clinopyroxene to determine the par-
ental melt composition because the composition of
chromite is strongly related to its parental melt com-
position, the degree of partial melting and its fractional
crystallization (Irvine, 1977; Dick & Bullen, 1984;
Barnes & Roeder, 2001). The Al2O3 content of chro-

mite is commonly used to determine the nature of its
parental melt and its ambient tectono-magmatic en-
vironment (e.g. Zhou et al. 1996; Kamenetsky et al.
2001; Rollinson, 2008; Zaccarini et al. 2011). The
Al2O3 contents of melts in equilibrium with chro-
mite (equilibrium at 1 bar) were calculated using the
equation:

Al2O3,spinel = 0.035 × (Al2O3,melt )
2.42

as proposed by Maurel & Maurel (1982). The res-
ults indicate that the parental melts through which the
Ranomena chromite crystallized had Al2O3 contents of
10.98–13.62 wt % (Table 1). Such high Al2O3 contents
are representative of boninitic melts (Wilson, 1989) so
the parental melts of the Ranomena chromitite had an
arc parentage. The data indicate a high-Al nature of the
parental magma and suggest that high-alumina basalt
was the source magma. The parental melt data, along
with the Al2O3 contents of chromite, plot very close to
the evolutionary trend of an arc system in a diagram of
Al2O3 in melt v. Al2O3 in spinel (Fig. 5d; Kamenetsky
et al. 2001; Rollinson, 2008) and the trend extends to-
wards a mid-ocean-ridge basalt (MORB) setting with
increasing degrees of partial melting. The FeO/MgO
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Figure 5. (Colour online) (a) Cr# v. Mg# diagram showing the discrimination between alkali-basalt and kimberlite xenoliths (after
Basu & McGregor, 1975). The chromites from the Ranomena complex plot near the kimberlite xenolith field, suggesting a high-
pressure origin. (b) Tectonic discrimination diagram based on the NiO v. Mg/(Mg + Fe2+) of chromites from Ranomena chromitites
(Fields are after, Rehfeldt et al. 2007). (c) Orthopyroxene composition from the Ranomena complex in an experimentally contoured
Ca–Mg–Fe phase-relation diagram at 1.0 GPa (after Lindsley, 1983). (d) Al2O3 in melts v. Al2O3 in spinel (after, Rollinson, 2008),
based on melt calculations of Maurel & Maurel (1982).

ratio of a parental melt in equilibrium with chromite at
1 kbar can also be estimated from a chromite compos-
ition using the equation:

ln
(

FeO
MgO

)
spinel

= 0.47 − 1.07Yspinel, Al

+0.64Yspinel, Fe3+ + ln
(

FeO
MgO

)
liquid

where FeO and MgO are in wt % and

Yspinel, Al = Al
Al + Cr + Fe3+ and

Yspinel, Fe3+ = Fe3+

Al + Cr + Fe3+

as proposed by Maurel & Maurel (1982). The results
show that the parental magma from which the chromite
crystallized had a FeO/MgO ratio of 0.9–1.8. Bonin-
ites have a FeO/MgO ratio over the range 0.7–1.4,
whereas the same ratio in MOR basalts varies over 1.2–
1.6, suggesting the Ranomena chromite had an arc de-
rivation. The parental magma was therefore Al- and

Fe-rich and is comparable to the chemical character-
istics of a tholeiitic basalt magma. Based on all the
above lines of evidence, we suggest that the composi-
tion of the parental magma of the Ranomena ultramafic
rocks was similar to that of a primitive tholeiitic basalt
formed by a high degree of partial melting of a mantle
peridotite. These results indicate that the parental melt
had a composition equivalent to that of an island-arc
tholeiite (IAT).

Regarding the origin of chromitite, Irvine (1977)
suggested that the mixing of a chemically primitive
mafic melt with a more evolved mafic melt could
produce a hybrid magma from which chromitite layers
could crystallize. The Ranomena chromitite is charac-
terized by a massive texture. González-Jiménez et al.
(2014a) proposed that disseminated chromitite can
form with a low melt/rock ratio and massive chromitite
with a high melt/rock ratio. A high abundance of oliv-
ine facilitates movement of melt along grain boundar-
ies and enhances the formation of three-dimensional
networks of olivine to form disseminated chromitite,
whereas melts from different provenances with differ-
ent physico-chemical properties such as SiO2 content,
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viscosity, density and temperature inter-mix and give
rise to nodular and orbicular chromitite, which
continues to grow forming massive chromitite
González-Jiménez et al. (2014a).

5. Conclusions

The main conclusions of this study are as follows.
1. The composition of orthopyroxene from the

Ranomena chromitite indicates a crystallization tem-
perature range of 1250–1300 °C at 1.0 GPa.

2. Melt calculations using chromite cores show that
the composition of the parental magma of the Ranom-
ena complex was similar to that of a primitive tholeiitic
basalt formed by a high degree of mantle melting.

3. The chemistry of chromite in chromitite from the
Ranomena complex indicates that it formed in a supra-
subduction zone arc tectonic setting.
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