
Math. Struct. in Comp. Science (2004), vol. 14, pp. 469–505. c© 2004 Cambridge University Press

DOI: 10.1017/S0960129504004268 Printed in the United Kingdom

A domain equation for refinement of partial systems

MICHAEL R. A. HUTH†, RADHA JAGADEESAN‡

and DAVID A. SCHMIDT§

†Department of Computing, Imperial College London, South Kensington campus,

London SW7 2AZ, England

Email: M.Huth@doc.imperial.ac.uk

‡School of Computer Science, Telecommunications, and Information Sciences, DePaul University,

243 S. Wabash Avenue, Chicago, Illinois 60604-2287

Email: rjagadeesan@cs.depaul.edu

§Department of Computing and Information Sciences, Kansas State University, 234 Nichols Hall,

Manhattan, Kansas 66506

Email: schmidt@cis.ksu.edu

Received 10 May 2002; revised 1 February 2003

A reactive system can be specified by a labelled transition system, which indicates static

structure, along with temporal-logic formulas, which assert dynamic behaviour. But refining

the former while preserving the latter can be difficult, because:

(i) Labelled transition systems are ‘total’ – characterised up to bisimulation – meaning that

no new transition structure can appear in a refinement.

(ii) Alternatively, a refinement criterion not based on bisimulation might generate a refined

transition system that violates the temporal properties.

In response, Larsen and Thomson proposed modal transition systems, which are ‘partial’, and

defined a refinement criterion that preserved formulas in Hennessy–Milner logic. We show

that modal transition systems are, up to a saturation condition, exactly the mixed transition

systems of Dams that meet a mix condition, and we extend such systems to non-flat state

sets. We then solve a domain equation over the mixed powerdomain whose solution is a

bifinite domain that is universal for all saturated modal transition systems and is itself fully

abstract when considered as a modal transition system. We demonstrate that many

frameworks of partial systems can be translated into the domain: partial Kripke structures,

partial bisimulation structures, Kripke modal transition systems, and pointer-shape-analysis

graphs.

1. Introduction

A specification of a computing system typically consists of a segment that specifies static

structure and a segment that describes dynamic behaviour. For example, a sequential

program can be specified by a class diagram, which displays the structure of components

to be written, and by sequence diagrams, which display behaviours that must be

fulfilled by the executing program; the latter assert behaviours that must be satisfied

by any implementation of the former. Refinements of the specification should lead to an

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 470

implementation that has the structure in the class diagram and preserves the behaviours

stated by the sequence diagrams.

Reactive systems should also be specified and implemented with the assistance of

structural and behavioural specifications, and indeed, it is common to employ labelled

transition systems to specify the communication structure of a reactive system and to use

temporal logic to assert the system’s desired behaviours. Then, a model check can verify

the consistency of structure with behaviour, a consistency that must be maintained in the

refinements that lead to the implementation.

But what does it mean to refine a labelled transition system while preserving its desired

behaviours? Labelled transition systems are ‘total’ entities – a transition from one state

to another either can or cannot happen. This may seem innocuous, but the consequences

are far-reaching, because labelled transition systems can be distinguished only up to

bisimulation (Park 1989; Milner 1989), so it is impractical to use bisimulation to guide

the refinement of a labelled-transition system into an implementation (Larsen 1989).

Alternatively, one might define refinement as a simulation (one-half of bisimulation)

(Milner 1981) and ‘refine’ one labelled transition system into a second, such that all

transitions in the second system are simulated by transitions in the first. But such

a simulation does not preserve all the temporal-logic behaviours one might specify –

behaviours that are existentially quantified can hold true in the specification transition

system but fail in the refinement transition system. (And if we dualise the definition of

simulation, the universally quantified properties can be lost.)

Similar problems arise when attempting to synthesise, from an implementation of a

reactive system, its abstraction (abstract interpretation (Cousot and Cousot 1977)), which

might be statically analysed for its temporal-logic properties.

The difficulty with employing a labelled transition system as a specification has its root

in the way that negative capabilities are portrayed. A labelled transition system identifies

a set of states Σ, a set of actions Act and a state transition relation, R ⊆ Σ×Act×Σ, such

that (s, α, s′) ∈ R states the system is capable of performing action α in state s, producing

s′ as its successor. By force, (t, β, t′) ∈ (Σ × Act × Σ) \ R implies that, at state t, action β

either cannot be taken or cannot result in t′. But the human who specifies R might wish

to express that some instances of (Σ × Act × Σ) \R are still possible (but not required) in

a correct implementation. Labelled transition systems do not provide this flexibility.

Larsen and Thomsen understood well the limitations of labelled transition systems

and temporal logic as a specification methodology and proposed modal transition systems

(Larsen and Thomsen 1988; Larsen 1989) as a solution. Simply stated, a modal transition

system is a ‘partial’ variant of a labelled transition system that can express the possibility

as well as the necessity of a state transition. Larsen and Thomsen revised the definition of

bisimulation to accommodate refinement of modal transition systems into implementations

and showed that temporal properties written in Hennessy–Milner logic (Hennessy and

Milner 1985) are preserved by refinement (Larsen 1989).

Larsen and Thomsen’s work applied to transition systems whose state set, Σ, was

an unordered set. In this paper, we extend their results to state sets that are domains

(Abramsky and Jung 1994), which are crucial to higher-order programming and abstract

interpretation: we show that both modal transition systems and a large class of Dams’s

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 471

consistent mixed transition systems (Dams 1996; Dams et al. 1997) are instances of

‘saturated’ transition systems. Inspired by Abramsky’s result, which characterised labelled

transition systems up to bisimulation as elements within a recursively defined convex

powerdomain (Abramsky 1991), we characterise domain-based, saturated transition sys-

tems up to bi-refinement as elements within a reflexively defined product of mixed

powerdomains (Heckmann 1990; Gunter 1992). This yields a sound treatment of refinement

for a temporal logic with universal and existential quantification and negation. As

a corollary, the reflexive product of mixed powerdomains generalises Kleene’s strong

semantics for propositional logic (Kleene 1952) to non-flat settings.

Outline of paper

In Section 2 we present modal transition systems for ‘loosely’ specifying reactive systems;

such specifications may have many non-bisimilar implementations. Refinement and a

property semantics (temporal logic) are defined; the latter is shown to be sound with

respect to the former. Consistent mixed transition systems are related to modal transition

systems by means of saturation, and we extend both to non-flat data domains by means

of the mixed powerdomain. In Section 3, we solve a mixed powerdomain equation to

obtain a saturated transition system that is universal (all saturated transition systems can

be embedded into it) and fully abstract (its greatest abstraction relation coincides with

the domain order). As a by-product, refinement of saturated transition systems is logically

characterised by Hennessy–Milner logic. Section 4 testifies to the expressiveness of our

framework and universal domain, by showing that various frameworks for modelling and

analysing partial systems (which are used in concurrency theory, partial state-space model

checking, and shape analysis) have linear translations into the domain. Finally, Section 5

discusses related work.

2. Modal transition systems

2.1. Background

Labelled transition systems play a prominent role in the specification, explanation and

analysis of programs, as seen in structural operational semantics (Plotkin 1981), process

algebras (Hoare 1985; Milner 1989) and model-checking (Holzmann 1997).

Definition 1. A labelled transition system with signature Act is a pair L = (Σ, R), where Σ

is a set of states and R ⊆ Σ × Act× Σ is a transition relation. A labelled transition system

is pointed if some s0 ∈ Σ is distinguished as the starting state.

Figure 1 presents the graphical representation of a labelled transition system, which

specifies the structure of a system of two readers and one writer that share a file resource.

Read a state such as RSW as ‘first reader reads, second reader sleeps, writer writes’;

the actions are r (‘start read’), er (‘end read’), w (‘start write’), and ew (‘end write’). We

designate state SSS as the system’s starting state.

If a transition system L is pointed, we can use its starting state and transition relation

to generate a derivation tree of the process defined by L (Milner 1989).

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 472

SSWRRS

w

ew

r
er

er
r

r
er

er
r

RSS

SRS

SSS

Fig. 1. A labelled transition system for two readers and one writer.

Throughout this paper, we assume that labelled transition systems are image-finite:

{s′ ∈ Σ | (s, α, s′) ∈ R} is finite for all s ∈ Σ and α ∈ Act. The intuitive meaning of

Rs,α = {s′ ∈ Σ | (s, α, s′) ∈ R} �= � is:

‘in state s, model L has the reactive capability to engage in action α which, if chosen and

executed, results in a successor state s′ ∈ Rs,α’.

Despite the non-determinism present in labelled transition systems, the reactive capabilities

in Rs,α are firm guarantees: although L cannot promise that action α will be chosen and

executed – the resolution of such choices is accomplished by mechanisms external to

the model, for example, a deterministic scheduler or a communication handshake – it

does promise that an α-action is executable from state s and that the resulting state

can be chosen from Rs,α. Thus, labelled transition systems are total specifications in the

information-theoretic sense: reactive capabilities are either present or absent and such

capabilities cannot, up to bisimulation equivalence (Park 1989; Milner 1989), be modified

by a correct implementation.

Larsen and Thomsen (Larsen and Thomsen 1988) noted that labelled transition systems

have limited utility as specifications of computational systems, because a correct imple-

mentation of a labelled-transition-system specification must have bisimilar behaviour. This

rules out the use of under-determined specifications and limits the flexibility needed for

stepwise implementation. Dually, the analysis of legacy software typically faces the state-

explosion problem and usually has to resort to aggressive abstraction techniques. However,

state-space reduction is severely constrained if conducted within a fixed bisimulation-

equivalence class.

Consequently, Larsen and Thomson proposed modal transition systems (Larsen and

Thomsen 1988; Larsen 1989) as specification models that overcome these shortcomings.

Their solution has a pleasant and free side effect in that it allows an extension of

existing abstract-interpretation techniques (Cousot and Cousot 1977) to temporal logics

that combine universal and existential path quantifiers (Larsen 1989).

2.2. Refinement

Dams developed, independently, mixed transition systems (Dams 1996), which can be

seen as a more general notion of modal transition systems, so we define the two systems

together.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 473

Reads

r
r

Sleep
w

Write
Sleep WriteReads

r, er

r
r

er w
w

ew
ew

Fig. 2. A mixed transition system that is not a modal transition system (left) and a modal

transition system (right).

Definition 2 (Mixed and modal transition systems).

1 A mixed transition system (Dams 1996) with signature Act is a triple M = (Σ, Ra, Rc)

such that (Σ, Rm) is a labelled transition system with signature Act, for every mode

m ∈ {a, c}.
2 A modal transition system (Larsen and Thomsen 1988) with signature Act is a mixed

transition system M = (Σ, Ra, Rc) with signature Act such that Ra ⊆ Rc.

3 A mixed transition system is pointed if there is some s0 ∈ Σ distinguished as the

starting state.

4 A modal transition system is concrete or total when Ra = Rc.

A mixed (modal) transition system is intended to be a ‘loose’ specification or an

abstraction of concrete-system behaviour, and each of its labelled transition systems

expresses a distinct ‘aspect’ or ‘modality’ of reactive capability:

— Ra lists firm guarantees of non-deterministic reactive capabilities – as is familiar from

labelled transition systems;

— Rc \ Ra lists capabilities that are possible but not guaranteed; the implementation of

these reactive capabilities is optional; and

— in the case of a modal transition system, elements (s, α, s′) ∈ (Σ×Act×Σ)\Rc represent

firm guarantees that, in state s, action α, if possible at all, cannot result in the successor

state s′.

In Larsen and Thomsen’s notation (Larsen and Thomsen 1988), elements of Ra

are denoted by s −→�
α s′ and elements of Rc by s −→�

α s′, where � denotes ‘for all

implementations’ and � ‘for some implementation’. A modal transition system follows the

philosophy that every firmly guaranteed transition can also be implemented.

Example 1. Figure 2 (left) shows a mixed transition system that abstracts just the

read/write-acquisition structure of a one-or-more-readers/one-writer system. For brevity,

Ra-transitions are drawn as solid arcs, while those from Rc are drawn as dashed arcs.

State Reads represents the situation when one or more readers are engaged in reading;

Write denotes that the writer is active; and Sleep asserts that no process uses the shared

file.

The Ra-transitions from the Sleep state assert that read- and write-acquisition transitions

are guaranteed in any correct implementation of the mixed-transition-system specification.

The self-transition at Reads is possible but not guaranteed because, if all the readers are

already engaged in reading, then yet another read acquisition is impossible. Since the

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 474

transitions (dashed lines) from the Sleep state are guaranteed and are not shadowed by

any Rc-transitions, the transition system is not modal.

In contrast, Figure 2 (right) shows a modal transition system that shows the structure

of both acquisition and release transitions for a system of readers and writer. Here, every

firmly guaranteed transition is shadowed by one that is possible. The self-arcs on Reads

admit the possibility of multiple readers. Note that the transition from Reads to Sleep

is in Rc \ Ra, because Reads represents the state where one or many readers are reading

the shared file – it is not guaranteed that the release of merely one reader will make the

system return to Sleep.

Larsen’s interpretation of � and � in mixed transition systems suggests that the

refinement of one mixed transition system into another must refine the two forms of

transitions in dual fashion.

Definition 3 (Refinement). Let M = (Σ, Ra, Rc) be a mixed transition system with signature

Act. A relation Q ⊆ Σ × Σ is a refinement within M (Larsen and Thomsen 1988; Dams

1996) iff (s, t) ∈ Q implies for all α ∈ Act:

1 If (t, α, t′) ∈ Ra, there exists some s′ ∈ Σ such that (s, α, s′) ∈ Ra and (s′, t′) ∈ Q.

2 If (s, α, s′) ∈ Rc, there exists some t′ ∈ Σ such that (t, α, t′) ∈ Rc and (s′, t′) ∈ Q.

We write s≺M t or s≺ t if there is some refinement Q with (s, t) ∈ Q. In that case, s refines

(is abstracted by) t.

The union ≺M of all refinements within a mixed transition system M is the greatest

such refinement and a preorder.

