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Abstract

Recent models of scientific collaboration show that minorities can end up at a disadvantage
in bargaining scenarios. However, these models presuppose the existence of social categories.
Here, I present a model of scientific collaboration in which inequality arises in the absence of
social categories. I assume that all agents are identical except for the position that they
occupy in the collaboration network. I show that inequality arises in the absence of social
categories. I also show that this is due to the structure of the collaboration network and that
similar patterns arise in two real-world collaboration networks.

1. Introduction
Science is a social enterprise. For the most part, scientists do not work in isolation but
collaborate with others when running experiments, analyzing data, or publishing
papers. Scientific collaborations have in fact become more common over the past dec-
ades throughout academic disciplines (Melin and Persson 1996; Henriksen 2016). On
the bright side, collaborations can bring about a host of epistemic and practical goods:
collaborations seem to increase research output and impact (Beaver 2004; Lee and
Bozeman 2005), and they may even promote the attainment of truth by allowing
researchers to pool resources and expertise (Wray 2002).

But the social dimension of science can also bring about unequal outcomes, as phi-
losophers of science have recently shown. Drawing on results from Bruner (2019) and
O’Connor (2017), O’Connor and Bruner (2019) show that minorities can end up at a
disadvantage in bargaining models of scientific collaboration merely because of their
group size. Similar models suggest that a minority disadvantage can hinder progress
in epistemic communities (Rubin and O’Connor 2018) and that intersectionality may
aggravate the issue (O’Connor, Bright, and Bruner, 2019).1

© The Author(s), 2022. Published by Cambridge University Press on behalf of the Philosophy of Science Association.

1 The social dimension of science can lead to outcomes that are undesirable for epistemic reasons as well.
For example, community size and connectivity can restrict how quickly scientists converge on the truth (cf.
Rosenstock, Bruner, and O’Connor 2017; Zollman 2007, 2010). When facing a risk–return trade-off in their
work, individual scientists can divide cognitive labor in ways that are suboptimal for the community as a
whole (Kummerfeld and Zollman 2015); see also Kitcher (1990) andWeisberg andMuldoon (2009). Other social
aspects of research, such as the influence of funding agencies, can bias epistemic communities and steer sci-
entists away from the truth (Weatherall, O’Connor, and Bruner 2020; Holman and Bruner 2017).
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Models of inequality in scientific collaboration can be very illuminating: they provide
a possible account of how discrimination against minority groups might arise without
explicit or implicit bias or, indeed, without any difference between groups apart from
size. But so far, models of inequality in scientific collaboration presuppose the existence
of social categories, with agents differing in some arbitrary but visible trait—for exam-
ple, race, gender, age, or membership in some other social group. One may therefore be
led to conclude that social categories are the main or perhaps the only cause of inequal-
ity in epistemic communities. Conversely, it would be a lot more troublesome if inequal-
ity could arise in the absence of social categories. Inequality might then persist even if
we could somehow erase the divides between distinct social groups.

Here, I present a model of scientific collaboration in which inequality arises in the
absence of social categories. The model represents a collaboration network where sci-
entists must bargain over how much effort to invest in joint projects and how to
divide credit for their labor. I then show that some scientists can end up at a disad-
vantage when all scientists are identical except for the position they occupy in the
collaboration network. I also show that this unequal outcome is due to the structure
of the collaboration network. Inequality thus emerges in the absence of biases or
social categories, although biases and social categories may compound the problem.

The article proceeds as follows. I begin by reviewing previous results in section 2. I
then describe and justify the model in section 3. In section 4, I report results from
computer simulations showing that the structure of collaboration networks can lead
to inequality in the absence of social categories. I also show that similar patterns arise
in two real-world collaboration networks and that different dimensions of inequality
can come apart. In section 5, I discuss how my findings relate to previous work on
bargaining models of scientific collaboration. I conclude in section 6 by considering
some limitations of my approach.

