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We investigate the business cycle effects of imperfect transmission of technology shocks
within a basic real business cycle (RBC) model along two dimensions. First, we assume
that agents cannot distinguish a temporary increase in productivity growth from a
sustained increase in the underlying growth rate of productivity and instead must conduct
signal extraction exercises and update beliefs about the source of aggregated shocks.
Second, we propose a technology adjustment cost resulting in the slow diffusion of
technological innovations into the production process. Both of these impediments to the
transmission of technology result in a large initial wealth effect, increasing investment and
hours less, relative to the usual RBC model without these frictions. Furthermore, each of
these features is capable of producing a decline in hours on impact of the technology
shock matching the negative response in hours found in the data by such works as Gali
[American Economic Review 89(1), 249–271 (1999)].
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1. INTRODUCTION

In standard models of the macroeconomy, technology and other shocks are as-
sumed to be perfectly observable and immediately transmitted through the econ-
omy. This theoretical approach stands in contrast to the transmission of technology
shocks through the actual economy. As several works in the macroeconomics lit-
erature have shown, informational rigidities and other limitations on the diffusion

We would like to thank Richard Froyen, Michael Owyang, Julio Rotemberg, Michael Salemi and Tatevik Sekhposyan,
as well as other seminar participants at Kansas State University, the University of Nebraska, the University of North
Carolina, the Western Economic Society Meetings, the St.Louis Federal Reserve’s Learning Week and the North
American Econometric Society Meetings for helpful suggestions. This paper was first circulated under the title
“Macroeconomic Learning and the Propagation of Technology Shocks” in May 2008. The analysis, opinions, and
conclusions set forth within this paper are to be attributed solely to the authors and do not reflect the belief or opinion
of their affiliated institutions. Address correspondence to: Hamilton B. Fout, Federal National Mortgage Association
(Fannie Mae), 3900 Wisconsin Avenue, Washington, DC 20016, USA; e-mail: hamfout@gmail.com.

c© 2012 Cambridge University Press 1365-1005/12 418

https://doi.org/10.1017/S1365100512000454 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000454


IMPERFECT TECHNOLOGY SHOCK TRANSMISSION 419

of technology are key empirical features in the transmission of technology shocks;
see for example Rogers (1995), Rotemberg (2003), and Edge et al. (ELW, 2007).
In this paper, we investigate the business cycle consequences of these rigidities
within a basic general equilibrium framework.

Previous papers that have incorporated informational frictions or limitations
on the transmission of technology shocks through real business cycle (RBC)
models of the macroeconomy have focused on the long-run consequences of these
frictions. For instance, Bullard and Duffy (2004) analyze the effects of adaptive
learning under parameter uncertainty in an effort to explain the historical path of
U.S. output, consumption, and investment. ELW analyze the medium- to long-run
effects of Kalman filter learning on impulse responses to level and trend shocks
under uncertainty of the source of the productivity shock. Rotemberg (2003)
introduces a technology process that is slowly incorporated into productivity to
explain the long-run time series properties of U.S. GDP.1

We extend these works by introducing alternative mechanisms that limit the
immediate transmission of technological changes in order to investigate the short-
run consequences of these frictions within an otherwise standard RBC model. We
first modify the ELW framework by including alternative informational assump-
tions, leading to significantly different conclusions about the effects of uncertainty
and learning. Second, we introduce a slow diffusion of technology, in the spirit of
Rogers (1995) and Rotemberg (2003), by modeling adjustment costs to implement-
ing technological innovations. The effects of limited transmission of technology
shocks on the short-run predictions of the model are particularly important in light
of the recent hours debate in the macroeconomic literature [see for example Gali
(1999), Christiano et al. (2003), Francis and Ramey (2005), Pesavento and Rossi
(2005), Basu et al. (2006) and Gil-Alana and Moreno (2009)].2 In this debate,
the empirical response of hours to a level shock is used to test the validity of
the RBC paradigm. Some researchers, such as Christiano et al. (2003), find this
permanent technology shock to be expansionary for the labor input in support of
the RBC hypothesis, whereas others, such as Gali (1999) and Francis and Ramey
(2005), find technology shocks to be contractionary for labor, in contrast to the
RBC hypothesis.

The standard model of Kydland and Prescott (1982) provides the benchmark
for the RBC paradigm and predicts that hours will rise after a positive shock to
technology. To generate a fall in the labor input several adjustments have to be
made to the standard theory. Gali (1999) and Basu et al. (2006) both suggest adding
nominal rigidities (i.e., sticky prices or wages). On the other hand, Francis and
Ramey (2005) suggest a model with the real rigidities of habit in consumption and
investment adjustment costs or an economy with a Leontief production technology.
As there remains disagreement about the extent of nominal [Bils and Klenow
(2004) and Nakamura and Steinsson (2008)] and real [Dynan (2000) and Groth
and Khan (2010)] rigidities in actual economies, we instead focus on the underlying
processes assumed for technology shocks. In particular, we relax the assumption
that shocks are perfectly observable and fully implementable upon impact.
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In our first setup, we assume that agents cannot immediately distinguish fre-
quent temporary changes from persistent but infrequent changes in productivity
growth. In our model, agents cannot directly observe the underlying innovation
to technology and instead must use signal extraction learning to update beliefs
about its source.3 In our second setup, we allow agents to directly observe the un-
derlying technological process but assume a cost for implementing technological
innovations into production, resulting in a gradual diffusion of technology over
time. We view these two specifications not necessarily as competitors but as each
having individual merit.