In order to apply the above definition to the case of showing that one mixed transition

system M = (Σ1, R
a
1 , R

c
1) refines another system N = (Σ2, R

a
2 , R

c
2), we can construct the

disjoint union M + N = (Σ1 + Σ2, R
a
1 + Ra

2 , R
c
1 + Rc

2). If M and N are pointed with start

states i and j, respectively, we say that (M, j) refines (is abstracted by) (N, i) and write

(M, j) ≺ (N, i) iff (j, i) ∈ Q for some refinement Q within M + N.

The intuition behind M refining N is that all guaranteed reactive capabilities, Ra-

transitions in N, are preserved (up to simulation) within the more-concrete system M;

and M contains only those possible reactive capabilities, Rc-transitions in M, (up to

simulation) that were originally specified within N.

Example 2 (Refinement of mixed transition systems). If we read the labelled trans-

ition system in Figure 1 as a total modal transition system (that is, each arc in

the figure denotes an Rc- as well as an Ra-transition), then the system is a refine-

ment of the modal transition system in Figure 2 (right) – given explicitly by Q =

{(SSS, Sleep), (SS W,Write), (RSS, Reads), (SRS, Reads), (RRS, Reads)} – but not of the

mixed transition system, Figure 2 (left).

Figure 3 shows a modal transition system that is not total but is still a refinement of

Figure 2 (right): the refinement depicts a specification of a system of at least two readers

and a writer.

Finally, Figure 4 shows a system that does not refine either of the systems in Figure 2,

because not all Ra-transitions are preserved and a new Rc-transition is added.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 475

Writer
r

er
er

w
w

ew
ew

OneReadr
er

r
MoreReads

r, er

Sleep

Fig. 3. A refinement of the modal transition system in Figure 2 (right).

Write
w

ew wSleep

Fig. 4. A system that is not a refinement of any system in Figure 2.

[| tt |]mρ
def
= Σ

[| Z |]mρ
def
= ρm(Z)

[| ¬φ |]mρ
def
= Σ \ [| φ |]¬m

ρ

[| φ1 ∧ φ2 |]mρ
def
= [| φ1 |]mρ ∩ [| φ2 |]mρ

[| (∃α)φ |]mρ
def
= prem

α ([| φ |]mρ)

[| µZ.φ |]mρ
def
= lfpFm; where Fm(A)

def
= [| φ |]mρ[Z �→A].

Fig. 5. Property semantics over mixed transition systems (Huth et al. 2001) for mode m ∈ {a, c}.

2.3. Property logic

We equip mixed and modal transition systems with a property logic �, the modal mu-

calculus (Kozen 1983), parametric in signature Act:

φ ::= tt | Z | ¬φ | φ ∧ φ | (∃α)φ | µZ.φ, (1)

where α ∈ Act, Z ∈ var for a countable set of recursion variables var , and all free

occurrences of Z in φ for µZ.φ are under an even scope of negations. We assume the

standard embedding of Act-CTL (see, for example, Bradfield (1991)) into �, for example,

EFα ¬(∃β)tt (‘there is an α-path on which, eventually, there is no β-successor state’)

translates into µZ.(¬(∃β)tt) ∨ (∃α)Z . We also make liberal use of Act-CTL connectives

as abbreviations of their corresponding syntactic equivalents in �.

The logic’s denotational semantics [| · |]m· maps formulas φ and environments ρ into

sets of states for a mode of analysis m ∈ {a, c}; its definition, in Figure 5, uses a variable

environment ρ = (ρa, ρc) such that ρm: var → P(Σ) for m ∈ {a, c}. Note that ¬a
def
= c,

¬c
def
= a, and prem

α (A)
def
= {s ∈ Σ | ∃s′ ∈ Σ, (s, α, s′) ∈ Rm, s′ ∈ A}.

We write s|=a
ρ φ iff s ∈ [| φ |]aρ and say that φ is a (ρ-)valid assertion at s. Similarly, we

write s|=c
ρ φ iff s ∈ [| φ |]cρ, and say that φ is (ρ-)consistent at s. (If φ is closed, we elide ρ.)

The semantics in Figure 5 is the standard one for labelled transition systems with

signature Act, except for the treatment of negation: to evaluate ¬φ in mode m, first

evaluate φ in mode ¬m and then negate that result (Kelb 1994). Least fixed points lfpFm

are computed in the complete lattice (P(Σ),⊆). For the standard syntactic approximations

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 476

of fixed-point formulas µZ.φ

µ0Z.φ
def
= ¬tt µl+1Z.φ

def
= φ[Z �→ µlZ.φ] (l � 0) (2)

we have s|=m
ρ µZ.φ in a mixed transition system iff s|=m

ρ µlZ.φ for some l � 0; provided

that Σ is finite or µZ.φ is unnested (Larsen 1990) – no fixed-point subformulas depend

on an outer fixed point. (As is customary, φ[Z �→ ψ] denotes the formula obtained by

replacing all free occurrences of Z in φ with ψ.)

Example 3 (Valid and consistent assertions). Consider the modal transition system in

Figure 2 (right). The assertion ¬(∃w)(∃r)tt is valid at all states, because we fail to prove

that (∃w)(∃r)tt is consistent – there is no sequence of two Rc-transitions labelled by w

and then r.

The property (∃r)(∃r)(∃er)(∃w)tt is consistent at Sleep, because we can find (at Sleep)

a sequence of four Rc-transitions labelled by these actions in that order. (The assertion is

valid, however, at no state.)

Finally, we see that ¬µZ.¬(∃w)(∃ew)¬Z is valid at Sleep, because the system allows

arbitrarily many cycles of write acquisitions and releases along guaranteed arcs before a

read is performed.

Environments ρ are sound for M iff for all s≺Mt and Z ∈ var , t ∈ ρa(Z) implies

s ∈ ρa(Z) and s ∈ ρc(Z) implies t ∈ ρc(Z).

Theorem 1 (Soundness of semantics with respect to refinement (Huth et al. 2001)). For

any mixed transition system M with signature Act, let s, t ∈ ΣM and s≺M t. For every

φ ∈ � with signature Act and every sound environment ρ:

1 If t|=a
ρφ, then s|=a

ρφ.

2 If s|=c
ρφ, then t|=c

ρφ.

Proof. The two items are proved by a nested induction: the outermost induction is on

the fixed-point depth and the innermost induction on the structure of a formula φ.

— There is nothing to show for the clause tt; for clause Z , we use the soundness of ρ.

— For ¬φ:

– Let t|=a
ρ¬φ. Then t �|=c

ρφ. By induction on item 2, we infer s �|=c
ρφ, that is, s|=a

ρ¬φ.

– Let s|=c
ρ¬φ. Then s �|=a

ρφ. By induction on item 1, we infer t �|=a
ρφ, that is, t|=c

ρ¬φ.

— For φ1 ∧ φ2:

– Let t|=a
ρφ1 ∧ φ2. Then t|=a

ρφi for i = 1, 2. By induction on item 1, we infer s|=a
ρφi

for i = 1, 2; that is, s|=a
ρφ1 ∧ φ2.

– Let s|=c
ρφ1 ∧ φ2. Then s|=c

ρφi for i = 1, 2. By induction on item 2, we infer t|=c
ρφi

for i = 1, 2; that is, t|=c
ρφ1 ∧ φ2.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 477

— For (∃α)φ:

– Let t|=a
ρ(∃α)φ. Then there exists some (t, α, t′) ∈ Ra such that t′|=a

ρφ. Since s≺M t,

there exists some s′ ∈ Σ such that (s, α, s′) ∈ Ra and s′ ≺M t′. By induction on item 1,

t′|=a
ρφ implies s′|=a

ρφ. But then (s, α, s′) ∈ Ra secures s|=a
ρ(∃α)φ.

– Let s|=c
ρ(∃α)φ. Then there exists some (s, α, s′) ∈ Rc such that s′|=c

ρφ. Since s≺M t,

there exists some t′ ∈ Σ such that (t, α, t′) ∈ Rc and s′ ≺M t′. By induction on item 2,

s′|=c
ρφ implies t′|=c

ρφ. But then (t, α, t′) ∈ Rc secures t|=c
ρ(∃α)φ.

— For µZ.φ, let L[Σ,≺] be the collection of lower subsets L of Σ with respect to ≺:

t ∈ L and s≺t imply s ∈ L. Dually, U[Σ,≺] is the collection of upper subsets U of Σ

with respect to ≺: s ∈ U and s≺t imply t ∈ U. We set Fm
0

def
= �, Fm

γ+1
def
= Fm(Fm

γ), and

Fm
λ

def
=

⋃
γ<λ F

m
γ for limit ordinals λ.

– By induction on φ and the fact that lower sets are closed under arbitrary unions,

Fa
γ ∈ L[Σ,≺] for all ordinals γ. Since lfpFa is of that form, we have shown item 1.

– Similarly, we infer Fc
γ ∈ U[Σ,≺] for all ordinals γ. Since lfpFc is of that form, this

shows item 2.

Theorem 1 is central to the utility of model-checking partial systems: item 1 says that

all assertions that are valid at state t remain valid at all states that refine t. Dually, item 2

states that properties consistent at state s remain consistent for states that abstract s. Note

that item 2 is required even if there is no need for explicit consistency checks – validating

¬φ at state t amounts to checking whether φ is consistent at t.

2.4. De Morgan duals

The propositional operators falsity (ff), disjunction (φ∨φ), implication (φ → φ), universal

branching ((∀α)φ) and greatest fixed points (νZ.φ) are expressed in � in the expected

way:

ff
def
= ¬tt φ1 ∨ φ2

def
= ¬(¬φ1 ∧ ¬φ2)

φ1 → φ2
def
= ¬(φ1 ∧ ¬φ2) (∀α)φ def

= ¬(∃α) ¬φ
νZ.φ

def
= ¬µZ.¬φ[Z �→ ¬Z].

Remark 1 (Semantics of De Morgan duals). In every mixed transition system with state

set Σ for every mode m ∈ {a, c}, state s ∈ Σ, and environment ρ, we have

1 s �|=m
ρ ff.

2 s|=m
ρ φ1 ∨ φ2 iff s|=m

ρ φ1 or s|=m
ρ φ2.

3 s|=m
ρ φ1 → φ2 iff s �|=¬m

ρ φ1 or s|=m
ρ φ2.

4 s|=m
ρ (∀α)φ iff for all s′ ∈ Σ, (s, α, s′) ∈ R¬m implies s′|=m

ρ φ.

5 If Σ is finite or if νZ.φ is unnested (Larsen 1990), then s|=m
ρ νZ.φ iff for all l � 0 we

have s �|=¬m
ρ µlZ.¬φ[Z �→ ¬Z].

The last three items of Remark 1 highlight the treatment of negation in mixed transition

systems: in mode m, we can (3) verify an implication by refuting its premise in the dual

mode or by verifying its conclusion in the original mode; (4) verify a universally branching

formula (∀α)φ by showing that all R¬m-successor states satisfy φ in mode m; and

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 478

(5) verify a greatest fixed point νZ.φ be refuting all syntactic approximations of a dual

least fixed point in the dual mode. The derivation of (4) is instructive: s|=m(∀α)φ iff

s|=m¬(∃α)¬φ iff not (s|=¬m(∃α)¬φ) iff not (for some s′, (s, α, s′) ∈ R¬m and s|=¬m¬φ) iff

not (for some s′, (s, α, s′) ∈ R¬m and not (s|=m
φ)) iff for all s′, (s, α, s′) ∈ R¬m implies

s|=m
φ.

2.5. Totality

Modal transition systems are partial systems whose total versions render an established

model-checking framework.

Theorem 2 (Totality for modal transition systems). Let M = (Σ, Ra, Rc) be a modal

transition system with signature Act that is total: Ra = Rc. Then: for all φ ∈ � and ρ

with ρa = ρc: [| φ |]aρ equals [| φ |]cρ; the semantics [| φ |]mρ is the usual one for the labelled

transition system (Σ, Rm); and every refinement in M, in particular, ≺M, is a bisimulation.

Proof.

1 The proof that [| φ |]aρ = [| φ |]cρ is a straightforward induction, which uses ρa = ρc for

clause Z and Ra = Rc for clause (∃α)φ.

2 If [| φ |]aρ = [| φ |]cρ for all φ, then the semantics in Figure 5 is the standard one for

labelled transition systems with signature Act.

3 If Ra = Rc, then Definition 3 is the definition of a bisimulation.

Theorem 2 justifies our liberal use of |= for |=a and |=c over total models.

2.6. Maximal consistency

For a pointed mixed transition system (M, i) with i|=a
φ, it is desirable that φ be satisfiable

in a refining total model: j |= φ for a total model (N, j) with (N, j) ≺ (M, i).

Definition 4 (Consistent mixed transition systems). A mixed transition system M is

consistent iff for all its states s and for all φ ∈ �, we have s|=a
φ implies that φ is

satisfiable over some total refining model: there is some state t in some labelled transition

system L such that t |= φ and (L, t) ≺ (M, s).

Example 4 (An inconsistent mixed transition system). Consider the mixed transition

system consisting of one state s and one Ra \ Rc self-transition labelled by α: M =

({s}, {(s, α, s)},�).

Because of the guaranteed transition, we have that s|=a (∃α)tt, but the lack of Rc-

transitions implies that s �|=c (∃α)tt. By the semantics of negation and conjunction, we

infer s|=a (∃α)tt ∧ ¬(∃α)tt, but the latter formula is clearly not satisfiable in labelled

transition systems. In particular, it cannot be satisfied in some refining total model.

We now present a condition on mixed transition systems that guarantees their con-

sistency and is met in all modal transition systems. This condition has an established

domain-theoretic analogue (Heckmann 1990; Gunter 1992), which we will use in the next

section to build a universal domain of consistent mixed transition systems.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 479

Definition 5 (The mix condition (MC)). A mixed transition system

M = (Σ, Ra, Rc)

satisfies the mix condition (MC) iff for all (s, α, s′) ∈ Ra, there is some s′′ ∈ Σ such that

(s, α, s′′) ∈ Ra ∩ Rc and s′′≺s′.