2. Previous Models
Recent models of scientific collaboration focus primarily on inequalities that arise as a
result of social categories. There are good reasons for this, as inequality in scientific
practice is often linked to social markers. The gender gap is a particularly well-
documented case. Female scientists tend to publish fewer articles than male col-
leagues and are less likely to participate in collaborative research projects (West
et al. 2013; Larivière et al. 2013). Female scientists also receive grants less often when
funding agencies assess their quality as principal investigators, but not when agencies
assess the quality of their research proposals (Witteman et al. 2019). There is further
evidence that young female scientists are less likely to be listed as an author in a
published article, despite working more hours in total than male colleagues
(Feldon et al. 2017). Similar patterns of discrimination arise with respect to race
and ethnicity as well: in many disciplines, members of underrepresented racial
and ethnic groups tend to have fewer publications and lower promotion rates
(Hopkins et al. 2013; Gabbidon et al. 2004; Abelson et al. 2018).

In an effort to understand inequality of this form, previous models of scientific
collaboration consider a simple version of the Nash demand game (Nash 1950). In this
game, two agents decide how to split a resource by demanding a portion of it. If the
sum of their demands is equal to or less than the total amount available, each agent
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gets what they demand. If the sum of their demands exceeds the total amount, each
agent gets nothing, on the assumption that the negotiation breaks down when they
cannot come to an agreement. For simplicity, we assume that agents can only make
one of three possible demands: low (Low), medium (Med), or high (High). This is the
mini-Nash demand game (Skyrms 1996), with the payoffs shown in table 1.

When agents are perfectly rational, any two demands that sum to 1 result in a pure
Nash equilibrium of the game. Given any such configuration, neither agent has an
incentive to unilaterally demand a different share of the resource. For example, there
is an equilibrium where both agents demand Med and split the resource evenly. Such
equilibria are usually termed fair. There are also mixed Nash equilibria in which
agents mix two or all three demands with some positive probability. For example,
there is an equilibrium in which one agent demands Low with probability L=H and
the other demands High with probability 1 � L=H. Such equilibria are usually called
unfair.

Equilibrium results differ when agents are not perfectly rational and instead adjust
their strategy via a process of biological or cultural evolution. Using the replicator
dynamic as a model of evolution, Skyrms (1996) shows that there are only two equi-
libria in a population of agents playing the mini-Nash demand game: a symmetric
equilibrium with agents who only playMed and a mixed equilibrium with some agents
playing Low and others playing High. Both equilibria are stable. But the equilibrium in
which agents play Low and High is inefficient: when two agents demanding Low meet,
each gets a positive payoff, but a portion of the resource goes to waste.

This inefficient equilibrium can be avoided. If agents differ on the basis of arbitrary
but visible group markers, agents can make their strategy conditional on the group
membership of others. In this way, agents can coordinate on one of the efficient equi-
libria (Skyrms and Zollman 2010). The population then evolves to either the symmet-
ric equilibrium, in which everyone plays Med, or the asymmetric equilibrium, in
which one group demands High and the other group demands Low. The asymmetric
equilibrium is known as a discriminatory norm: a self-reinforcing pattern of behavior
that puts some at a disadvantage merely because of their group membership (Axtell
et al. 2001).

Interesting outcomes are also possible when the population is divided into groups
that have different sizes. Although the symmetric equilibrium is still stable in this
case, Bruner (2019) and O’Connor (2017) show that the smaller the minority group
is, the more likely the population is to evolve to an equilibrium with the minority
demanding Low and the majority demanding High. Similar results have been observed
in experiments where participants play the mini-Nash demand game in groups of

Table 1. Payoffs in the mini-Nash demand game. In each cell, the first and second entries represent the
payoff to the row and column players. Note that L < M � 0:5 < H, and L� H � 1

Low Med High

Low L, L L, 0.5 L, H

Med 0.5, L 0.5, 0.5 0, 0

High H, L 0, 0 0, 0
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different sizes (Mohseni, O’Connor, and Rubin 2019). Under these conditions, the
minority is more likely to demand Low because the minority encounters the majority
more often than the other way around. As a result, the minority is faster to adapt to
the demands of the majority. This outcome is the cultural analogue of the Red King
effect: when two populations coevolve, the population that is slower to adapt gains
the evolutionary upper hand (Bergstrom and Lachmann 2003).