We begin with a learning environment similar to that of ELW in which agents
cannot directly observe the underlying components of the productivity process.
Using data on real-time forecasts of long-run productivity growth, ELW provide
empirical support for this approach by highlighting the inability of economic
agents to distinguish frequent temporary changes from infrequent but persistent
changes in productivity growth. Our approach departs from that of ELW in several
important ways with fundamentally different implications for the responses of the
endogenous variables. Like ELW, we assume that agents in these models have to
learn the source of the technology shock hitting the economy by using a Kalman
filter to update their forecasts of these underlying components. Therefore, house-
holds and firms in these models make allocation decisions based on incomplete
information regarding stochastic processes. Unlike ELW, however, we assume that
agents use all contemporaneously available information when learning and take
into account their underlying learning process when forming expectations about
the future. Under the ELW framework, learning has no immediate effect on the
response of model variables to technology shocks, whereas under our approach,
learning matters for these impact responses.

We next introduce an alternative feature limiting the transmission of technology
through the economy by assuming that changes in technology are costly and thus
not fully included in the production process on impact. Instead, these changes are
adopted into production slowly over time. Rogers (1995) and Rotemberg (2003)
provide various historical examples of technological innovations that were slow
to diffuse despite evidence of the effectiveness of the new technology. Examples
include a hybrid variety of corn that after 10 years still had only diffused to 50% of
farms even though it generated 20% higher yields than previous varieties, and the
DVORAK keyboard, which despite enabling faster typing is not as widely used
as the less ergonomic incumbent QWERTY keyboard. Oliner and Sichel (1994,
2000) analyze the delayed effect of computer technologies that were introduced in
the 1980s but did not have a significant impact on productivity until the 1990s. We
model these initial periods of slow technological dissemination as arising from
costs associated with implementing new technologies.

We find that including these frictions fundamentally alters the predictions of
the model. In particular, we find that each of these frictions generates a substantial
wealth effect on the impact of a level shock, causing investment and hours to rise
by less than in the standard RBC model. We also find that including either of these
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limits on the transmission of technology, under a broad set of parameterizations,
is sufficient to deliver a fall in labor following a level shock, even in the absence
of the commonly used rigidities of sticky prices, habit persistence, and investment
adjustment costs. Thus these frictions provide a potential theoretical explanation
for the findings of Gali (1999) and Francis and Ramey (2005), with only a slight
change in the RBC model.

The rest of the paper proceeds as follows. Section 2 presents the frictionless
RBC model. Section 3 introduces signal extraction learning and reports the im-
pulse responses to productivity shocks in this environment. Section 4 introduces
technology adjustment costs and reports impulse responses. Section 5 discusses
and concludes.

2. THE RBC MODEL

2.1. Frictionless Case

Here we present the standard RBC model in the frictionless case, with technology
fully observable and immediately implementable into production. The represen-
tative agent is assumed to maximize

∞∑
t=0

βt [ln Ct + θ ln(1 − lt )] (1)

by choice of consumption Ct and hours lt at each time t , subject to the following
constraints:

Ct + It ≤ Yt , (2)

Kt+1 = (1 − δ)Kt + It , (3)

Yt = X1−α
t Kα

t l1−α
t , (4)

Xt = Xt−1e
γt eεx

t , (5)

and
γt = (1 − ργ )γ + ργ γt−1 + ε

γ
t . (6)

Output Yt is produced using labor and capital Kt and is divided between con-
sumption and investment It . The evolution of capital is governed by equation (3).
The household is endowed with one unit of time to divide between labor and
leisure. Labor-augmenting technology Xt follows the unit root process described
in equation (5). Equation (6) describes the process γt , which is the trend process
for the Xt series. The white noise disturbance terms ε

γ
t and εx

t are the trend and
level shocks, respectively, and are assumed to be orthogonal to one another, with
respective variances σ 2

γ and σ 2
x . The inclusion of two technology shocks here
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is intended to capture the distinction between persistent but infrequent changes
in the underlying trend of productivity growth (εγ

t ) and transitory but frequent
fluctuations in productivity growth (εx

t ). The parameter β ∈ (0, 1) represents the
discount factor for the household, θ > 0 measures the relative value of leisure
to the household, δ ∈ (0, 1) measures the rate of capital depreciation, α ∈ (0, 1)

measures the capital share of output, and ργ ∈ (0, 1) measures the persistence
of the trend shock. When ργ = 1, productivity growth log(Xt/Xt−1) can be
decomposed into a temporary component εx

t and a time-varying mean process
γt . The first-order conditions and the detrended, steady state, and log-linearized
versions of this model are standard and widely available in the literature and thus
not reported here.