Condition (MC) is satisfied for all modal transition systems, since we may choose s′′ to

be s′ whenever Ra ⊆ Rc. Conversely, any mixed transition system that satisfies (MC) has

a modal transition system as a saturated version.

Definition 6 (Saturated mixed transition system). For every mixed transition system M =

(Σ, Ra, Rc), we define the saturated mixed transition system M̃ = (Σ, R̃a, R̃c), where R̃a def
=

Ra ∩ Rc and R̃c def
= Rc.

Unlike the definitions above, the alternative one of letting R̃a be Ra and R̃c be the

union of Ra and Rc renders a modal transition system that is not equivalent to M.

Proposition 1. Let M = (Σ, Ra, Rc) be a mixed transition system with start state i

satisfying condition (MC). Then (M̃, i) is a pointed modal transition system such that

(M̃, i) ≺M (M, i) and (M, i) ≺M (M̃, i).

Proof. Let s≺M t.

— We show that (M̃, i) ≺M (M, i):

– If (t, α, t′) ∈ Ra, then s≺M t implies the existence of some (s, α, s′) ∈ Ra such that

s′ ≺M t′. Using the condition (MC), there exists some (s, α, s′′) ∈ Ra ∩ Rc = R̃a such

that s′′ ≺M s′. By transitivity of ≺M, we get s′′ ≺M t′ and have (s, α, s′′) ∈ R̃a.

– If (s, α, s′) ∈ R̃c = Rc, then s≺M t implies (t, α, t′) ∈ Rc for some t′ ∈ Σ such that

s′ ≺M t′.

— We show that (M, i) ≺M (M̃, i):

– If (t, α, t′) ∈ R̃a = Ra ∩ Rc, then s≺M t implies (s, α, s′) ∈ Ra for some s′ ∈ Σ such

that s′≺M t′.

– If (s, α, s′) ∈ Rc, then s≺M t implies the existence of some (t, α, t′) ∈ Rc = R̃c such

that s′ ≺M t′.

This result informs us that any mixed transition system that meets condition (MC) is

merely an unsaturated version of a modal transition system and that these two systems

cannot be distinguished via observations through |=a or |=c (by Theorem 1). In that

sense, modal transition systems and mixed transition systems satisfying condition (MC)

are equally expressive for the purposes of design and analysis; these systems are all

consistent.

Theorem 3. Let M be a mixed transition system with signature Act that satisfies the mix

condition (MC).

1 M is consistent.

2 For every ρ with ρa(Z) ⊆ ρc(Z), Z ∈ var , and every φ ∈ � , we have [| φ |]aρ ⊆ [| φ |]cρ.
3 For every ρ with ρa(Z) ⊆ ρc(Z), Z ∈ var , and every φ ∈ � , we have [| φ ∧ ¬φ |]aρ = �.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 480

Proof.

— For (1), let φ ∈ � such that (M, s)|=a
ρφ. Define N = (Σ, Ra ∩Rc, Ra ∩Rc). An analogous

reasoning to that given for the first part of Proposition 1 then renders (N, s)≺M(M, s).

Thus, (M, s)|=a
ρφ implies (N, s)|=a

ρφ by Theorem 1. Applying Theorem 2 to N, we

infer that s|=a
ρφ in the labelled transition system L def

= (Σ, Ra ∩Rc), so M is consistent.

— We prove (2) by structural induction on φ; the clauses for tt, ¬, ∧ and µZ.φ are

routine. For clause Z , we use the assumption that ρa(Z) ⊆ ρc(Z) for every Z ∈ var.

For (∃α), let s ∈ [| (∃α)φ |]aρ, that is, s|=a
ρ(∃α)φ. Then there exists some (s, α, s′) ∈ Ra

such that s′|=a
φ. From (MC), we then infer the existence of some s′′ ∈ Σ such that

(s, α, s′′) ∈ Ra ∩ Rc and s′′≺s′. So s′|=a
ρφ and s′′≺s′ imply s′′|=a

ρφ by Theorem 1. By

induction, this gives us s′′|=c
ρφ. But then (s, α, s′′) ∈ Rc implies s|=c

ρ(∃α)φ.

— (2) and (3) are equivalent: the set [| φ ∧ ¬φ |]aρ is non-empty iff there is some s ∈ Σ

such that s|=a
ρ and s �|=c

ρφ iff there is an element in [| φ |]aρ \ [| φ |]cρ iff [| φ |]aρ is not a

subset of [| φ |]cρ.

Example 5 (More precise property semantics). Our property semantics loses precision in

two places: the interpretation of disjunction in the assertion mode a, and the interpretation

of conjunction in the consistency checking mode c. For example, any formula φ with

s|=c
ρφ and s �|=a

ρφ renders s|=c
ρφ∧ ¬φ and s �|=a

ρφ∨ ¬φ. Such loss of precision may severely

impact the quality of an analysis. Various techniques exist for obtaining more precise

interpretations, although at a significant increase in complexity: we mention the focus

operation of Ball et al. (2001) for program analysis and the generalised model checking

of Bruns and Godefroid (2000).

2.7. An extension: non-flat data

Up to this point, the modal transition systems have had flat data sets: together, Ra and Rc

partially specify a binary relation R over a discrete set Σ. We use the mixed powerdomain

to generalise modal transition systems to non-flat sets, modelled as domains (Abramsky

and Jung 1994).

Definition 7 (Mixed powerdomain (Gunter 1992; Heckmann 1990)). Let (D,�) be a bifinite

domain (Jung 1988) – a domain D such that its identity function idD be the directed image

of Scott-continuous functions d:D → D with finite image and d = d ◦ d � idD . The mixed

powerdomain M[D] of (D,�) consists of the set of all pairs (L,U), where L is Scott-closed

in (D,�) and U is a Scott-compact upper set in (D,�) such that L and U satisfy the

consistency condition

L = ↓(L ∩U). (3)

The order in M[D] is given by

(L,U) � (L′, U ′)
def
= L ⊆ L′ and U ′ ⊆ U. (4)

This is why elements of a mixed powerdomain might be used as states in a mixed transition

system: a state should be characterised by both the assertions L that are guaranteed to

hold true for it and by the assertions U that are possibly true for it; the pair is consistent

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 481

if L = ↓(L ∩U). A state (L,U) should refine state (L′, U ′) when (L,U) � (L′, U ′). These

intuitions are formalised in the next section, but a small example is in order.

Example 6 (Mixed powerdomains).

1 For the domain D = {∗}, each subset is Scott-closed and a Scott-compact upper set.

However, the pair (L,U) = ({∗},�) does not satisfy the consistency condition (3) as

the right-hand side of (3) is then empty. The three remaining pairs false
def
= (�,�),

⊥ def
= (�, {∗}), and true

def
= ({∗}, {∗}) satisfy (3) and comprise all elements of M[D]. For

the ordering, (4) informs us that ⊥ � false and ⊥ � true are the only non-reflexive

instances of � in M[D] (Heckmann 1990).

2 Let D be a finite set with a preorder �. Elements of M[D] are pairs (L,U), where L is

a lower and U is an upper set with respect to �. If the ordering is flat, the consistency

conditions reads as L ⊆ U.

As an element of a powerdomain, every (L,U) ∈ M[D] models a ‘set’ A. However,

claims of the form, “Element d is contained in the ‘set’ A”, have three, instead of the

conventional two, possible outcomes: false if d �∈ U; true if d ∈ L; and ⊥ otherwise,

that is, if d ∈ U \ L. The Scott-closed set L specifies firm guarantees of membership,

whereas the Scott-compact upper set U specifies the possibility of membership. Naturally,

this three-valued interpretation of membership determines a three-valued interpretation

of existential quantification, as worked out in Heckmann (1990). Non-flat data routinely

arises in the framework of abstract interpretation (Cousot and Cousot 1977).

Example 7 (Multiple viewpoints). Non-flat applications of modal transition systems also

occur in software engineering in the context of requirements analysis and consistency

checking (Nuseibeh et al. 1994). In a simplified scenario, each element of a finite domain

(D,�) is a pointed modal transition system d, and d � e expresses the fact that e has

higher or equal priority to d. Each d is a different view of a software artifact. Assertions

validated at a viewpoint are obliged to hold at viewpoints of lesser priority. In the light

of Theorem 1, this means that properties consistent at a viewpoint are obliged to be

consistent in viewpoints of higher priorities. A semantics collects these obligations of

validity {|M:φ|}a and consistency {|M:φ|}c (Huth and Pradhan 2002)

{|M:φ|}a def
= {d ∈ D | ∃e ∈ D: d � e, e|=a

φ}
{|M:φ|}c def

= {d ∈ D | ∃e ∈ D: e � d, e|=c
φ}

{|M:φ|} def
= ({|M:φ|}a, {|M:φ|}c). (5)

In general, {|M:φ|}a will not be a subset of {|M:φ|}c, but {|M:φ|} is an element of M[D],

since e|=a
φ implies e|=c

φ for pointed modal transition systems e by Theorem 3.3. Given

an inconsistent set Φ of properties, ∩φ∈Φ{|M:φ|}a identifies viewpoints that are impacted

by this inconsistency. For a full exposition of this semantics and its usage in the detection,

location and mitigation of inconsistencies, refer to Huth and Pradhan (2002).

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 482

3. A domain equation for modal transition systems

Powerdomains (Plotkin 1976; Smyth 1978; Abramsky and Jung 1994) are recognised and

widely used as spaces of meaning for the denotational semantics of systems that exhibit

non-determinism. Powerdomains that are the initial solution to a domain equation have

also been used as internally fully abstract models of systems that specify concurrent

systems and their abstraction order. For example, Abramsky (Abramsky 1991) used an

adaptation of the convex powerdomain (Plotkin 1976) to model labelled transition systems

and partial bisimulations. In this section, we apply the machinery of powerdomains and

domain equations to provide a domain-theoretic model for mixed transition systems

that meet condition (MC) and for their refinement. It is a pleasant surprise that the

mixed powerdomain, discovered independently by Gunter (Gunter 1992) and Heckmann

(Heckmann 1990), serves as a ready-to-use meaning space for this task. Throughout

this section, we assume a fixed finite signature Act and use the well-known topological

representations of powerdomains. For the purpose at hand, we work with countably based

bifinite domains (Jung 1988).

For simplicity, the items described in the remark below represent Scott-closed subsets

as sets of lower sets of compact elements. For x ∈ (D,�) we write ↑x = {y ∈ D | x � y}.

Remark 2 (Universal property of the mixed powerdomain (Heckmann 1990)). For all

countably based bifinite domains D and E:

1 M[D] is a countably based bifinite domain.

2 The map d �→ {|d|}:D → M[D], defined by {|d|} def
= ({k ∈ D | k � d, k compact}, ↑d), is

continuous.

3 The formal union operator ∪̄ : M[D] × M[D] → M[D], defined by

(L,U) ∪̄ (L′, U ′)
def
= (L ∪ L′, U ∪U ′) (6)

is continuous.

4 For any continuous function f:D → M[E], there exists a unique continuous map

f̄: M[D] → M[E] such that f̄ ◦ ∪̄ = ∪̄ ◦ f̄ × f̄ and f̄ ◦ {|·|} = f.

5 All compact elements of M[D] are obtained by a finite application of the constant

�̄
def
= (�,�) and the operations ∪̄ , {|·|}, and {|·?|} to compact elements of D; where

{|d?|} def
= (�, ↑d).

3.1. The universal domain as a fully abstract mixed transition system

For mixed transition systems, our discussion of membership in M[D] suggests we use

Scott-closed sets as a model of the set of Ra-successors of a state, and Scott-compact

upper sets as a model of the set of Rc-successors of a state. Fortunately, there is an

intimate connection between the condition (MC), which guarantees consistency, and the

domain-theoretic consistency condition (3).

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 483

Definition 8 (Universal domain). In the style of Abramsky’s domain equation for partial

bisimulation (Abramsky 1991), we let DAct be the initial solution to the domain equation

D =
∏

α∈Act
M[D] (7)

over bifinite domains and Scott-continuous maps, where
∏

α∈ActDα denotes the categorical

product of the domains Dα whose elements are tuples (dα)α∈Act with dα ∈ Dα for all α ∈ Act.

We write D for DAct if Act is determined by context or irrelevant. We write ⊥D for the

bottom element ((�,D))α∈Act of D.

We note that D is well defined since M[·] and
∏

are locally continuous func-

tors in the category of countably based bifinite domains and Scott-continuous maps

(Heckmann 1990; Abramsky and Jung 1994). According to (7), any element d of D
corresponds to a tuple of pairs ((Lα,Uα))α∈Act, where (Lα,Uα) ∈ M[D] for each α ∈ Act.

Definition 9 (Universal domain as a mixed transition system).

1 For every d = ((Lβ,Uβ))β∈Act ∈ D and α ∈ Act, we define

dα
def
= (Lα,Uα), da

α
def
= Lα, dc

α
def
= Uα. (8)

2 We define state transition relations Rm ⊆ D × Act × D:

Ra def
= {(d, α, d′) | α ∈ Act, d′ ∈ da

α} (9)

Rc def
= {(d, α, d′) | α ∈ Act, d′ ∈ dc

α}.

We note that suprema in D are computed component-wise. Therefore, d ∈ D is compact

in D iff for all α ∈ Act, dα is compact in M[D].

Remark 3 (Elements of D as pointed systems). Each element d of D represents a pointed

mixed transition system. The start state is d, and its sets of Ra-reachable and Rc-reachable

states are defined inductively in the standard manner via (9). Note that the operation∏
α∈Act ∪̄ has type D × D → D, using the isomorphism implicit in the ‘=’ of (7) as a

casting and the general distributivity of products; it elegantly models the sum of pointed

mixed transition systems.

As a mixed transition system, the domain D has a greatest refinement ≺D . We can

already prove one half of the statement that the relational inverse of ≺D is the order on

the domain D.

Proposition 2 (Order of universal domain as abstraction). The relational inverse of the

ordering on D is a refinement in the mixed transition system (D,Ra,Rc).