Bargaining games such as the mini-Nash demand game have a long history as mod-
els of resource division (Skyrms 1996; Binmore 1998). Recently, the mini-Nash
demand game has also been used to model the division of resources resulting from
scientific collaborations. O’Connor and Bruner (2019), for example, use the mini-Nash
demand game to show that members of the minority group can end up at a disad-
vantage in scientific collaborations simply because of their group size. Rubin and
O’Connor (2018) draw on similar models to describe how discrimination can lead
to segregation, which decreases the diversity of collaboration networks and is thus
likely to hinder epistemic progress in science.

In the next section, I describe a model that uses the mini-Nash demand game to
represent the division of resources resulting from scientific collaboration. There are
no social categories in my model. Yet, I show that inequality can arise because of the
structure of the social network.

3. Model Description
The mini-Nash demand game captures important features of scientific collaborations
(Rubin and O’Connor 2018; O’Connor and Bruner 2019). Scientists must often decide
whether or not to enter a collaboration. If they choose to join the project, they must
decide how to divvy up the credit for their joint labor. I therefore consider a strategy
in the mini-Nash demand game to represent a request for a certain amount of credit
resulting from the joint project. One example of how a scientist might claim credit is
by requesting to be the first author. But there are other ways in which a scientist
might claim credit. For example, a scientist might claim credit by explicitly describing
their role in an author contribution statement, presenting results from the joint proj-
ect at a conference, or promoting the project through social media. The Low strategy
thus corresponds to a case in which a scientist requests a small amount of credit, the
Med strategy to a case in which a scientist demands a moderate amount of credit, and
the High strategy to a case in which a scientist demands a large amount of credit. I
assume throughout that collaborators do enough work to get an output of sufficient
quality, thus ensuring that research quality is held constant.

Accordingly, the Low–Low outcome might correspond to a case in which both sci-
entists evince a certain level of timidity, do not promote the project through social
media, or do not present it at conferences and therefore claim only a small amount of
credit. In this case, both scientists split the credit evenly but claim a small amount of
credit in total, so each scientist ends up receiving a low payoff. In the Med–Med out-
come, both scientists claim a moderate amount of credit—for example, by promoting
the project through social media or presenting it at conferences. In this case, scien-
tists again split the credit evenly, but each scientist claims a moderate amount of
credit and so ends up receiving a moderate payoff. In the Med–Low outcome, the sci-
entist playing Med claims a moderate amount of credit, whereas the scientist playing
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Low claims a small amount of credit. Thus, the Med scientist gets a moderate payoff,
and the Low scientist ends up with a small payoff. In the High–High and High–Med out-
comes, both scientists claim too much credit for themselves, and conflict erupts
between them. As a result, the collaboration breaks down, and both are left with a
payoff of zero.

In line with this interpretation of the Low, Med, and High strategies, I use the mini-
Nash demand game to represent the division of credit in scientific collaborations. In
contrast to other models, however, I assume that there are no social categories. I
make this assumption because in some cases, inequality in science does not appear
to be due to social categories, instead being linked to the structure of the social net-
work. A case in point is the “Matthew effect” (Merton 1968). The Matthew effect
describes how more prominent scientists often get more credit than less prominent
ones for work of equal worth. Since the mechanism was first proposed, empirical
studies have confirmed that the Matthew effect is pervasive in science. For example,
early work shows that inequality in publication counts increases as scientists age, sug-
gesting a cumulative effect over time (Allison and Stewart 1974; Allison et al. 1982).
Recent work indicates that citation counts appear to depend in part on how renowned
the author already is (Petersen et al. 2014). In fact, the problem seems to be getting
worse (Nielsen and Andersen 2021). A Matthew effect can also be seen in science fund-
ing, with recipients of early-career grants being more likely to win further grants
than equally qualified peers (Bol et al. 2018).