In parameterizing the model, we set α = 0.36, β = 0.98, δ = 0.10, θ =
3.00, and γ = log(1.0226), standard values in the macroeconomic literature and
identical to the values used by ELW.4 We set the coefficient ργ governing the
duration of the trend shock to 0.95 so that ε

γ
t approximates a permanent change to

the growth rate of productivity, while maintaining the steady state features of the
model (i.e., γt has a steady state value). Thus our productivity growth specification,
like those of ELW, Stock and Watson (1998), and Harvey (1985), consists of
a noisy temporary level shock εx

t and a persistent infrequently changing trend
shock ε

γ
t .

In the frictionless setup, with agents observing both the trend and level compo-
nents of the shock (and immediately able to implement the entire innovation), the
standard RBC results hold. In particular, after a level shock, agents realize that
the level of technology has increased and unlike a trend shock will not continue
to grow over time. Agents thus respond by immediately increasing investment,
hours, and consumption to take full advantage of the shock. Here, we obtain the
standard result that a positive innovation in the level of technology causes output,
all demand-side components of output, and all factor inputs, including hours, to
rise on the impact of the shock.

Following the onset of a trend shock, agents realize that because of the nature of
the shock, productivity will continue to grow over time. Agents desire to smooth
their consumption profiles, consistent with the permanent income hypothesis,
and realizing that their consumption opportunities will be higher in the future,
they significantly increase current consumption. This increase in consumption is
accomplished by initially reducing investment, resulting in a short-run decline in
the capital stock relative to its trend. This increase in consumption also lowers the
marginal utility of consumption, which then lowers the shadow value of income,
and when coupled with the short-run decline in capital results in an initial decline
in hours.

Therefore, as these results suggest, one potential way to generate a fall in
hours following a technology shock is to assume an innovation process with a
sufficiently persistent autoregressive shock process.5 In fact, in recent work Linde
(2009) assumes an autoregressive shock process in an otherwise standard RBC
model and is able to generate negative hours responses following this trend shock.
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The recent hours debate in the macro literature, however, centers on the hours
responses following a level shock, not a trend shock. In particular, as Gali (1999)
and Francis and Ramey (2005) explain, the standard RBC model with just a level
shock cannot generate the empirically estimated negative hours responses found
in these works. In the current work, we thus focus on the impulse responses to the
level shock and in particular on frictions in the transmission of technology shocks
that can potentially result in a decline in hours following these Gali-type level
shocks.

2.2. Real and Nominal Frictions Case

As highlighted in Francis and Ramey (2005), the standard RBC model can be
augmented with habit persistence and investment adjustment costs to produce a
fall in the labor input on the impact of a level shock. This occurs because a positive
technological innovation increases the wealth of the representative household. The
presence of investment adjustment costs limits the amount by which investment can
be increased on impact, whereas habit persistence in consumption imposes similar
restrictions on the initial increase in consumption. Therefore, following the level
shock, and with limits on consumption and investment, agents are forced to use
the remainder of their wealth from the technology improvement to consume more
leisure, the only remaining normal good in the model. Gali (1999) and Basu et al.
(2006) show that including nominal rigidities leads to a fall in hours following
a level shock. In this case, incomplete adjustment of real wages following the
technology shock makes leisure relatively more attractive to the agent than in the
frictionless case.

Several works have called into question the empirical relevance of habit per-
sistence and investment adjustment costs [Dynan (2000) and Groth and Khan
(2010)], and there remains disagreement on the extent of nominal rigidities such
as the degree of price stickiness [Bils and Klenow (2004) and Nakamura and
Steinsson (2008)] in real-world economies. We avoid modeling these nominal and
real frictions and instead focus on relaxing the assumptions that technology shocks
are immediately observable and implementable on impact. In the next two sections,
we are particularly interested in the impact responses of macroeconomic variables
to Gali’s level technology shock under these different technology specifications.

3. IMPERFECT OBSERVABILITY OF TECHNOLOGY SHOCKS

In this section we analyze the impulse-response functions in the case of learning in
an environment of uncertainty about the source of the productivity shock, when the
productivity shock consists of a trend and a level component.6 In each time period
the household can observe the composite labor-augmenting technology process
Xt , but not its individual components γt and εx

t . Agents must use the following

https://doi.org/10.1017/S1365100512000454 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000454


424 HAMILTON B. FOUT AND NEVILLE R. FRANCIS

Kalman-filter-updating equation to disentangle any aggregate shock:

γ̂t+1|t = ργ γ̂t |t−1 + κ(x̂t − γ̂t |t−1). (7)

Here, γ̂t |t−1 represents the forecast of the unobservable time t trend component
γ̂t = γt − γ based on observable information as of time t − 1. The relevant infor-
mation for agents when they update forecasts is the log-linearized first difference
of the observable aggregate productivity series x̂t . The parameter κ represents the
optimal steady state Kalman gain, and the key parameter of the Kalman gain is the
signal-to-noise ratio φ = (