Proof. Let e � opd, that is, d � e in D. Let α ∈ Act.

1 If (d, α, d′) ∈ Ra, then d′ ∈ da
α. But then d � e implies d′ ∈ da

α ⊆ eaα, that is, (e, α, d′) ∈ Ra;

clearly, d′ � opd′.

2 If (e, α, e′) ∈ Rc, then e′ ∈ ecα follows. But then d � e implies e′ ∈ ecα ⊆ dc
α, that is,

(d, α, e′) ∈ Rc; clearly, e′ � ope′.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 484

¬a¬cφ = φ ¬c¬aφ = φ

φ�a ψ ⇒ ¬aψ�c ¬aφ φ�c ψ ⇒ ¬cψ�a ¬cφ

Fig. 6. Axioms for AC-lattices.

The mixed transition system (D,Ra,Rc) is not a modal transition system since the

inclusion Ra ⊆ Rc is a stronger condition than (3) for non-flat data. But condition (3) is

simply the topological version of the mix condition (MC).

Proposition 3 (Universal domain satisfies mix condition). The mixed transition system

(D,Ra,Rc) satisfies the mix condition (MC).

Proof. Given (d, α, d′) in Ra, we have d′ ∈ da
α. By (3) and (7), there has to exist some

d′′ ∈ da
α ∩ dc

α (that is, (d, α, d′′) ∈ Ra ∩ Rc) such that d′ � d′′, that is, d′′≺d′.

That the relational inverse of the order in D equals ≺D can be shown by a logical

characterisation of refinement for a Hennessy–Milner logic (Hennessy and Milner 1985)

�HM, defined by the grammar

φ ::= tt | ¬φ | φ ∧ φ | (∃α)φ (10)

where α ∈ Act. Since �HM is a sublogic of � without free variables, and since (D,Ra,Rc)

is a mixed transition system, we infer that the subsets [| φ |]a and [| φ |]c of D are well

defined for all φ ∈ �HM, as specified in Figure 5. These meanings are elements of an

assertion-consistency lattice (AC-lattice).

Definition 10 (AC-lattices (Huth and Pradhan 2002)). An AC-lattice is a tuple (La,�a,

¬a,Lc,�c,¬c), where (La,�a) and (Lc,�c) are partial orders that induce lattices, and

¬a: La → Lc and ¬c: Lc → La are functions that meet the axioms of Figure 6.

A canonical example of AC-lattices are topological spaces X where (La,�a) and

(Lc,�c) are the lattice of all closed and open subsets of X (respectively) – ordered by

set inclusion; and ¬a and ¬c are set complementation. In Huth and Pradhan (2002),

it is shown that – up to an order-isomorphism – this example is exhaustive for finite,

distributive AC-lattices. The sets [| φ |]a and [| φ |]c of D form the elements of an AC-lattice

within the canonical AC-lattice of the topological space (D, σ(D)), where σ(D) denotes

the Scott-topology of D.

Definition 11 (AC-lattice operations in D). For each m ∈ {a, c}, we define the partial

order Mm
def
= {[| φ |]m | φ ∈ �HM}, ordered by inclusion, and a negation operation

¬m: Mm → M¬m:

¬m[| φ |]m def
= [| ¬φ |]¬m. (11)

Theorem 4 (AC-lattice of D).

1 The structure (Ma,⊆,¬a,Mc,⊆,¬c) is a distributive bounded AC-lattice, where ¬a and

¬c equal set complementation in the domain D.

2 Each element of Ma is Scott-open in D and each element of Mc is Scott-closed in D.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 485

Proof.

1 Since [| φ1 |]m ∩ [| φ2 |]m = [| φ1 ∧ φ2 |]m and [| φ1 |]m ∪ [| φ2 |]m = [| ¬(¬φ ∧ ¬φ2) |]m, the

partial orders (Mm,⊆) determine lattices with bottom [| ¬tt |]m and top [| tt |]m. Since

¬¬m = m and [| ¬¬φ |]m = [| φ |]m, the first two axioms of Figure 6 are met. As for

the remaining two axioms, let d ∈ ¬m[| ψ |]m. Then d|=¬m¬ψ implies d �|=m
ψ which,

assuming [| φ |]m ⊆ [| ψ |]m, implies d �|=m
φ, that is, d ∈ ¬m[| φ |]m. The last claim about

¬m follows since d|=¬m¬φ iff d �|=¬¬m
φ iff d �|=m

φ iff d ∈ D \ [| φ |]m.

2a To see that [| φ |]a is an upper set in D, let d ∈ [| φ |]a and d � e in D. By Proposition 2,

e≺d. Since d|=a
φ, Theorem 1 implies e|=a

φ, that is, e ∈ [| φ |]a. An analogous proof

shows that [| φ |]c is a lower set in D.

2b We show the remaining claims by simultaneous structural induction on (10):

(a) For tt, this is clear as D is a Scott-closed and Scott-open subset of D.

(b) For negation, this follows by induction from [| ¬φ |]m = D \ [| φ |]¬m.

(c) For conjunction, this follows by induction since [| φ1 ∧ φ2 |]m = [| φ1 |]m ∩ [| φ2 |]m.

(d) For (∃α)φ, the proof for each mode is different and mode c makes use of the

Hofmann–Mislove Theorem (Hofmann and Mislove 1981).

i Let d ∈ [| (∃α)φ |]a, which we know to be an upper set. Let D be the set of

compact elements k in D such that k � d. For every k ∈ D and α ∈ Act, kα
is compact and kα � dα in M[D]. Then da

α ∩ [| φ |]a equals the directed union⋃
k∈D k

a
α ∩ [| φ |]a, using the fact that D is algebraic and that [| φ |]a is Scott-open

by induction. Since the former set is non-empty, there has to be some k ∈ D

for which ka
α ∩ [| φ |]a is non-empty as well. But then k ∈ [| (∃α)φ |]a for that k.

ii We already know that [| (∃α)φ |]c is a lower set. For D ⊆ [| (∃α)φ |]c, where D

is directed, let e be the supremum of D in D. We use proof by contradiction.

If e is not in [| (∃α)φ |]c, then ecα is contained in D \ [| φ |]c, which is Scott-open

by induction. Since ecα =
⋂
d∈D d

c
α is the filtered intersection of a family of

Scott-compact upper (that is, saturated) sets in the bifinite domain D, we may

invoke the Hofmann–Mislove Theorem (Hofmann and Mislove 1981) as bifinite

domains are sober spaces (Abramsky and Jung 1994). Therefore, there is some

d ∈ D for which dc
α is contained in D \[| φ |]c already. But then d ∈ D\[| (∃α)φ |]c

is a contradiction.

Sets of the form [| φ |]a are model-based versions of valid assertions: the collection

of elements in D for which property φ can be successfully verified. Sets of the form

D \ [| φ |]c, which equals [| ¬φ |]a, are model-based versions of inconsistent assertions: the

set of elements in D for which property φ is not consistent. All of these sets are Scott-open

observables.

To show internal full abstraction (that is, that the ordering of the domain equals the

greatest abstraction relation of the domain viewed as a mixed transition system that meets

condition (MC)), we need to prove that each upper set generated by a compact element

of D is a denotation of a formula of Hennessy–Milner logic in assertion mode a.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 486

Lemma 1 (Compact elements as denotations). For every compact element k in D, there

exists some φk ∈ �HM such that [| φk |]a equals the upper set generated by k in D.

Proof. For a domain E, we write K(E) for the partial order of compact elements of E.

For i � 0, let Di be the ith approximation of D via its defining domain equation in (7). We

prove the lemma by induction on i � 0 for K(Di). This is sound since K(D) =
⋃
i�0 K(Di)

by (7).

— For i = 0, K(D0) is a singleton set {∗}, so we may choose φ∗
def
= tt.

— Let k ∈ K(Di+1). Then each kα is compact in M[Di]. We invoke Theorem 6.4 of

Heckmann (1990) to the approximating domain Di: each compact element of M[Di] is

obtained by a finite application of the constant �̄ and the operations ∪̄ , {|·|} and {|·?|}
to compact elements of Di. Since {|l|} = (↓l, ↑l) and {|l?|} = (�, ↑l), and kα ∈ K(M[Di]),

we infer for all α ∈ Act that (ka
α, k

c
α) = (↓Fα, ↑Gα) for some finite sets Fα, Gα ⊆ K(Di).

By induction, for each x ∈ Fα ∪ Gα there is some φx ∈ �HM that satisfies the claim of

the lemma for x. We use the abbreviations (∀α) and
∨

to define

ψα
def
=

∧

l∈Fα

(∃α)φl

ηα
def
= (∀α)

∨

m∈Gα

φm

φk
def
=

∧

α∈Act
ψα ∧ ηα.

Note that φk ∈ �HM since Act is finite.

1 We show k ∈ [| φk |]a, that is, ↑k ⊆ [| φk |]a. Let α ∈ Act.

(a) For l ∈ Fα we have ↑l = [| φl |]a by induction, so l ∈ ka
α ∩ [| φl |]a since

l ∈ ↓Fα = ka
α . But then k|=a(∃α)φl . Therefore, k|=a

ψα.

(b) We have:

k|=a(∀α)
∨
φm iff k �|=c(∃α) ¬

∨
φm

iff kc
α ∩ [| ¬

∨
φm |]c = �

iff kc
α ⊆ D \ [| ¬

∨
φm |]c = [|

∨
φm |]a.

Since the latter is an upper set and since kc
α equals ↑Gα, it suffices to show

Gα ⊆ [|
∨
m∈Gα φm |]a. But

↑Gα = [|
∨

m∈Gα

φm |]a (12)

follows from induction and Remark 1.2. Thus, k|=a
ηα.

2 Let d ∈ D such that d|=a
φk . We have to show k � d in D, that is, Fα ⊆ da

α and

dc
α ⊆ ↑Gα for all α ∈ Act. For every α ∈ Act, d|=a

φk implies

(a) d|=a
ψα, so for all l ∈ Fα there is some l′ ∈ da

α such that l′|=a
φl . By induction,

l � l′ follows. Thus, Fα ⊆ ↓da
α = da

α.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 487

(b) d|=a
ηα, which is equivalent to dc

α ⊆ [|
∨
m∈Gα φm |]a. By (12), we get dc

α ⊆ ↑Gα.

Theorem 5 (Internal full abstraction and logical characterisation). The following are

equivalent:

1 d � e in the domain D;

2 e≺D d in the mixed transition system (D,Ra,Rc);

3 {φ ∈ �HM | d|=a
φ} ⊆ {φ ∈ �HM | e|=a

φ}; and

4 {φ ∈ �HM | e|=c
φ} ⊆ {φ ∈ �HM | d|=c

φ}.

Proof. We show (1) ⇒ (2) ⇒ (4) ⇒ (3) ⇒ (1). The first two implications follow from

Proposition 2 and Theorem 1 (respectively). To show (4) ⇒ (3), let d|=a
φ. Then we have

d �|=c¬φ, which implies e �|=c¬φ, by (4), that is, e|=a
φ. But (3) ⇒ (1) follows directly from

Lemma 1, noting that D is algebraic.

3.2. Embedding modal transition systems into the universal domain

We have already argued that the domain D is an internally fully abstract model of a

mixed transition system that meets condition (MC). We now demonstrate its universality

by embedding every mixed transition system that satisfies condition (MC) into D such

that one system refines another iff this is the case for their corresponding embeddings

in D – the embedding preserves and reflects refinements. As a by-product, we get that

the assertion check semantics |=a for Hennessy–Milner logic characterises refinement of

mixed transition systems that meet condition (MC). Since elements of D correspond to

pointed mixed transition systems, we work with pointed mixed transition systems (M, i).

We approximate pointed mixed transition systems (M, i) by a family of finite-state

pointed mixed transition systems (M[n], i), n � 0. Our intention is to define the embedding

〈|M, i |〉 as the directed supremum of the embeddings 〈|M[n], i |〉 (n � 0) in D.

Definition 12 (Finite approximation systems). Let (M, i) = ((Σ, Ra, Rc), i) be a pointed

mixed transition system. For each n � 0, we define a finite pointed mixed transition

system (M[n], i) = ((Σ[n], R[n]a, R[n]c), i) by induction on n.

1 The mixed transition system (M[0], i) has no Ra-transitions and state set Σ[0] = {i};
its set of Rc-transitions equals {(i, α, i) | α ∈ Act}.

2 Assume that (M[n], i) is defined for all mixed transition systems (M, i). Let α ∈ Act, and

Aα and Cα be the set of Ra
α-successors and Rc

α-successors of i in (M, i), respectively. In

(M[n+1], i), state i has as Ra
α-successors all pointed mixed transition systems (M[n], a)

with a ∈ Aα, where transitions are interpreted between pointed systems. Similarly, in

(M[n + 1], i) state i has all pointed mixed transition systems (M[n], c) with c ∈ Cα as

Rc
α-successors. The state set Σ[n + 1] is the disjoint sum of {i} and the state sets of

(M[n], l) for all l ∈
⋃
α Aα ∪ Cα.

Note that (M[n+ 1], i) has no transitions whatsoever for all n � 0 if i has no successor

state in (M, i).

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 488

v

tα

β
β

γ

α

α, β, γ α, β, γ α, β, γ

u

α
α β

s

ts

s

u

Fig. 7. The left-hand diagram shows a pointed modal transition system (M, s). The right-hand

diagram shows its finite approximation (M[1], s), where s is unfolded once. (Rc-transitions that

shadow Ra-transitions are omitted.)

Example 8 (The first two approximations).

1 Our embedding will map the initial approximation (M[0], i) to the least element

((�,D))α∈Act of D, where � models the absence of Ra-transitions and D models the

set of Rc-transitions {(i, α, i′) | α ∈ Act}.
2 Figure 7 depicts a pointed modal transition system (M, s) and its approximation

(M[1], s). In M[1], there are no transitions out of t. State v is not present/reachable.

Our finite approximations have the expected and desired properties.

Proposition 4 (Finite approximations are monotone). Let (N, j) and (M, i) be mixed

transition systems.