In light of the evidence that inequality is not always directly due to social catego-
ries, the model shows how inequality can arise in scientific communities in the
absence of social categories. Because there are no social categories in the model,
we assume that scientists are identical except for the position they occupy in the col-
laboration network. In particular, we let scientists occupy the N nodes of a graph.
Further, we let eij � 1 represent a link between scientists i and j if they collaborate
on a joint project and eij � 0 otherwise. Scientist i then plays the mini-Nash demand
game with every scientist j such that eij � 1. For simplicity, we assume that every
scientist i plays the same strategy with all their collaborators. In each round of inter-
action, their total payoff is then given by the following expression:

πi �
XN

j

eij � rij; (1)

where rij is the reward that i gets from interacting with j. The total payoff is thus the
sum of rewards that a scientist receives from all their collaborators.2

As before, we suppose that scientists receive rewards according to table 1. Because
the values of L and H determine how large the gap is between the rewards that Low
and High scientists get, we take these parameters to represent how “elitist” or
“egalitarian” a scientific community is with respect to reward allocation. A large dif-
ference between L and H thus represents an elitist community where scientists either
get a very low or a very high reward; in contrast, a small difference represents an

2 We consider the sum of rewards rather than the average because it is more natural to think of sci-
entists adding the rewards they receive from joint projects instead of averaging them. But results are the
same if we instead take the average reward.
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egalitarian community where scientists mostly get the same reward. Indeed, scientific
communities appear to differ in how unequal they are (Han 2003; Clauset et al. 2015).3

To model the structure of the scientific community, we turn to scientometric stud-
ies on the topology of collaboration networks. Empirical evidence suggests that col-
laboration networks often have predictable properties, despite discipline-specific
idiosyncrasies. In particular, collaboration networks tend to have a skewed degree
distribution (Newman 2001, 2004). This is to say that the distribution of the number
of collaborators per scientist has a long tail, with collaboration networks displaying a
hub-and-spoke architecture in which few scientists (“hubs”) have many collaborators,
and many scientists (“spokes”) have just a few. More precisely, the degree distribution
of collaboration networks has the following form:

P d� � � d�γ ; (2)

where γ controls the shape of the distribution, and d is the degree or the number of
collaborators per scientist. Networks with a degree distribution of this form are
known as scale-free. A similar degree distribution is common in other social and bio-
logical networks, such as animal societies and gene regulatory networks (Barabási and
Oltvai 2004; Lusseau 2003).

For this reason, here we consider scale-free networks with a power-law degree
distribution. Although there are many models of network formation that result in
such a distribution, a simple model that is known to generate a power-law degree
distribution is the preferential-attachment model attributable to Barabási and
Albert (1999). In this model of network formation, there is initially a small set of inter-
connected nodes. Nodes are then added to the network and connected to other nodes
with a probability proportional to the number of connections that existing nodes
already have, giving rise to a Matthew effect in network formation. As the network
grows, few nodes accumulate many connections, and many nodes acquire only a few.
In the limit of an infinitely large network, the resulting degree distribution converges
on the power law given by equation (2). There are certainly more sophisticated mod-
els of network formation, but the preferential-attachment model is a simple and
widely used one. For comparison, we will consider regular networks in which every
node has the same degree d and thus the average degree is also d. In particular, we will
consider regular networks with d= 2 and d= 5. These regular networks are not real-
istic but serve as control cases because the scale-free networks discussed here have an
average degree of approximately d= 2 (see figure 1).