σ 2
γ /σ 2

x

)
.7 This ratio reflects the likelihood of observing

a persistent change (trend shock) relative to a temporary change (level shock) in
productivity growth. We estimate this parameter to be 0.05 using annual U.S. data
from 1960 to 1995 for the growth rate of nonfarm business output per hour and
the median unbiased estimation (MUE) approach of Stock and Watson (1998).
The small value of this ratio reflects the economic reality that temporary changes
in productivity growth are much more likely in the data than changes in the mean
of the productivity growth series. This implies a Kalman gain value of κ = 0.15
when ργ = 0.95. This is higher than the value of κ = 0.11 used by ELW. This
difference arises from a difference in sample periods, as our sample (1960–1995)
is smaller than that of ELW (1948–2004).8 Notice that the latter period contains
two potential structural breaks in the productivity growth series [the slowdown
of the mid-1970s and the speedup of the middle to late 1990s; see Bullard and
Duffy (2004)]. The MUE approach, which assumes only one structural break in
the sample, may not be appropriate for the entire postwar period, and we thus
concentrate on the shorter period.

The informational assumptions we use here are also fundamentally different
from those of ELW. In particular, ELW assume that agents are unaware of their own
learning process and also ignore available information when updating forecasts.
These assumptions pin down the initial responses of all model variables to both
level and growth shocks, and thus the presence of learning has no effect on the
initial response of hours to either of the technology shocks. This is because under
these assumptions, agents believe any shock to be a level shock on impact (i.e.,
γ̂1|0 = 0), and because their expectations for the future do not take into account
the fact that they are learning, all responses, whether to growth or level shocks,
result in identical responses to the level shock under full information. Thus in the
ELW framework, including informational frictions and learning has no effect on
the impact responses of technology shocks (see Figures 3 and 4 in ELW).9

Because we are primarily interested in the short- and medium-run effects of
learning, we move away from the assumptions of ELW. We first assume that agents
use all observable information to form forecasts. In particular, because agents are
allowed to make decisions by observing the contemporaneous value Xt , we also
allow them to use this information when forming forecasts. This means that, in
contrast to ELW, agents can begin learning in the period of the shock. Furthermore,
unlike ELW, we assume that agents take their underlying learning process into
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account when forming expectations about the other endogenous variables. In
particular, notice that the log-linearized consumption Euler equation can be written
as follows:

ĉt = Et ĉt+1 − [1 − βe−γ (1 − δ)]Et ŷt+1

+ [1 − βe−γ (1 − δ)]Et k̂t+1 + βe−γ (1 − δ)x̂t+1|t . (8)

Here, ĉt is the log-linearized detrended consumption series, with the log-
linearized forms of output and capital defined analogously. The term x̂t+1|t rep-
resents the Kalman filter forecast of x̂t+1 based on observation of x̂t and is given
by

x̂t+1|t = γ̂t+1|t , (9)

with γ̂t+1|t representing the one-step-ahead forecast of γ̂t+1 based on observation
of x̂t and calculated using equation (7). When agents in our model choose con-
sumption, they do so according to (9), based on their calculated forecasts of x̂t+1|t
as well as their rationally formed expectations of consumption, output, and capital.
The rational expectation of consumption is based on (8) and the learning process
given by (7) and (9), whereas ELW assume that agents receive only the forecast
value of technology without accounting for the learning mechanism when forming
rational expectations. Therefore, in our setting, there are two channels for signal
extraction learning to affect the impact response of the endogenous variables of
the model—(i) immediate observation and learning about the technology process
and (ii) inclusion of the learning process in the formation of rational expecta-
tions of other future endogenous variables, neither of which exist in the ELW
framework.10

The impulse responses for the case of signal extraction learning are shown
in Figures 1 and 2. The initial magnitudes of the trend and level shocks in this
paper have been constrained so that the level of productivity permanently rises
in the long run by 1%. Figure 1 presents the impulse responses to an increase
in the trend of technology. The trend shock acts to increase the growth rate of
productivity, with ργ governing the persistence of the shock. In this case, given
the signal-to-noise ratio, agents put considerably higher weight on a produc-
tivity disturbance being a level shock as opposed to a trend shock. Believing
they are likely facing a level shock, agents smooth consumption less than they
would otherwise (i.e., consumption rises by less than in the frictionless case with
agents directly observing the change in trend). This results in an increase in
investment (the opposite of the frictionless case) and a slightly negative initial
hours response (in contrast to the large fall on impact in the frictionless case).
Overall, the results here indicate that the trend responses under learning are driven
closer to the level responses under the frictionless specification because of the
small variance of the trend of productivity relative to the variance of the level
component.