1 For all n � 0, (M, i) ≺ (M[n], i).

2 For all n � 0, (M[n+ 1], i) ≺ (M[n], i).

3 (N, j) ≺ (M, i) iff for all n � 0, (N[n], j) ≺ (M[n], i) iff for all n � 0, (N, j) ≺ (M[n], i).

Proof.

1 Let (s, t) ∈ Σ × Σ[n] be in Q iff:

— t ∈ Σ[n] is an unfolded version of s ∈ Σ and t does not occur as the nth state on

any path in M[n] beginning in i; or

— t is the nth state for some path in M[n] beginning in i, s̄ is the folded version of t,

and either s̄ = s or there is a path in M beginning in i on which s occurs after s̄.

We claim that Q is a refinement. Let (s, t) ∈ Q.

(a) Given (t, α, t′) ∈ R[n]a:

— Let t be an unfolded version of s such that t does not occur as the nth state

on any path in M[n] beginning in i. Then (s, α, s′) ∈ Ra, where s′ is the folded

version of t′. Regardless of whether t′ is ‘an nth state’ or not, we infer (s′, t′) ∈ Q

by the definition of Q.

— Then t cannot be the nth state for some path in M[n] beginning in i.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 489

(b) Given (s, α, s′) ∈ Rc:

— Let t be an unfolded version of s such that t does not occur as the nth state on

any path in M[n] beginning in i. Then (t, α, t′) ∈ R[n]c, where t′ is the unfolded

version of s′. Regardless of whether t′ is ‘an nth state’ or not, we infer (s′, t′) ∈ Q

by the definition of Q.

— If t is the nth state for some path in M[n] beginning in i, s̄ is the folded version

of t, and either s̄ = s or there is a path in M on which s occurs after s̄, then

(t, α, t) ∈ R[n]c by the definition of M[n]. We readily infer (s′, t) ∈ Q since s′

occurs after s̄ on some path in M.

2 This proof is identical to the one given for the previous item, except that we replace

(M, i) by (M[n+ 1], i).

3 Since all mixed transition systems in this paper are image-finite, the greatest refinement

≺ between (N, j) and (M, i) is the intersection of its finite approximants ≺n (n � 0)

of the greatest fixed-point iterations. Thus, it suffices to show, for all n � 0, that

(N, j) ≺n (M, i) iff (N[n], j) ≺n (M[n], i) iff (N, j) ≺n (M[n], i) – this is routine.

Next, we need to define the embeddings 〈|M[n], i |〉 for all n � 0.

Proposition 5 (Embedding approximants into D). Let (M, i) be a pointed mixed transition

system that satisfies condition (MC) and has state set Σ. For every s ∈ Σ and n � 0, we

can construct a compact element 〈|M[n], s |〉 in D such that

(M[n], s) ≺ (D, 〈|M[n], s |〉) and (D, 〈|M[n], s |〉) ≺ (M[n], s). (13)

Proof. We proceed by induction on n for all approximants of the form (M[n], i). In

each inductive step, we construct concrete refinements Qi1 ⊆ Σ[n] × D and Qi2 ⊆ D × Σ[n]

that verify (13).

— Let n = 0. We set 〈|M[0], i |〉 def
= ⊥D , Qi1

def
= {(i,⊥D)}, and Qi2

def
= {(⊥D , i)}. The element

〈|M[0], i |〉 is compact in D.

— Let such embeddings be well defined for approximants of pointed systems for all

k < n. To define 〈|M[n], i |〉, we need to define iα ∈ M[D] for each α ∈ Act and set

〈|M[n], i |〉 def
= (iα)α∈Act. Consider the approximant (M[n], i). Define

Fα
def
= {s′ ∈ Σ[n] | (i, α, s′) ∈ R[n]a}

Gα
def
= {s′ ∈ Σ[n] | (i, α, s′) ∈ R[n]c}. (14)

For every s′ ∈ Fα ∪Gα, we have 〈|M[n− 1], s′ |〉 is already defined by induction. We set

iaα
def
= ↓{〈|M[n− 1], l |〉 | l ∈ Fα}

icα
def
= ↑{〈|M[n− 1], m |〉 | m ∈ Gα} (15)

for each α ∈ Act. (Note that iaα is empty if i has no Ra
α-successors in (M[n], i). Similarly,

icα is empty without any Rc
α-successors in (M[n], i). Thus, iα = �̄ if there are no

transitions out of i in (M[n], i).) It suffices to show that iaα ⊆ ↓(iaα ∩ icα) for each α ∈ Act.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 490

Given d ∈ iaα, there is some l ∈ Fα such that d � 〈|M[n− 1], l |〉. But l ∈ Fα means

(i, α, l) ∈ Ra. By condition (MC), there exists some m ∈ Σ such that (i, α, m) ∈ Ra ∩ Rc

and (M, m)≺(M, l). Using induction, the latter gives us

(D, 〈|M[n− 1], m |〉) ≺ (M[n− 1], m) ≺ (M[n− 1], l) ≺ (D, 〈|M[n− 1], l |〉), (16)

which implies 〈|M[n− 1], l |〉 � 〈|M[n− 1], m |〉 by Theorem 5, and so, by transitivity,

d � 〈|M[n− 1], m |〉 follows. From (i, α, m) ∈ Ra ∩Rc, we infer m ∈ Fα∩Gα, and therefore

〈|M[n− 1], m |〉 ∈ iaα ∩ icα shows the claim. Since iaα and icα in (15) are order-generated by

finitely many elements (which are compact by induction), we infer that iα is compact

in M[D] for each α ∈ Act. Therefore, 〈|M[n], i |〉 is compact in D. As for the refinement

relations Qi1 and Qi2, we define

Qi1
def
= {(i, 〈|M[n], i |〉)}

∪
(⋃

x∈Fα∪Gα

Qx1
)

∪{(s, d) ∈ Σ[n] × D | d � 〈|M[n− 1], s |〉, 〈|M[n− 1], s |〉 ∈ icα}
Qi2

def
= {(〈|M[n− 1], i |〉, i)}

∪
(⋃

x∈Fα∪Gα

Qx2
)

∪{(e, t) ∈ D × Σ[n] | 〈|M[n− 1], t |〉 � e, 〈|M[n− 1], t |〉 ∈ iaα}.

Definition 13 (General embedding). Let (M, i) be a pointed mixed transition system that

meets condition (MC). By Proposition 5, 〈|M[n], i |〉 ∈ D is defined for all n � 0. By

Propositions 4.2 and 5 and Theorem 5, these elements form an ascending chain in D and

therefore

〈|M, i |〉 def
=

∨

n�0

〈|M[n], i |〉 (17)

exists.

The properties of this embedding allow us to prove important facts about mixed

transition systems that meet condition (MC).

Theorem 6 (Logical and domain-theoretic characterisation of refinement). Let (N, j) and

(M, i) be mixed transition systems that satisfy condition (MC).

1 (N, j) ≺ (M, i) iff 〈|M, i |〉 � 〈|N, j |〉 in D.

2 (N, j) ≺ (M, i) iff {φ ∈ �HM | (M, i)|=a
φ} ⊆ {φ ∈ �HM | (N, j)|=a

φ}.

Proof.

1 By Proposition 4, we have (N, j) ≺ (M, i) iff for all n � 0, (N[n], j) ≺ (M[n], i) iff

(by Proposition 5) for all n � 0, (D, 〈|N[n], j |〉) ≺ (D, 〈|M[n], i |〉) iff (by internal full

abstraction) for all n � 0, 〈|M[n], i |〉 � 〈|N[n], j |〉 in D. Thus, (N, j) ≺ (M, i) implies

〈|M, i |〉 =
∨

n�0

〈|M[n], i |〉 �
∨

n�0

〈|N[n], j |〉 = 〈|N, j |〉. (18)

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 491

Conversely, let 〈|M, i |〉 � 〈|N, j |〉. We use proof by contradiction. If (N, j) �≺(M, i),

then Proposition 4.3. implies

(N, j) �≺(M[n], i) (19)

for some n � 0. We claim that

∀m � 0: (N[m], j) �≺(M[n], i). (20)

If there is some m � 0 with (N[m], j)≺(M[n], i), then (N, j)≺(N[m], j) holds by

Proposition 4.1, for (N, j), and this implies (N, j)≺(M[n], i) since ≺ is transitive,

which contradicts (19).

For every m � 0, we have (N[m], j)≺(D, 〈|N[m], j |〉) and (D, 〈|M[n], i |〉)≺(M[n], i)

follow from Proposition 5. But then (20) and the transitivity of ≺ imply that the

pointed mixed transition system (D, 〈|N[m], j |〉) does not refine (D, 〈|M[n], i |〉). Since

m � 0 was arbitrary, Proposition 2 renders

∀m � 0: 〈|M[n], i |〉 �� 〈|N[m], i |〉 (21)

which contradicts (18) since 〈|M[n], i |〉 is compact in D by Proposition 5 and

〈|M[n], i |〉 � 〈|M, i |〉 � 〈|N, j |〉 =
∨

m�0

〈|N[m], j |〉,

where the supremum is directed.

2 One implication follows from Theorem 1. Conversely, the relation (N, j) �≺(M, i)

implies 〈|M, i |〉 �� 〈|N, j |〉 in D by the previous item. Since D is algebraic, there exists

some compact element k in D such that k � 〈|M, i |〉 and k �� 〈|N, j |〉. By Lemma 1,

there exists some φk ∈ �HM with ↑k = [| φk |]a. Thus, 〈|M, i |〉|=a
φk and 〈|N, j |〉 �|=a

φk
follow. By Proposition 5 and Theorem 1, we then get (M, i)|=a

φk and (N, j) �|=a
φk .

3.3. Complementary processes

The universal domain D models processes whose reactive capabilities are either firmly

guaranteed, possible or firmly disallowed (that is, impossible). One may wonder whether

such processes have a complement whose reactive capabilities are the logical negations

of those of the original process. Given a modal transition system M = (Σ, Ra, Rc), a

complementary process is evidently defined by M̄ = (Σ, R̄a, R̄c), where

(s, α, s′) ∈ R̄m iff (s, α, s′) �∈ R¬m (m ∈ {a, c}). (22)

Specification (22) can be modelled in our universal domain D. Since we can embed modal

transition systems into D, this follows readily from the fact that M̄ is a modal transition

system if M is one, for R̄a equals (Σ × Σ) \ Rc, which is contained in (Σ × Σ) \ Ra, since

M is a modal transition system. But (Σ × Σ) \ Ra = R̄c.

Remark 4 (Complementary process in D). For every pointed modal transition system

(M, i), the complementary process 〈|M̄, i |〉 ∈ D is well defined.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 492

4. Expressiveness of modal transition systems

Domain equation (7) for refinement in partial systems chooses modal transition systems to

represent partial, under-determined aspects of a system in its state-transition capabilities.

However, systems may also be under-determined in state observables – atomic propositions

such as ‘the network cable is plugged in’, or ‘pointer x may point to location l in

the heap’. Therefore, we formulate notions of partial systems (Kripke modal transition

systems), refinement and property semantics that allow for under-determined aspects in

state transitions and state observables and prove that Kripke modal transition systems can

be translated into modal transition systems such that refinements and property semantics

are preserved and reflected. In particular, the results obtained for our universal domain

in (7) apply to Kripke modal transition systems as well. Since this translation is linear

in the size of models and formulas, no real overhead is involved in this representational

shift.

The ability of modal transition systems to faithfully represent partial systems, their

operational refinement, and property semantics is not limited to Kripke MTSs. In this

section, we also show that labelled transition systems with a divergence predicate – the

extended transition systems in Bruns and Godefroid (1999) – and partial Kripke structures

(Bruns and Godefroid 1999), as well as their operational abstraction preorders and three-

valued semantics of modal logic, have such faithful embeddings into the model checking

framework for modal transition systems.

4.1. Kripke modal transition systems

A doubly labelled transition system (de Nicola and Vaandrager 1995) with signature

(Act, AP) is comprised of a non-empty set of states Σ, a set Act of action labels, a set AP

of (atomic) state propositions, a state transition relation R ⊆ Σ × Act× Σ, and a labelling

function L: Σ → P(AP). (Throughout, we assume that, for every s ∈ Σ and α ∈ Act,

the sets L(s) and {s′ | (s, α, s′) ∈ R} are finite.) Such structures are expressive and flexible

models since they allow for state (AP) and state transition (Act) observables. Kripke modal

transition systems are partial versions of doubly labelled transition systems in the same

way that modal transition systems are partial versions of labelled transition systems.

Definition 14 (Kripke modal transition systems (Huth et al. 2001)). A Kripke modal

transition system (Kripke MTS) K with signature (Act, AP) is a tuple

(Σ, Ra, Rc, La, Lc)

such that (Σ, Ra, La) and (Σ, Rc, Lc) form doubly labelled transition systems with the same

signature, Ra ⊆ Rc, and La(s) ⊆ Lc(s) for all s ∈ Σ.

Of course, one may define Kripke mixed transition systems and their version of the

consistency condition (MC). However, in practical applications modellers will want to rely

on a consistency condition that is enforced by the underlying specification language, and in

a transparent manner: Kripke modal transition systems are such a specification language.

Refinements of Kripke modal transition systems are generalisations of refinements of

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 493

modal transition systems in that state proposition observables are preserved (for mode a)

and reflected (for mode c).

Definition 15 (Refinement of Kripke modal transition systems (Huth et al. 2001)). A

refinement within a Kripke MTS K = (Σ, Ra, Rc, La, Lc) with signature (Act, AP) is a

relation Q ⊆ Σ × Σ such that (s, t) ∈ Q implies for all α ∈ Act:

1 For all (t, α, t′) ∈ Ra, there is some s′ ∈ Σ with (s, α, s′) ∈ Ra and (s′, t′) ∈ Q.

2 For all (s, α, s′) ∈ Rc, there is some t′ ∈ Σ with (t, α, t′) ∈ Rc and (s′, t′) ∈ Q.

3 La(t) ⊆ La(s).

4 Lc(s) ⊆ Lc(t).

We write s≺M t or s≺ t if there is some refinement Q with (s, t) ∈ Q. In that case, s refines

(is abstracted by) t.