Another important feature of collaboration networks is that they are not static.
Scientists sometimes change their behavior, for example, choosing to collaborate
when they did not before, and vice versa. There are, of course, many possible ways
to represent this. Following O’Connor (2017), Rubin and O’Connor (2018), and
O’Connor et al. (2019), we will suppose that scientists update their behavior using

3 As an anonymous referee points out, some academic communities have a reputation for being espe-
cially elitist—for example, economics. At the same time, economics follows a strict norm of alphabetical
author order implying equal contribution in collaborative works. This might be taken to mean that eco-
nomics is an egalitarian discipline after all. However, it is possible that an alphabetical author order only
makes a discipline more elitist: if authors do not disclose their real contribution to a joint project, others
must resort to an author’s past reputation or institutional affiliation to infer their real contribution.
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a rule known as myopic best response. This means that in the first round of interaction,
scientists choose a behavior at random. So a third of scientists will play Low, a third
will play Med, and a third will play High. In each round thereafter, there is a small
probability that a scientist will update their behavior. When a scientist updates their
behavior, the scientist chooses the strategy that would have been a best response to
the set of strategies that they encountered in the previous round. Scientists therefore
update their behavior by best responding to previous plays but keep a record of only
the most recent interactions.

Given our interest in the emergence of inequality in collaboration networks, we
wish to track how unequal the payoff distribution is. To do so, we use the Gini index
(GI). The GI measures the spread in a distribution. Although not entirely free of prob-
lems (Langel and Tillé 2013), the GI is often used in economics to measure income and
wealth inequality. It has also been applied to a variety of other contexts, such as in the
study of biodiversity and enzyme selectivity (Wittebolle et al. 2009; Graczyk 2007). The
GI is given by the following:

GI �
PN

i�1

PN
j�1 πi � πj

�� ��
2N

PN
j�1 πj

; (3)

where πi and πj are the payoffs that scientists i and j get from their collaborations.
The numerator is the mean absolute difference of the payoff distribution, and the
denominator is twice the mean of the distribution. Because payoffs are always
nonnegative, the GI ranges from 0 (minimum) to 1 (maximum), depending on
the spread of the distribution. The GI thus measures the spread in the payoff
distribution.

But I show later in the article that it is possible for different aspects of inequality to
come apart. For example, heterogeneity in the distribution of strategies can be low
while payoff inequality is high (and vice versa). For this reason, we need to introduce
another measure to track heterogeneity in the distribution of strategies: the strategy
heterogeneity index (SI). Because agents get the same payoff when both play Med, we
define the SI as the overall frequency of agents who play any of the two extreme strat-
egies (i.e., Low and High). The SI is therefore given by the following:

SI � fL � fH; (4)

where fL and fH give the frequency of agents who play Low and High, respectively. The
SI ranges from 0 (minimum) to 1 (maximum), with 0 indicating that everyone plays

Figure 1. Network topologies. Left: Regular network with d= 2. Center: Regular network with d= 5. Right:
Scale-free network given by the preferential-attachment model described by Barabási and Albert (1999) with
one initial node. Shown are networks with N= 30.
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Med and 1 indicating that no one plays Med. Unlike the GI, the SI therefore does not
track the spread in the payoff distribution; it is instead a simple measure of how far
the population deviates from the state in which everyone plays Med.

Having defined the structure of the collaboration network, the strategies that scien-
tists in the collaboration network can adopt, the rule they use to update strategies, their
payoffs, and two measures of inequality, I report the results in the next section. Pseudo-
code, code for simulations, data, and scripts for analyses and figures are available
anonymously at: https://osf.io/h6j75/?view_only= 479ac3174b8c4fbe8b6e2de1af3e5abe.
Pseudo-code is also available in the appendix.