The impulse responses to a shock to the level of productivity under learning are
reported in Figure 2. Even though agents believe that any shock they face is more
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FIGURE 1. Impulse responses to a trend shock in productivity with uncertainty and Kalman
filter learning. The solid line represents the impulse responses following a trend shock to
productivity in the model in which agents observe a composite productivity shock that
they use to create forecasts of the underlying trend and level components and the future
composite productivity shock.

likely to be a level shock, the persistence parameter ργ and signal-to-noise ratio
are high enough to create a large benefit of consumption smoothing in the unlikely
event of a trend shock. Thus, in response to a level shock, agents raise consumption
by more under learning than they do in the frictionless case. This causes a rise in
investment that is smaller than in the frictionless case and a decline in the response
of hours on impact, in contrast to the frictionless case. The muted initial response
of investment is supported by several works in the empirical literature, such as
Altig et al. (2010) and Francis et al. (2008), and the decline in hours matches the
empirical results of Gali (1999) and Francis and Ramey (2005).

Huang et al. (2009) also present results for labor responses to neutral technology
shocks, but they assume an adaptive learning framework in which agents learn
the rational expectations equilibrium of the model. Huang et al. find that under
learning, hours rise by more than in the full information case, in direct contrast
to our results. Their results are driven by the backward-looking nature of the
adaptive learning framework, in which agents form expectations based on past
observations, resulting in a dampening of the wealth effect, with consumption
rising less and hours more than under the full information case.
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FIGURE 2. Impulse responses to a level shock in productivity with uncertainty and Kalman
filter learning. The solid line represents the impulse responses following a level shock to
productivity in the model in which agents observe a composite productivity shock that
they use to create forecasts of the underlying trend and level components and the future
composite productivity shock.

3.1. Learning Parameterization

The response of hours in the learning framework is sensitive to the values of the
signal-to-noise ratio (φ) and the persistence parameter (ργ ). In particular, higher
values of either of these parameters will increase the weight agents put on the
trend shock in the signal extraction problem and further depress the response of
hours to a level shock, whereas lower values will result in less weight put on the
trend shock in the learning problem and at low enough values will result in an
increase of hours in response to a level shock. When setting the value of ργ (and
thus the implied Kalman gain), we face a tradeoff. In particular, our model of
productivity shocks and the MUE approach used to estimate φ [Stock and Watson
(1998)] assume that ργ should be unity, whereas for the steady state of our model
to exist ργ should be strictly less than unity.

Notice that our technology process can be written as

x̂t = γ̂t + εx
t = ργ γ̂t−1 + ε

γ
t + εx

t . (10)
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FIGURE 3. Impact hours response to a level shock for alternative learning parameterizations.
The dashed line represents the impact hours response for the case in which ργ = 0.90. The
solid line represents the impact hours response for the case in which ργ = 0.95. The solid
starred line represents the impact hours response for the case when ργ = 0.99.

Estimating this equation is not straightforward, as it involves two error terms and
the unobservable term γ̂t . One potential approach is to use the Kalman filter, but
as Stock and Watson (1998) point out, when σ 2

γ is small, as it is in this application,
the signal-to-noise ratio φ can be mistaken for zero; this is known as the pile-up
problem. To circumvent this problem, we follow Stock and Watson and ELW, who
like us are interested in estimating the signal-to-noise ratio for U.S. productivity
growth when productivity growth has a temporary and permanent component, in
applying the MUE approach to estimate φ. We set ργ at 0.95 in our benchmark
calibration to satisfy the steady state assumptions of our model. This value is close
enough to unity to maintain consistency with our model of technology shocks
and the MUE approach used to estimate φ. This value is also consistent with
the theoretical and empirical literature on productivity growth [e.g., Stock and
Watson, ELW, and Harvey (1985)].

With this in mind, we are interested in exploring how persistent the trend shock
needs to be to deliver a negative hours response. Figure 3 presents impact hours re-
sponses for alternative values of the persistence parameter (ργ = 0.90, 0.95, 0.99)
and the signal-to-noise ratio (φ ∈ [0.012, 0.08]). Higher values of ργ result in
impact responses of hours that are more negative in magnitude for a given
value of φ.
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FIGURE 4. Impact hours response to a level shock for alternative learning parameterizations
when ργ is small. The dashed line represents the impact hours response for the case in
which ργ = 0.30. The solid line represents the impact hours response for the case in which
ργ = 0.35. The solid starred line represents the impact hours response for the case in which
ργ = 0.40.

Negative hours responses are also possible with values of ργ as low as 0.4, as
depicted in Figure 4, but require a value of the signal-to-noise ratio of approxi-
mately 16.11 As ργ approaches zero, the responses of the level and trend shocks
converge. At values lower than 0.4, following a trend shock in the full information
case, hours rise on impact. Thus, at such low values of ργ , there is no value of the
signal-to-noise ratio for which learning can produce an impact decline in hours
following a level shock. This is because with both the level and trend shocks
resulting in positive impact hours responses under full-information, there is no
sign tradeoff for the learning model to exploit.