Remark 5 (Refinement for pointed models). Let K1 and K2 be two Kripke MTSs with

start states i1 and i2 (respectively). Since the set-theoretic sum of these two Kripke MTSs

is a Kripke MTS with the sum of their respective signatures, we say that (K1, i1) refines

(is abstracted by) (K2, i2) iff there is a refinement Q on their sum such that (i1, i2) ∈ Q.

The logic for Kripke MTSs, �K, is the modal mu-calculus as in (1), except that one

replaces the clause for tt with a clause for atomic propositions (p ∈ AP). (We may re-

express tt as ¬(p ∧ ¬p) since Kripke MTSs are consistent.) The semantics of this logic

over Kripke MTSs is the same as the one in Figure 5, expect that clause tt is replaced

by (23).

[| p |]mρ
def
= {s ∈ Σ | p ∈ Lm(s)} (23)

The additional capability of Kripke MTSs to express state observables may be encoded in

state transition observables. We translate Kripke MTSs into modal transition systems over

an extended signature and show that this translation preserves and reflects refinement and

the property semantics. In particular, Kripke MTSs can be embedded into our universal

domain (for the appropriately extended signature).

Definition 16 (Translating Kripke MTSs). Let K = (Σ, Ra, Rc, La, Lc) be a Kripke MTS

with signature (Act, AP). This determines a mixed transition system M[K] with signature

AP + Act, state space Σ, and transition relations R̄m ⊆ Σ × (AP + Act) × Σ, where

R̄m def
= {(s, β, s′) | β ∈ Lm(s) and s = s′; or (s, β, s′) ∈ Rm} (m ∈ {a, c}). (24)

Note that the resulting mixed transition system is image-finite. We define a translation

from �K to � by:

T (p)
def
= (∃p) ¬(p ∧ ¬p) T (Z)

def
= Z

T (¬φ)
def
= ¬T (φ) T (φ1 ∧ φ2)

def
= T (φ1) ∧ T (φ2)

T ((∃α)φ)
def
= (∃α)T (φ) T (µZ.φ)

def
= µZ.T (φ).

The transformations of models (K �→ M[K]) and properties (φ �→ T (φ)) preserve and

reflect refinement, abstraction, and model checks.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 494

Theorem 7 (Soundness and completeness of translation). Let K be a Kripke MTS

(Σ, Ra, Rc, La, Lc) with signature (Act, AP). Then:

1 M[K] is a modal transition system with signature AP + Act.

2 For s, t ∈ Σ, we have s≺ t in K iff s≺ t in M[K].

3 For all φ ∈ �K, ρ, and m, we have [| φ |]mρ = [| T (φ) |]mρ .

Proof.

1 Let (s, β, s′) ∈ R̄a. If β ∈ La(s), then La(s) ⊆ Lc(s) implies s′ = s and (s, β, s) ∈ R̄c.

Otherwise, (s, β, s′) ∈ Ra ⊆ Rc, so (s, β, s′) ∈ R̄c.

2 Let s, t ∈ Σ.

(a) Let s≺ t in K. We show s≺t in M[K]:

i Let (t, β, t′) ∈ R̄a. If (t, β, t′) ∈ Ra, then s≺t in K implies the existence of some

s′ ∈ Σ with s′≺t′ in K and (s, β, s′) ∈ Ra, that is, (s, β, s′) ∈ R̄a. Otherwise,

β ∈ La(t) and s′ = s, so s≺t in K implies β ∈ La(s) and s′ = s, that is,

(s, β, s) ∈ R̄a.

ii Let (s, β, s′) ∈ R̄c. If (s, β, s′) ∈ Rc, then s≺t in K implies the existence of some

t′ ∈ Σ with s′≺t′ and (t, β, t′) ∈ Rc, that is, (t, β, t′) ∈ R̄c. Otherwise, β ∈ Lc(s)

and t′ = t, so s≺t in K implies β ∈ Lc(t) and t′ = t, that is, (t, β, t) ∈ R̄c.

(b) Let s≺t in M[K]. We show s≺t in K:

i Given (t, α, t′) ∈ Ra, we have (t, α, t′) ∈ R̄a, so s≺t in M[K] implies the existence

of some s′ ∈ Σ with s′≺t′ in M[K] and (s, α, s′) ∈ R̄a, that is, (s, α, s′) ∈ Ra since

AP and Act are disjoint in AP + Act.

ii Given (s, α, s′) ∈ Rc, we have (s, α, s′) ∈ R̄c, so s≺t in M[K] implies the existence

of some t′ ∈ Σ with s′≺t′ in M[K] and (t, α, t′) ∈ R̄c, that is, (t, α, t′) ∈ Rc since

AP and Act are disjoint in AP + Act.

iii Given p ∈ La(t), we have (t, p, t) ∈ R̄a, so s≺t in M[K] implies the existence of

some s′ ∈ Σ such that (s, p, s′) ∈ R̄a. Since AP and Act are disjoint in AP + Act,

we infer s′ = s and p ∈ La(s).

iv Given p ∈ Lc(s), we have (s, p, s) ∈ R̄c, so s≺t in M[K] implies the existence of

some t′ ∈ Σ such that (t, p, t′) ∈ R̄c. Since AP and Act are disjoint in AP + Act,

we have t′ = t and p ∈ Lc(t).

3 This statement is proved by the same induction as in the proof of Theorem 1:

(a) For variables Z , [| φ |]mρ = ρm(Z) = [| T (Z) |]mρ .

(b) For p, we have [| φ |]mρ = {s ∈ Σ | p ∈ Lm(s)} = {s ∈ Σ | ∃s′ ∈ Σ, (s, p, s′) ∈ R̄m} =

[| (∃p) ¬(p ∧ ¬p) |]mρ since AP and Act are disjoint in AP + Act.

(c) For ¬φ, [| ¬φ |]mρ = Σ \ [| φ |]¬m
ρ = Σ \ [| T (φ) |]¬m

ρ = [| ¬T (φ) |]mρ = [| T (¬φ) |]mρ .

(d) For φ1 ∧ φ2, [| φ1 ∧ φ2 |]mρ = [| φ1 |]mρ ∩ [| φ2 |]mρ = [| T (φ1) |]mρ ∩ [| T (φ2) |]mρ , which

equals [| T (φ1 ∧ φ2) |]mρ .

(e) For (∃α)φ, [| (∃α)φ |]mρ = {s ∈ Σ | ∃s′ (s, α, s′) ∈ Rm, s′ ∈ [| φ |]mρ } = {s ∈ Σ |
∃s′ (s, α, s′) ∈ R̄m, s′ ∈ [| T (φ) |]mρ } = [| T ((∃α)φ) |]mρ since AP and Act are disjoint in

AP + Act.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 495

next

xy

u1u0

next x(u0) = 0 next(u0, u0) = 0

x(u1) = 1 next(u0, u1) = 1

y(u0) = 1 next(u1, u0) = 0

y(u1) = 0 next(u1, u1) = 1/2

sm(u0) = 0

sm(u1) = 1

Fig. 8. A shape graph and its representation through predicates.

(f) For µZ.φ, [| T (µZ.φ) |]mρ is defined to be [| µZ.T (φ) |]mρ , which is the least fixed

point of the function A �→ [| T (φ) |]mρ[Z �→A]. By induction, this function equals

A �→ [| φ |]mρ[Z �→A] and so its least fixed point is [| µZ.φ |]mρ .

4.2. Shape analysis with Kripke modal transition systems

An important form of pointer analysis is shape analysis (Chase et al. 1990; Ghiya and

Hendren 1996; Jones and Muchnick 1979; Sagiv et al. 1999; Whaley and Rinard 1999),

where the contents of heap storage are approximated by a graph whose nodes denote

objects and whose arcs denote the values of the objects’ fields. Local (‘stack’) variables

that point into the heap are drawn as arcs pointing to the nodes.

Figure 8 displays the syntax of such shape graphs. The example in the Figure depicts

an approximation to a singly linked list of length at least two: objects are circles; a

double-circled object is a ‘summary node’, meaning that it possibly represents more than

one concrete object. Since the objects were constructed from a class/struct that owns a

next field, objects have next-labelled arcs. For the sake of our discussion, the objects are

named u0 and u1, and local variables x and y point to the objects. A solid arc denotes

that a field definitely points to an object; a dotted arc means the field possibly points to

it. Thus, the self-arc on u1 must be dotted because u1 possibly denotes multiple nodes,

meaning that a next dereference possibly points to one of the concrete objects denoted

by the node.

Shape graphs can be encoded in various ways; in Figure 8, we display a coding

due to Sagiv, Reps and Wilhelm (Sagiv et al. 1999), who define local-variable points-to

information with unary predicates and field points-to information with binary ones. The

predicates produce the answers ‘guaranteed to point to’ (1), ‘possibly points to’ (1/2), and

‘not points to’ (0), where the values are ordered 0 � 1/2 � 1. Similarly, the predicate sm

notes which nodes are summary nodes; those s for which sm(s) = 1.

Shape graphs can be used as data values for a data-flow analysis, where a program’s

transfer functions transform an input shape graph to an output one. The transfer functions

for assignment and object construction appear in Figure 9, where p′ denotes predicate

p updated by the transfer function T [C] for command C. The transfer functions are

written as predicate-logic formulas and interpreted on top of Kleene’s strong semantics

for propositional logic.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 496

T [x = y] : x′(v) = y(v); all other predicates p′ = p

T [x.next = y] : next′(v1, v2) = (next(v1, v2) ∧ (sm(v1) ∨ ¬x(v1)) ∨ (x(v1) ∧ y(v2));
all other p′ = p

T [x = y.next] : x′(v) = ∃v1.y(v1) ∧ next(v1, v); all other p′ = p

T [x = new Node()] : let vnew be a fresh node, in x′(v) = (v = vnew);

all other p′(v) = (p(v) ∧ (v �= vnew))

Effect of x = y on Figure 8: Effect of x .next = y on Figure 8:

next

y

u1u0

next
x

next

xy

u1u0

next

next

Fig. 9. Transfer functions on shape graphs.

A shape graph is in fact a Kripke MTS (Σ, Ra, Rc, La, Lc), where:

— Σ is the shape graph’s nodes;

— Act = {next};
— AP contains the symbol sm and all identifiers of the program’s pointer variables;

— Ra contains the solid labelled arcs between nodes;

— Rc \ Ra contains the dashed labelled arcs between nodes;

— x ∈ La(s) when a solid arc shows that x points to object s;

— x ∈ Lc(s) \ La(s) when a dashed arc shows that x points to object s;

— when s is a summary node, sm ∈ La(s).

Given a shape graph/Kripke MTS, we check the graph for correctness properties that

are expressible in the CTL-subset (Burch et al. 1990; Dam 1994) of the modal mu-calculus.

In Sagiv et al. (1999), such properties are encoded in predicate logic augmented with a

transitive closure operator.

Here are some examples: the direction relationship (Ghiya and Hendren 1996), stating

that an access path exists from the object named by x to an object named by y, is written

D(x, y)
def
= x ∧ EFnexty – an object s has atomic property x iff x points to s. Recall that

EFαφ states, ‘there exists a path of α-labelled transitions such that, at some state in the

future, φ holds true’. To validate the fact that there is a guaranteed (possible) path from

s, we check whether s |=a D(x, y) (s |=c D(x, y)); to refute the existence of a path, we check

s |=a ¬D(x, y).
The interference relationship (Ghiya and Hendren 1996), saying that pointers x and y

have access paths to a common heap node, is written with inverse transition relationships

of Ra: I(x, y)
def
= (EFnext−1x) ∧ (EFnext−1y). We check s |=c I(x, y) to see if aliasing of object

s by x and y is possible.

Aliasing of pointers can be expressed: for aliasing
def
= EFnext(

∨
x�=y x∧y), the formulas:

(a) AGnext¬aliasing,
(b) AGnext¬(x ∧

∨
x�=y y), and

(c) AGnext¬(x ∧ y)

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 497

can then be used to check:

(a) the absence of any kind of aliasing;

(b) that x has no alias; and that

(c) x and y never point to the same heap node.

(Recall that AGαφ states, ‘for all α-paths, it is globally true that φ holds for all states along

the path’.)

We can check for possibly cyclic data structures. The predicate cyclic
def
=

∨
x∈AP x ∧

EXnextEFnextx states that a heap node is pointed to by some x that has an access path to,

presumably the same, heap node pointed to by x. (Recall that EXαφ says, ‘there exists an

α-transition to a next state where φ holds’.)

A full exposition of shape analysis based on shape graphs is beyond the scope of this

paper. However, we note that the modal transition systems for shape graphs may have

total refinements that have no correspondence to shapes that may occur at run-time. For

example, a variable cannot point to two distinct locations in the heap at the same time.

Thus, one may need to use techniques for restricting the set of total refinements of a

graph in order to conclude that properties are valid or consistent. One such technique is

assume-guarantee reasoning for branching-time logics (Kupferman and Vardi 1998).

4.3. Extended transition systems

In Section 2, we have already discussed how labelled transition systems give rise to partial

systems whose under-determined aspects are represented explicitly. Modelling under-

determinacy in systems through a pair of labelled transition systems, connected with a

consistency constraint, is not the only way of enriching labelled transition systems with

explicit under-determined aspects. Bruns and Godefroid define an extended transition

system E (Bruns and Godefroid 1999) with signature Act as a labelled transition system

(Σ, R) with the same signature, endowed with a divergence predicate ↑ ⊆ Σ × Act

(Milner 1981; Walker 1990). The intuitive meaning of s ↑ α is that ‘some of the α-

transitions from s in the full model may be missing at s in the ETS E’ (Bruns and

Godefroid 1999). As is usual, we write s ↓ α when s ↑ α fails to hold, meaning that all

α-transitions from s in the full model (possibly none at all) are present in the ETS E.

Partial bisimulations (Milner 1981; Walker 1990) are the operational abstraction preorder

for extended transition systems.