4. Results
Computer simulations show that collaboration networks reach an equilibrium state in
regular and scale-free networks. But regular and scale-free networks arrive at differ-
ent equilibria. In regular networks with d= 2 and d= 5, the entire population plays
Med when L= 0.1 (figure 2, left). In scale-free networks, however, only approximately
70% of the population plays Med at equilibrium. Equilibria also differ when L= 0.4
(figure 2, right). Whereas the entire population continues to play Med in regular net-
works with d= 5, only approximately 40% of the population plays Med in regular net-
works with d= 2. In scale-free networks, the share of the population playing Med is
even smaller: approximately a third will play Med. The share of the population that
playsMed at equilibrium therefore depends on not only network topology but also the
average degree and value of L. (Because L � 1 � H, it does not matter whether we
track L or H; I focus on L when presenting results.)

We also find that the equilibrium composition of scale-free networks varies across
values of L (figure 3, left). When L= 0.1, 72% of the population will play Med, whereas
19% will play Low and 9% will play High. With increasing values of L, the equilibrium
frequency of Med goes down while the frequencies of Low and High go up. When
L= 0.4, the frequency of High is higher than the frequency of Low: 40% of the

Figure 2. Frequency of Med over time. Left: When L= 0.1, Med takes over regular networks with d= 2
(dotted) and d= 5 (dashed); the equilibrium frequency of Med is 0.7 in scale-free networks (solid). Right:
When L= 0.4, Med takes over regular networks with d= 5, but the frequency of Med is 0.4 in regular net-
works with d= 2 and 0.33 in scale-free networks. Results are the average of 100 runs, with update proba-
bility equal to 0.1, and N= 100.
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population plays High, whereas 35% plays Med and 25% plays Low. Depending on L, the
population thus goes from having more agents who play Low than High to having
more agents who play High than Low.

Next, we find that the payoff distribution becomes less unequal as L goes up
(figure 3, right). When L= 0.1, GI is approximately 0.52; when L= 0.4, GI is approxi-
mately 0.4. This is not very surprising, given that higher (lower) values of L represent
more egalitarian (elitist) communities. But the value of L has a very different effect on
strategy heterogeneity: SI increases with L, with SI going from 0.3 when L= 0.1 to 0.66
when L= 0.4. These two measures also differ in that SI is more sensitive than GI to
changes in the value of L: SI goes up by 120%, whereas GI goes down by 23%. As L
increases, the population thus becomes less unequal with respect to the payoff at
the same time that it becomes a lot more heterogeneous with respect to its compo-
sition. In other words, payoff inequality and strategy heterogeneity come apart.

To better understand what factor(s) could be driving and maintaining payoff
inequality and strategy heterogeneity, we will consider how an agent’s strategy
depends on the position that they occupy in the collaboration network. In particular,
we compare the degree of agents who play Low with those who play High (figure 4,
left). When L= 0.1, agents playing High tend to have a higher average degree than
agents playing Low: the former has approximately 3.6 collaborators on average,
whereas the latter has approximately 1.24. But when L= 0.4, the pattern is reversed:
agents playing Low tend to have approximately 3 collaborators, whereas agents play-
ing High have around 1.36. When L is low, those who play High therefore tend to be
well-connected agents; when L is high, it is those playing Low who are more likely to
be well connected. Inspection of a representative network at equilibrium illustrates
this point (figure 4, right). When L= 0.1, agents playing Low tend to occupy more
peripheral nodes than agents playing High. Given that agents are identical except
for the position that they occupy in the collaboration network, this suggests that
it is the structure of the network that drives and maintains inequality in the model.

But the structure of the collaboration network in the model is simply due to the
preferential-attachment model. Although this model of network formation gives rise
to a degree distribution that is known to resemble the degree distribution of real-
world collaboration networks, it is clearly an idealization. For one, scientists do

Figure 3. Equilibrium composition and inequality. Left: The equilibrium composition depends on L. Right:
The GI decreases with L, whereas the SI increases with L. Results are the average of 100 runs with 100 time
steps, with update probability equal to 0.1, and N= 100.
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not always choose whom to collaborate with on the basis of how many collaborations
potential coworkers already have—among myriad other factors, geographical prox-
imity, institutional affiliation, and personality quirks can also play a role. To examine
whether the inequality we observe in the model might arise in the real world, we will
consider the same dynamics of collaboration on two well-known and publicly avail-
able collaboration networks: the GR-QC and Erdos collaboration networks. The GR-QC
collaboration network includes the authors of articles on general relativity and quan-
tum cosmology posted to the preprint repository arXiv between 1993 and 2003
(Leskovec et al. 2007). The Erdos collaboration network covers all articles written
by the extremely prolific mathematician Paul Erdős, his coauthors, and their coau-
thors (Batagelj and Mrvar 2000).