We also investigate the impulse-response functions arising from alternative
parameterizations for the more general utility function ln Ct + θ(1−lt )

1+χ

1+χ
. We check

values of χ ranging between -1.5 and 2 and find that the impact hours response to
a level shock (not shown) remains negative for all values of χ within this range
(holding φ and ργ at our original values), becoming more negative as χ rises.12

We find that when χ = 0.5, values of φ as low as 0.012 can generate negative
hours responses to level shocks with ργ near unity, owing to the additional weight
agents now place on leisure.
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4. TECHNOLOGY ADJUSTMENT COSTS

In this section, we explore another friction that, like the imperfect observability of
technology shocks, limits the immediate effect of technology shocks. Similarly to
Rotemberg (2003), we model a technology process that is slow to diffuse through
the economy; however, we employ a fundamentally different modeling approach.
Whereas Rotemberg assumes a framework of heterogeneous firms, each with a
continuum of capital types that absorb innovations at varying rates, we assume a
direct cost when implementing innovations that causes agents to slowly incorporate
the technology over time.

We assume an underlying potential level of technology X̄t that is slowly adopted
into the installed level of technology Xt ; the latter enters the production function
according to (4). We further assume that the agent faces an adjustment cost when
implementing changes in potential technology into installed technology. The struc-
ture we use is similar to that of Moscoso Boedo (2010), who assumes that firms
can only increase stocks of physical capital and skilled workers by incurring a
cost. In our case, the equations governing X̄t and Xt are as follows:

X̄t = X̄t−1e
γt eεx

t , (11)

Xt = X̄t

[
1 − G

(
X̄t

X̄t−1
,
X̄t−1

Xt−1

)]
. (12)

Thus, only a fraction 1 − G(·) of the potential technology is implemented, with
the following functional form governing adjustment costs:

G

(
X̄t

X̄t−1
,
X̄t−1

Xt−1

)
= e

ω1

(
X̄t /X̄t−1

eγ
−1

)
+ω2

(
X̄t−1
Xt−1

−1
)
− 1. (13)

We assume that adjustment costs rise when potential technology rises faster than
steady state growth (X̄t /X̄t−1 > eγ ) and when installed output falls below potential
output (X̄t−1/Xt−1 > 1).13 Furthermore, in the steady state, X̄t = Xt = eγ X̄t−1,
and thus adjustment costs in this case are zero. The log-linearized system with
adjustment costs is the same as that in the frictionless case, with the exceptions of
the log-linearized equations for Xt and X̄t .14 The log-linearized version of (11) is
given by

ˆ̄xt = γ̂t + εx
t . (14)

Here, ˆ̄xt = log(X̄t /X̄t−1) − γ represents the log-linear transformation of X̄t

X̄t−1
.

Substituting (13) into (12) and log-linearizing results in the following equation:

x̂t = (1 − ω1) ˆ̄xt + ω2x̂t−1 + (ω1 − ω2) ˆ̄xt−1. (15)

Thus the parameters ω1 and ω2 represent the fundamental parameters in the
adjustment costs model. We investigate two different cases—the first with ω2 = 0
and the second with ω1 = ω2 = ω. In the first of these cases, with ω2 = 0, agents
observe an innovation, but because of the adjustment cost, they can only implement
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FIGURE 5. Impulse responses to a level shock with technology adjustment costs ω1 =
0.43, ω2 = 0. The solid line represents the impulse responses following a level shock to
productivity in which agents directly observe the level shock but face an adjustment cost
in implementing the technological innovation.

1 − ω1 of the innovation on impact and the remainder in the subsequent period.
We calibrate the parameter ω1 = 0.43 in order to match the impact hours response
following a level shock under the imperfect observability of shocks in the previous
section. This allows us to understand the degree of adjustment costs necessary to
match the impact dynamics of a comparable model. When ω = 0.43, only 57% of
the innovation is absorbed into production on impact. Figure 5 presents the impulse
responses to a level shock in this case. With the costly adjustment of technology,
agents respond to the level shock by immediately raising consumption, knowing
that productivity will be higher next period when all of the innovation is absorbed.
The rise in consumption causes investment to fall below trend and results in a
negative labor response (in contrast to the frictionless case) because of the fall
in the marginal utility of consumption. The increase in consumption, however, is
smaller than in the frictionless case, because the impact effect of the technological
change on production is smaller with adjustment costs.15

In the second case we set ω1 = ω2 = ω = 0.47, with the calibration again
chosen to match the impact response of hours following a level shock under
imperfect observability of shocks.16 The responses of a level shock in this case are
observationally equivalent to those of a growth shock in the frictionless case when
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FIGURE 6. Impulse responses to a level shock with technology adjustment costs ω1 =
ω2 = 0.47. The solid line represents the impulse responses following a level shock to
productivity in which agents directly observe the level shock but face an adjustment cost
in implementing the technological innovation.