Definition 17 (Partial bisimulation (Milner 1981)). A partial bisimulation in an extended

transition system E = (Σ, R, ↑) is a relation Q ⊆ Σ × Σ such that (t, s) ∈ Q implies for

all α ∈ Act:

1 If (t, α, t′) ∈ R, there exists some s′ ∈ Σ such that (s, α, s′) ∈ R and (t′, s′) ∈ Q.

2 If t ↓ α, then:

(i) s ↓ α.

(ii) Whenever (s, α, s′) ∈ R, there exists t′ ∈ Σ such that (t, α, t′) ∈ R and (t′, s′) ∈ Q.

One can form the sum of two extended transition systems by forming the sum of their

underlying labelled transition systems, the sum of their respective divergence predicates,

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 498

[| tt |]↓ s
def
= 1

[| ¬φ |]↓ s
def
= 1 − ([| φ |]↓ s)

[| φ1 ∧ φ2 |]↓ s
def
= ([| φ1 |]↓ s) ∧ ([| φ2 |]↓ s)

[| (∃α)φ |]↓ s
def
=

∨
({1/2 | s ↑ α} ∪ {[| φ |]↓ s′ | (s, α, s′) ∈ R}).

Fig. 10. Property semantics for Hennessy–Milner logic �HM over extended transition systems

(Bruns and Godefroid 1999), where s ∈ Σ and ∧ and
∨

are defined for 0 < 1/2 < 1. The set

{1/2 | s ↑ α} is empty iff s ↓ α.

and the sum of their signatures. In this manner, Definition 17 also defines partial

bisimulations between pointed extended transition systems. The intuitive readings of

s ↑ α and s ↓ α suggest that extended transition systems can be represented as modal

transition systems, and therefore embed into our universal domain. What is perhaps more

surprising is that partial bisimulations in an extended transition system turn out to be the

relational inverses of refinements of the representing modal transition systems. Moreover,

the three-valued semantics for Hennessy–Milner logic in Bruns and Godefroid (1999)

corresponds to the assertion checking semantics of the representing modal transition

system.

Definition 18 (Translating extended transition systems (Huth et al. 2001)). Let E be an

extended transition system (Σ, R, ↑) with signature Act. We define a modal transition

system E[E] = (Σ, R, Rc) with the same signature Act, where

Rc def
= R ∪ {(s, α, s′) ∈ Σ × Act × Σ | s ↑ α}. (25)

Note that the state variable s′ is free in (25), meaning that the modal transition system

represents each instance of s ↑ α conservatively in that it adds Rc-transitions of type α

from s to all states in Σ. In Bruns and Godefroid (1999), formulas of �HM are interpreted

over extended transition systems with signature Act; the semantics is given in Figure 10.

We use the truth ordering 0 < 1/2 < 1 as a representation instead of the false < ⊥ < true

of Bruns and Godefroid (1999).

Theorem 8 (Soundness and completeness of translation). Let E = (Σ, R, ↑) be an extended

transition system with signature Act.

1 The structure E[E] is a modal transition system with signature Act.

2 For all φ ∈ �HM, we have [| φ |]↓ s = 1 iff s ∈ [| φ |]a; [| φ |]↓ s = 0 iff s �∈ [| φ |]c. In

particular, [| φ |]↓ s = 1/2 iff s ∈ [| φ |]c \ [| φ |]a.
3 The relational inverse of a reflexive partial bisimulation in E is a refinement in the

modal transition system E[E]. Conversely, if E[E] is such that

s≺M t and t ↓ α ⇒ s ↓ α (26)

then the relational inverse of every refinement in E[E] is a partial bisimulation in E. In

that case, the relational inverse of the greatest partial bisimulation equals the greatest

refinement in E[E].

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 499

Proof.

1 Since Ra equals R, equation (25) enforces the consistency condition Ra ⊆ Rc.

2 By the previous item and Theorem 3.2, it suffices to show the claims about 0 and 1,

which we prove by structural induction:

(a) We have [| tt |]↓ s = 1 and s ∈ [| tt |]m for m ∈ {a, c}.
(b) For negation, x

def
= [| ¬φ |]↓ s = 1 − [| φ |]↓ s. By induction, x equals 1 iff s �∈ [| φ |]c iff

s ∈ [| ¬φ |]a. By induction, x equals 0 iff s ∈ [| φ |]a iff s �∈ [| ¬φ |]c.
(c) For conjunction, y

def
= [| φ1 ∧ φ2 |]↓ s = ([| φ1 |]↓ s)∧ ([| φ2 |]↓ s). By induction, y equals

1 iff s ∈ [| φi |]a for i = 1, 2 iff s ∈ [| φ1 ∧ φ2 |]a. By induction, y equals 0 iff s �∈ [| φi |]c
for some i = 1, 2 iff s �∈ [| φ1 ∧ φ2 |]c.

(d) For the modalities,

z
def
= [| (∃α)φ |]↓ s =

∨
({1/2 | s ↑ α} ∪ {[| φ |]↓ s′ | (s, α, s′) ∈ R}).

By induction, z equals 1 iff there is some s′ with (s, α, s′) ∈ R and s′ ∈ [| φ |]a iff

s ∈ [| (∃α)φ |]a. By induction, z equals 0 iff s ↓ α and s′ �∈ [| φ |]c for all s′ with

(s, α, s′) ∈ R iff s �∈ [| (∃α)φ |]c by (25).

3 (a) Let � be a reflexive, partial bisimulation in E. We show that Q, the relational

inverse of �, is a refinement in E[E]. Let (s, t) ∈ Q, that is, t � s.

i If (t, α, t′) ∈ Ra, that is, (t, α, t′) ∈ R, then t � s implies the existence of some

s′ ∈ Σ such that (s, α, s′) ∈ R = Ra and t′ � s′, that is, (s′, t′) ∈ Q.

ii If (s, α, s′) ∈ Rc, there are two cases to consider:

A If t ↑ α, then (t, α, s′) ∈ Rc by (25). But s′ � s′, that is, (s′, s′) ∈ Q, as � is

reflexive.

B If t ↓ α, then t � s implies s ↓ α, which, in turn, implies (s, α, s′) ∈ R by (25)

since (s, α, s′) ∈ Rc. But then t � s implies the existence of some t′ ∈ Σ such

that (t, α, t′) ∈ R ⊆ Rc and t′ � s′, that is, (s′, t′) ∈ Q.

(b) Let Q be a refinement in E[E] and (t, s) ∈ Q−1, that is, (s, t) ∈ Q.

i If (t, α, t′) ∈ R, then (t, α, t′) ∈ Ra and (s, t) ∈ Q imply the existence of some

s′ ∈ Σ such that (s, α, s′) ∈ Ra = R and (s′, t′) ∈ Q, that is, (t′, s′) ∈ Q−1.

ii If t ↓ α, then:

A If (26) holds, then s ↓ α as (s, t) ∈ Q, which is contained in ≺ as a refinement.

B If (s, α, s′) ∈ R ⊆ Rc, then (s, t) ∈ Q implies the existence of some t′ ∈ Σ such

that (t, α, t′) ∈ Rc and (s′, t′) ∈ Q. But then (t, α, t′) ∈ Rc and t ↓ α imply

(t, α, t′) ∈ R.

This result not only states that extended transition systems and their partial bisimulation

can be seen as modal transition systems with their abstraction order. Since the latter

models can be embedded into our universal domain, the former models are themselves

embedable into the same domain by the composition of these transformations. Inspecting

the work in Abramsky (1991), this suggests that there is an embedding of Abramsky’s

universal domain (Abramsky 1991), which is based on an extended Plotkin powerdomain,

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 500

into our universal domain D. Since the divergence predicate in Abramsky (1991) is

state-wide, this is false. However, an embedding can be given for the action-dependent

divergence predicate of this section by modifying the domain in Abramsky (1991) to

a recursive solution of products of lifted Plotkin powerdomains. This embedding is

based on the embedding of the Plotkin powerdomain CD of a domain D into the

mixed powerdomain M[D]: every compact, convex set C , even the empty set used in

Abramsky (1991), is mapped to the pair (L,U), where L and U are the lower and upper

closure of C , respectively (Heckmann 1990).

4.4. Partial Kripke structures

Bruns and Godefroid (Bruns and Godefroid 1999) also devise partial Kripke structures as

under-determined models for partial-state-space model checking. In loc. cit. they specify an

abstraction preorder between such models, give a three-valued semantics over such models

for the branching-time temporal logic CTL (Clarke and Emerson 1981), and present a

model-checking algorithm for that semantics (Bruns and Godefroid 1999). Since partial

Kripke structures are special Kripke MTSs, we may use the translation of Section 4.1 to

represent these models as modal transition systems. This translation preserves and reflects

the abstraction preorder and the three-valued semantics of propositional modal logic.

Definition 19 (Partial Kripke structures (Bruns and Godefroid 1999)).

1 Let K be the partial information order {0, 1/2, 1} with 1/2 � 0 and 1/2 � 1, which is

an isomorphic copy of M[∗].

2 A partial Kripke structure P (Bruns and Godefroid 1999) with signature AP is a

triple (Σ, R, L), where Σ is a set of states, R ⊆ Σ × Σ a state transition relation, and

L: Σ × AP → K is a labelling function.

3 A completeness order (Bruns and Godefroid 1999) in a partial Kripke structure P with

signature AP is a relation Q ⊆ Σ × Σ such that (s, t) ∈ Q implies:

(a) For all p ∈ AP, we have L(s, p) � L(t, p) in the information order of K.

(b) If (s, s′) ∈ R, then there exists some t′ ∈ Σ with (t, t′) ∈ R and (s′, t′) ∈ Q.

(c) If (t, t′) ∈ R, then there exists some s′ ∈ Σ with (s, s′) ∈ R and (s′, t′) ∈ Q.

Intuitively, L(s, p) = 1/2 expresses the fact that ‘p is true at state s’ is a consistent

statement; whereas L(s, p) = 1 (L(s, p) = 0) expresses the fact that ‘p is true at state s’

(‘p is false at state s’) is a valid assertion (respectively). For a completeness order Q,

(s, t) ∈ Q implies that valid assertions for s are also valid for t, and consistent statements

for s are consistent for t as well; this correspondence is preserved in a co-inductive

manner, which is familiar from bisimulations (Park 1989; Milner 1989). In Bruns and

Godefroid (1999), a three-valued semantics for propositional modal logic is given over

partial Kripke structures; see Figure 11.

Lemma 2 (Correspondence to Kripke MTSs (Huth et al. 2001)). Partial Kripke structures

P = (Σ, R, L) with signature AP are in one-to-one correspondence to Kripke MTSs

K = (Σ, Ra, Rc) with signature ({∗}, AP) such that Ra = Rc = {(s, ∗, s′) | (s, s′) ∈ R},
La(s) = {p ∈ AP | L(s, p) = 1}, and Lc(s) = {p ∈ AP | L(s, p) �= 0}.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 501

[| p |]K s def
= L(s, p)

[| ¬φ |]K s def
= 1 − ([| φ |]K s)

[| φ1 ∧ φ2 |]K s def
= ([| φ1 |]K s) ∧ ([| φ2 |]K s)

[| �φ |]K s def
=

∨
{[| φ |]K s′ | (s, s′) ∈ R}).

Fig. 11. Property semantics for propositional modal logic over partial Kripke structures (Bruns

and Godefroid 1999), where s ∈ Σ and ∧ and
∨

are defined for 0 < 1/2 < 1, which is the truth

ordering of K.

Proof. Relations of type Σ × Σ are in one-to-one correspondence to relations of type

Σ × {∗} × Σ. As for the labelling functions, La(s) ⊆ Lc(s) follows since 0 �= 1. Conversely,

any pair (La, Lc) with La(s) ⊆ Lc(s) for all s ∈ Σ determines a function L: Σ × Act → K

such that L(s, p) = 1 iff p ∈ La(s); and L(s, p) = 0 iff p �∈ Lc(s). These transformations are

clearly inverses of each other.

Definition 20 (Translating partial Kripke structures). Let P = (Σ, R, L) be a partial Kripke

structure with signature AP and let K be its corresponding Kripke MTSs as in Lemma 2.

We then define P[P]
def
= M[K]. Given a formula φ of propositional modal logic, let K(φ)

be the formula obtained by replacing each occurrence of � in φ with (∃∗).

Theorem 9 (Soundness and completeness of translation). Let P = (Σ, R, L) be a partial

Kripke structure with signature AP.

1 The modal transition system P[P] has signature AP + {∗}.
2 The relational inverse of the greatest completeness order in P, which is the union of

all completeness orders in P (Bruns and Godefroid 1999), is the greatest refinement

in P[P].

3 For all φ of propositional modal logic, [| φ |]K s = 1 iff s ∈ [| T (K(φ)) |]a; [| φ |]K s = 0

iff s �∈ [| T (K(φ)) |]c.

Proof.

1 This is an immediate consequence of Theorem 7.

2 By Theorem 7, it suffices to show the statement for the corresponding Kripke MTS

K instead of for P[P]. Inspecting Definition 15 and the third part of Definition 19,

this is now clear.

3 By Theorem 7, it suffices to show the statement for [| K(φ) |]m over K instead of

[| T (K(φ)) |]m over P[P], which we prove by structural induction:

(a) We have [| p |]K s = 1 iff L(s, p) = 1 iff p ∈ La(s) iff s ∈ [| K(p) |]a; dually, [| p |]K s = 0

iff L(s, p) = 0 iff p �∈ Lc(s) iff s �∈ [| K(p) |]c.
(b) For negation, x

def
= [| ¬φ |]K s = 1−[| φ |]K s. By induction, x equals 1 iff s �∈ [| K(φ) |]c

iff s ∈ [| K(¬φ) |]a. By induction, x equals 0 iff s ∈ [| K(φ) |]a iff s �∈ [| K(¬φ) |]c.
(c) For conjunction, y

def
= [| φ1 ∧ φ2 |]K s = ([| φ1 |]K s)∧([| φ2 |]K s). By induction, y equals

1 iff s ∈ [| K(φi) |]a for i = 1, 2 iff s ∈ [| K(φ1 ∧ φ2) |]a. By induction, y equals 0 iff

s �∈ [| K(φi) |]c for some i = 1, 2 iff s �∈ [| K(φ1 ∧ φ2) |]c.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 502

(d) For modalities, z
def
= [| �φ |]K s =

∨
{[| φ |]K s′ | (s, s′) ∈ R}). By induction, z equals

1 iff there is some s′ with (s, s′) ∈ R (that is, (s, ∗, s) ∈ Ra) and s′ ∈ [| K(φ) |]a iff

s ∈ [| K(�φ) |]a. By induction, z equals 0 iff s′ �∈ [| K(φ) |]c for all s′ with (s, ∗, s′) ∈ R

iff s �∈ [| K(�φ) |]c.