ω = ργ . To see this, notice that abstracting from level shocks, the frictionless
technology series can be expressed as

x̂t = γ̂t = ργ γ̂t−1 + ε
γ
t = ργ x̂t−1 + ε

γ
t . (16)

The adjustment cost technology equation for a level shock in this case can be
expressed as

x̂t = ωx̂t−1 + (1 − ω)εx
t . (17)

Thus, if ω = ργ , a unit shock to εx
t in the adjustment costs model is identical to

a growth shock of 1 − ργ in the frictionless model. Figure 6 further illustrates this
equivalence, showing the impulse responses to the level shock for the adjustment
cost case. Agents now respond exactly as they would following a growth shock in
the frictionless case by raising consumption on impact (to account for the expected
permanent increase in income) and lowering hours worked. A trend shock in an
environment of adjustment costs (not shown) causes consumption to rise by much
more than output. Here, agents realize that the effect of the shock will increase
over time for two reasons: (i) technology takes time to fully diffuse and (ii) a
shock to trend also means higher levels of productivity in the future, causing a
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FIGURE 7. Impact hours response to level shock for alternative adjustment cost parame-
terizations. The dashed line represents the impact hours response for the case in which
ω1 = ω and ω2 = 0. The solid line represents the impact hours response for the case in
which ω1 = ω2 = ω.

large initial rise in consumption. Investment falls relative to its unshocked path
to accommodate this increase in consumption. This limits the short-run rise in
capital, which, when coupled with the fall in the marginal value of consumption,
causes hours to fall, a finding similar to that in the frictionless case.

The degree of rigidity we impose in both cases here is much less restrictive
than in many of the cases analyzed by Oliner and Sichel (1994, 2000), Rogers
(1995), and Rotemberg (2003), who find examples of technological innovations
taking several years before they reach even half of their long-run impact. The
parameterizations we investigate all result in over half of the innovation being
absorbed on impact. Figure 7 presents the impact response for hours for various
values of adjustment costs for both cases we examine here. When adjustment costs
are zero, we recover the positive hours response of the frictionless case. As ω rises,
the degree of adjustment cost increases, the size of future output relative to current
output grows, and the desire to smooth consumption leads to a fall in hours relative
to the frictionless case. When both ω2 and ω1 are unity, we get no response of
hours, because adjustment costs completely prohibit the diffusion of technology.

The results of Section 2 show that with a sufficiently high autoregressive pa-
rameter ργ , the RBC model can generate a fall in hours following a growth shock.
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The hours debate of Gali (1999), Francis and Ramey (2005), and Christiano et al.
(2003), however, revolves around the level shock. The adjustment cost environment
presented here provides a structural framework for understanding the link between
the level and growth shocks. In particular, by delaying the full long-run value of
the level innovation for only one period (ω2 = 0), we can generate a decline in
hours on impact. In this case, the shock has its entire effect spread over two periods
and is arguably much closer to the Gali-type level shock than the asymptotically
lived autoregressive trend shock. As we increase the duration of the adjustment
costs (ω2 > 0), the level shock now behaves more like the frictionless growth
shock and is identical to this growth shock when ω1 = ω2 = ργ . We thus move
away from the shock of Gali and the hours debate literature as we increase the
degree of adjustment costs.17 Overall, by varying the adjustment cost parameter,
we are able to recover the range of investment and hours responses in the litera-
ture. For instance, when adjustment costs are higher, we can match Gali (1999),
Francis and Ramey (2005), Francis et al. (2008), and Altig et al. (2010).18 When
these costs are lower, we can match the standard RBC results of Christiano et al.
(2003).

5. CONCLUSION

In this paper, we have included two empirically supported frameworks of limited
transmission of technology shocks in the RBC model that fundamentally alter
the short-run predictions of the model. In the first framework, agents are unable
to observe the source of the productivity shock and thus unable to distinguish
temporary from sustained increases in productivity growth. Instead agents are
assumed to observe an aggregate productivity series, which they use to form
forecasts of the underlying trend and level components. These agents use signal
extraction to update these beliefs about the source of the productivity shock. We
find that responses to permanent level shocks in this model differ substantially from
those in the standard frictionless case. In particular, if sufficient weight is put on
the trend shock in the learning process, which amounts to sufficiently high values
of the signal-to-noise ratio and persistence of technology shocks, investment and
hours rise by less relative to the frictionless case.

We also examine a second framework that assumes that technological changes
diffuse slowly through the economy. Here we introduce an adjustment cost to
technology, causing agents to adopt the underlying technology change slowly and
implement it into production. We find that this modification is able to produce a
variety of impulse responses by simply varying the degree of adjustment costs.
When costs are high, again investment and hours rise by less than in the frictionless
model. We thus find that including costly adjustment of technology fundamentally
alters the predictions of the RBC model and provides a compelling alternative to
the use of the real rigidities of habit persistence and investment adjustment costs
in the RBC model, for instance in matching the decline in hours found in such
works as Gali (1999) and Francis and Ramey (2005).
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NOTES

1. As we explain later, ELW are interested in the medium- to long-run effects of uncertainty
and learning, and their informational assumptions ensure that including these features has no impact
effect on the RBC model’s predictions relative to the frictionless case. Rotemberg, on the other hand,
mentions the short-run impact of the slow diffusion technology, but his major aim is to explain the
long-run trend of U.S. GDP.

2. Gali and Rabanal (2005) provide a comprehensive review of this literature.
3. We adopt the term “learning” used by ELW to describe the process of agents updating beliefs

about the underlying source of technology shocks based on observation of the aggregate technology
shock. This use of “learning” differs from that of works in the adaptive learning literature [Bullard and
Duffy (2004)], which assume that the agent learns the rational expectations equilibrium by updating a
perceived law of motion. Both versions of learning, however, involve agents updating beliefs based on
their own forecast errors.