5. Related work

Models and abstraction. Modal transition systems were introduced in Larsen and

Thomsen (1988). A logical characterisation of refinement can be found in Larsen (1989).

The models developed in Dams’ thesis (Dams 1996) and in Dams et al. (1997) correspond

to the ‘mixed’ Kripke MTSs of Section 4.1. (We presented a more special class of mixed

transition systems, informed by our choice of domain equation in Section 3.) Partial Kripke

structures (Morikawa 1989) were studied in Bruns and Godefroid (1999). They showed

that their three-valued property semantics can be computed by conventional model checks

over two Kripke structures (Bruns and Godefroid 2000) – this is also possible for modal

transition systems (Godefroid et al. 2001) and Kripke modal transition systems (Huth

2002a). In Bruns and Godefroid (2000), generalised model checking specifies a more precise

semantics for such models and reduces such property verification to the non-emptiness

problem of alternating Büchi word automata over a one-letter alphabet. The account of

extended transition systems and partial bisimulations (Milner 1981; Walker 1990) was

based on Bruns and Godefroid (1999). In Schmidt (2001), it is shown how a concrete

and naive trace-set semantics is transformed, by stepwise abstract interpretation (Cousot

and Cousot 1977), into a modal transition system that is then subject to property checks

for branching-time logics. This transformation of models makes use of the existential

and universal abstractions presented in Cousot and Cousot (2000). In Huth (1999; 2001;

2002b), the modalities of modal transition systems are generalised to a wider class of

models and sound abstractions are developed. The paper Huth et al. (2001) is the original

rendition of portions of Sections 2 and 4. In Godefroid et al. (2001), a calculus for

the computation and representation of incremental abstractions is presented for modal

transition systems. Loose specifications are also considered for variations of first-order

logic; we can mention the semantics of Alloy Jackson et al. (2000) and Jackson et al. (2001),

the use of the Smyth powerdomain in Huth and Pradhan (2001), and the Kleene semantics

of an extended first-order logic in Sagiv et al. (1999) used for shape analysis.

Domains and logic. In Abramsky (1991), Abramksy studies a domain of synchronisation

trees and describes its logical counterpart, using Stone duality. This logic serves as a

‘rational reconstruction’ (Abramsky 1991) of Hennessy–Milner logic. In this domain, a

fully abstract semantics for terms of the process algebra SCCS is given. The mixed

powerdomain was discovered independently by Heckmann (Heckmann 1990) and Gunter

(Gunter 1992). The former contains a concise axiomatisation of the mix algebras. Three-

valued logic historically emphasised the development of proof theory; see, for example,

Segerberg (1967) and Morikawa (1989). The three-valued interpretation of set-theory

used in this paper is Kleene’s strong interpretation of propositional logic (Kleene 1952). It

appears that the mixed powerdomain generalises this semantics to non-flat data settings.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 503

Acknowledgments

We gratefully thank the anonymous referees for their detailed corrections and most

helpful suggestions on improving the presentation of this material. Part of this research

was carried out with the generous support of the U.S. National Science Foundation under

grants CCR-99010171, 9970679, 02030716, ITR-0085949, 0086154, and INT-9981558. We

would like to dedicate this paper to Dana Scott on the occasion of his 70th birthday.

References

Abramsky, S. (1991) A domain equation for bisimulation. Information and Computation 92 (2)

161–218.

Abramsky, S. and Jung, A. (1994) Domain theory. In: Abramsky, S., Gabbay, D. M. and Maibaum,

T. S. E. (eds.) Handbook of Logic in Computer Science, Oxford University Press, 3 1–168.

Ball, T., Podelski, A. and Rajamani, S. K. (2001) Boolean and Cartesian Abstraction for Model

Checking C Programs. In: Margaria, T. and Yi, W. (eds.) Proceedings of TACAS’2001, Genova,

Italy. Springer-Verlag Lecture Notes in Computer Science 2031 268–283.

Bradfield, J. C. (1991) Verifying Temporal Properties of Systems, Birkhäuser, Boston, Mass.

Bruns, G. and Godefroid, P. (1999) Model Checking Partial State Spaces with 3-Valued Temporal

Logics. In: Proceedings of the 11th Conference on Computer Aided Verification. Springer-Verlag

Lecture Notes in Computer Science 1633 274–287.

Bruns, G. and Godefroid, P. (2000) Generalized Model Checking: Reasoning about Partial State

Spaces. In: Proceedings of CONCUR’2000 (11th International Conference on Concurrency

Theory). Springer-Verlag Lecture Notes in Computer Science 1877 168–182.

Burch, J. R., Clarke, E. M., Dill, D. L., McMillan, K. L. and Hwang, J. (1990) Symbolic model

checking: 1020 states and beyond. Proceedings of the Fifth Annual Symposium on Logic in

Computer Science.

Chase, D., Wegman, M. and Zadeck, F. (1990) Analysis of pointers and structures. In: SIGPLAN

Conf. on Prog. Lang. Design and Implementation, ACM Press 296–310.

Clarke, E. M. and Emerson, E. A. (1981) Synthesis of synchronization skeletons for branching time

temporal logic. In: Kozen, D. (ed.) Logic of Programs Workshop. Springer-Verlag Lecture Notes

in Computer Science 131 52–71.

Cousot, P. and Cousot, R. (1977) Abstract interpretation: a unified lattice model for static analysis

of programs. In: Proc. 4th ACM Symp. on Principles of Programming Languages, ACM Press

238–252.

Cousot, P. and Cousot, R. (2000) Temporal abstract interpretation. In: Conference Record of the 27th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston,

Mass., ACM Press.

Dam, M. (1994) CTL* and ECTL* as Fragments of the Modal mu-Calculus. Theoretical Computer

Science 126 77–96.

Dams, D. (1996) Abstract interpretation and partition refinement for model checking, Ph.D. thesis,

Technische Universiteit Eindhoven, The Netherlands.

Dams, D., Gerth, R. and Grumberg, O. (1997) Abstract interpretation of reactive systems. ACM

Transactions on Programming Languages and Systems 19 (2) 253–291.

Ghiya, R. and Hendren, L. J. (1996) Is it a Tree, a DAG, or a Cyclic Graph? A Shape Analysis for

Heap-Directed Pointers in C. In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages 1–15.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

M. Huth, R. Jagadeesan and D. Schmidt 504

Godefroid, P., Huth, M. and Jagadeesan, R. (2001) Abstraction-based Model Checking using Modal

Transition Systems. In: Proceedings of the International Conference on Theory and Practice of

Concurrency. Springer-Verlag Lecture Notes in Computer Science 2154 426–440.

Gunter, C. (1992) The mixed power domain. Theoretical Computer Science 103 311–334.

Heckmann, R. (1990) Set Domains. In: Jones, N. D. (ed.) European Symposium on Programming.

Springer-Verlag Lecture Notes in Computer Science 432 177–196.

Hennessy, M. C. B. and Milner, R. (1985) Algebraic laws for non-determinism and concurrency.

JACM 32 137–161.

Hoare, C. A. R. (1985) Communicating Sequential Processes, Prentice-Hall.

Hofmann, K. H. and Mislove, M. (1981) Local compactness and continuous lattices. In:

Banaschewski, B. and Hoffmann, R.-E. (eds.) Continuous Lattices. Springer-Verlag Lecture Notes

in Computer Science 871 209–248.

Holzmann, G. (1997) The model checker SPIN. IEEE Transactions on Software Engineering 23

279–295.

Huth, M. (1999) A Unifying Framework for Model Checking Labeled Kripke Structures, Modal

Transition Systems, and Interval Transition Systems. In: Proceedings of the 19th International

Conference on the Foundations of Software Technology & Theoretical Computer Science, IIT

Chennai, India. Springer-Verlag Lecture Notes in Computer Science 1738 369–380.

Huth, M. (2001) Domains of view: a foundation for specification and analysis. Chapter in: Domains

and Processes, Kluwer Academic Press 183–218.

Huth, M. (2002a) Model checking modal transition systems using Kripke structures. In: Third

International Workshop on Verification, Model Checking and Abstract Interpretation, Venice,

Italy. Springer-Verlag Lecture Notes in Computer Science 2294 302–316.

Huth, M. (2002b) Possibilistic and Probabilistic Abstraction-Based Model Checking. In: Hermanns,

H. and Segala, R. (eds.) Process Algebra and Probabilistic Methods, Performance Modeling

and Verification, Second Joint International Workshop PAPM-PROBMIV 2002, Copenhagen,

Denmark. Springer-Verlag Lecture Notes in Computer Science 2399 115–134.

Huth, M., Jagadeesan, R. and Schmidt, D. (2001) Modal transition systems: a foundation for

three-valued program analysis. In: Sands, D. (ed.) Proceedings of the European Symposium on

Programming (ESOP’2001), Springer Verlag 155–169.

Huth, M. and Pradhan, S. (2001) Model-Checking View-Based Partial Specifications. In: Brookes,

S. and Mislove, M. (eds.) Electronic Notes in Theoretical Computer Science, Elsevier Science

Publishers 45.

Huth, M. and Pradhan, S. (2002) Lifting assertion and consistency checkers from single to multiple

viewpoints. Technical Report TR 2002/11, Imperial College London, Department of Computing.

Jackson, D., Schechter, I. and Shlyakhter, I. (2000) Alcoa: the alloy constraint analyser. In: Proc.

International Conference on Software Engineering, Limerick, Ireland.

Jackson, D., Shlyakhter, I. and Sridharan, M. (2001) A Micromodularity Mechanism. In Proceedings

of the ACM SIGSOFT Conference on the Foundations of Software Engineering/European Software

Engineering Conference (FSE/ESEC’01).

Jones, N. D. and Muchnick, S. (1979) Flow analysis and optimization of LISP-like structures. In:

Proc. 6th ACM Symp. Principles of Programming Languages 244–256.

Jung, A. (1988) Cartesian Closed Categories of Domains, Ph.D. thesis, Fachbereich Mathematik,

Technische Hochschule Darmstadt.

Kelb, P. (1994) Model checking and abstraction: a framework preserving both truth and failure

information. Technical Report OFFIS, University of Oldenburg, Germany.

Kleene, S. C. (1952) Introduction to Metamathematics, Van Nostrand.

Kozen, D. (1983) Results on the propositional mu-calculus. Theoretical Computer Science 27 333–354.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

A domain equation for refinement of partial systems 505

Kupferman, O. and Vardi, M. Y. (1998) Modular model checking. In: Proc. Compositionality

Workshop. Springer-Verlag Lecture Notes in Computer Science 1536 381–401.

Larsen, K. G. (1989) Modal Specifications. In: Sifakis, J. (ed.) Automatic Verification Methods for

Finite State Systems, International Workshop, Grenoble, France. Springer-Verlag Lecture Notes

in Computer Science 407 232–246.

Larsen, K. (1990) Proof systems for satisfiability in Hennessy–Milner logic with recursion. Theoretical

Computer Science 72 265–288.

Larsen, K. G. and Thomsen, B. (1988) A Modal Process Logic. In: Third Annual Symposium on

Logic in Computer Science, IEEE Computer Society Press 203–210.

Milner, R. (1981) A modal characterisation of observable machine behaviours. In: Astesiano, G.

and Böhm, C. (eds.) CAAP ‘81. Springer-Verlag Lecture Notes in Computer Science 112 25–34.

Milner, R. (1989) Communication and Concurrency, Prentice-Hall.

Morikawa, O. (1989) Some modal logics based on a three-valued logic. Notre Dame J. of Formal

Logic 30 130–137.

de Nicola, R. and Vaandrager, F. (1995) Three Logics for Branching Bisimulation. Journal of the

Association of Computing Machinery 42 (2) 458–487.

Nuseibeh, B., Kramer, J. and Finkelstein, A. (1994) A Framework for Expressing the Relationships

Between Multiple Views in Requirements Specification. IEEE Transactions on Software

Engineering 20 (10) 760–773.

Park, D. M. R. (1989) Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) In:

Proc. of the 5th GI Conference. Springer-Verlag Lecture Notes in Computer Science 104 167–183.

Plotkin, G. D. (1976) A powerdomain construction. SIAM Journal on Computing 5 452–487.

Plotkin, G. D. (1981) A Structural Approach to Operational Semantics. Technical Report FN-19,

DAIMI, Computer Science Department, Aarhus University, Ny Munkegade, Building 540, DK-

8000 Aarhus, Denmark. (Reprinted April 1991.)

Sagiv, M., Reps, T. and Wilhelm, R. (1999) Parametric Shape Analysis via 3-Valued Logic.

In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, San Antonio, Texas 105–118.

Schmidt, D. A. (2001) From Trace Sets to Modal-Transition Systems by Stepwise Abstract

Interpretation. (Submitted for publication.)

Segerberg, K. (1967) Some modal logics based on a three-valued logic. Theoria 33 53–71.

Smyth, M. B. (1978) Powerdomains. Journal of Computer and Systems Sciences 16 23–36.

Walker, D. J. (1990) Bisimulation and divergence. Information and Computation 85 (2) 202–241.

Whaley, J. and Rinard, M. (1999) Compositional pointer and escape analysis for Java programs.

In: Proc. OOPSLA’99, ACM 187–206.

https://doi.org/10.1017/S0960129504004268 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004268