4. We parameterize the model to describe U.S. annual data. We extend this parameterization to the
model with technology frictions in the next sections.

5. As the value of ργ declines, the responses to the trend shock move closer to those of the level
shock, and when ργ = 0, the trend shock is identical to the level shock.

6. In the impulse-response analysis, we report all responses in terms of the deviations of logged
variables from their unshocked paths.

7. The equation of the Kalman gain and the details of the Kalman filtering approach are presented
in the appendix to this paper. Van Nieuwerburgh and Veldkamp (2006) present a model in which
the signal-to-noise ratio is procyclical, varying with the state of the economy. Agents in their model
get more precise signals about productivity during economic booms and more noisy signals about
productivity during recessions. We abstract from any such considerations in our simulations, holding
the signal-to-noise ratio constant.

8. ELW also assume a modeling environment in which agents cannot fully observe the individual
components of aggregate productivity. ELW report a MUE value of φ = 0.12 and a gain value of
κ = 0.11 (assuming ργ = 1). We find that when φ = 0.12, κ should equal 0.29 in this case, and we
verify this with both their formula and our formula. We suspect that the value ELW intend to report is
φ = 0.012, resulting in a value of κ = 0.1037.

9. To see this clearly, note that the initial responses under learning in Figures 3 and 4 of ELW
are identical to the responses under full information in Figure 3 for all variables (with slight scaling
differences due to a difference in magnitude of the two shocks). Also, these figures reveal that changing
the learning parameter λ in ELW’s framework does not change the impact full information responses
and thus does not change the impact learning responses. Therefore, learning does not affect the impact
responses in ELW’s model.

10. Kydland and Prescott (1982) also model imperfect observability of technology shocks. In
their approach, the aggregate productivity series itself is unobservable to the representative agent
when choosing labor and capital. Agents instead must form forecasts of the aggregate series
based on a noisy signal of its underlying components. Kydland and Prescott rely on a counter-
factually high signal-to-noise ratio (φ = 25) to match empirically observed correlations of macro
variables.

11. Higher values of the signal-to-noise ratio imply higher frequency of occurrence of trend shocks.
This is a natural assumption at lower values of the persistence parameter, because the long-run effects
of trend shocks are smaller and thus presumably more likely to occur in the data.

12. The results shown in Figures 1 and 2 correspond with the case of χ = −1.
13. We abstract away from technological regress and assume only technological progress.
14. Because Xt converges to X̄t , in the steady state (Xt /X̄t )

ss = 1.
15. The level shock causes productivity to rise permanently by 1% in both frameworks, but the

impact increase to the production function is smaller because of the adjustment costs relative to the
frictionless case.
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16. The long-term adjustment costs in this case limit the cumulative increase in output, the rise in
consumption and thus the fall in marginal utility. Thus, a larger cost on impact is necessary to generate
an identical fall in hours when costs only affect the innovation on impact.

17. Gali’s structural VAR identification restriction that the technology shock is the only shock able
to permanently affect labor productivity does not actually rule out the growth shock as the empirically
identified technology shock. The theoretical RBC model discussed in the hours debate, however,
assumes that the relevant technology shock is the level shock.

18. Altig et al. (2010) actually find a positive but insignificant impact response of hours. They also
find a muted increase in investment immediately following the level shock, matching the predictions
of the adjustment cost frameworks presented here.
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TECHNICAL APPENDIX

The value of the steady state Kalman gain in equation (7) is given as

κ =
ργ

[√
(1 − ρ2

γ − φ)2 + 4φ − (1 − ρ2
γ − φ)

]

2 +
√

(1 − ρ2
γ − φ)2 + 4φ − (1 − ρ2

γ − φ)
. (A.1)

We follow the MUE approach of Stock and Watson (1998) and assume that the
signal-to-noise ratio φ can be expressed as

φ = σ 2
γ

σ 2
x

=
(

λ

T

)2

. (A.2)

Here, T is the sample size of x̂t and λ is calculated using the tables in Stock and Watson
(1998, p. 353) and the Quandt (1960) likelihood ratio statistic (QLRT ):

QLRT = sup
s∈(s0,s1)

FT (s), (A.3)

where

FT (s) = SSR1,T − SSR1,[T s] − SSR[T s]+1,T

(SSR1,[T s] + SSR[T s]+1,T )/(T − 1)
. (A.4)

SSRt0,t1 is the sum of squared residuals from the regression of productivity growth on a
constant for the time period from t0 to t1, s ∈ (0, 1), and the potential break dates are given
by [T s], where the operator [·] rounds its argument to the next lower integer.

We use annual values of the growth of nonfarm business output per hour to measure
x̂t (available from the Bureau of Labor Statistics) for the period 1960–1995 in order to
estimate λ. We estimate QLRT to be 8.8834, implying an interpolated value of λ = 7.8197,
φ = 0.0472, and a Kalman gain value [equation (A.1)] of κ = 0.1949 when we assume
that γ̂t follows a random walk (ργ = 1).
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