Similar results are obtained from simulations of a population of agents playing the
mini-Nash demand game with myopic best response on the GR-QC and the Erdos col-
laboration networks (figure 5). In particular, the average degree is higher for agents
playing High than for agents playing Low when L is low, but the pattern is reversed
when L is high. When L= 0.1, scientists in GR-QC who play Low have approximately 3.1
collaborators on average, whereas scientists who play High have approximately 7.9
collaborators. A similar pattern holds in Erdos: when L= 0.1, scientists playing Low
have a single collaborator on average, but scientists playing High have approximately
10.9 collaborators. As L goes up, this difference decreases at first and eventually
reverses. When L= 0.4, scientists in GR-QC who play Low have approximately 6.37
collaborators on average, whereas scientists playing High have approximately 2.94.
Similarly, scientists in Erdos who play Low have 7 collaborators on average, whereas
scientists playing High have approximately 1.46. Network structure therefore drives
the emergence of inequality in both networks, although the effect is especially pro-
nounced in Erdos.

It is also worth reiterating that the degree distribution of scale-free networks
where inequality arises is similar to that of real-world collaboration networks. As
already noted, the degree distribution of indefinitely large scale-free networks is
given by P d� � � d�γ . Empirical studies find that the values of γ for real-world

Figure 4. Degree inequality in model networks. Left: When L is low, the average degree of those playing
High is higher than the average degree of those playing Low; the pattern is reversed when L is high. Results are
the average of 100 runs, with 100 times steps, update probability equal to 0.1, and N= 100. Right: Population
composition after 100 rounds of interactions in a scale-free collaboration network with L= 0.1.
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collaboration networks often range between values of 1 and 3, depending on the data
set and scientific discipline (Barabási et al. 2002; Albert and Barabási 2002). Indeed,
this expression approximates quite well the degree distribution of both the Erdos
and GR-QC collaboration networks (figure 6). Considering that the preferential-
attachment model was built to fit the scale-free degree distribution of real-world net-
works, this is not very surprising. But it serves as a reminder that the inequality we
observe in the model is the product of a realistic network structure.

5. Discussion
Mymodel shows that the structure of collaboration networks can give rise to inequal-
ity even in the absence of social categories. In particular, the model shows that

Figure 6. Degree distribution in model and two real-world networks. Left: The degree distribution given by
P�d� � N � d�γ with γ � 2 (solid line) approximates the degree distribution in the Erdos collaboration net-
work (N= 4,158). Right: The same expression approximates the observed degree distribution in the GR-QC
collaboration network (N= 5,094). Gray bars show empirical degree distribution.

Figure 5. Degree inequality in real-world networks. In the Erdos (N= 4,158; left) and GR-QC (N= 5,094;
right) collaboration networks, the average degree of agents who play High is higher than the average degree
of agents who play Low when L is low; the pattern is reversed when L is high. Results are the average of 100
runs, with 100 time steps and update probability equal to 0.1.
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inequality in the payoff distribution and heterogeneity in the strategy profile of the
population arise and persist in collaboration networks with a heterogeneous degree
distribution. The model also shows that this is so across the full range of values for L
—a parameter that controls how elitist or egalitarian the scientific community tends
to be. Furthermore, the model highlights that inequality is not a one-dimensional
concept: different values of L affect different measures of inequality differently, with
inequality in the payoff distribution (GI) being high when heterogeneity in the strat-
egy profile (SI) is low, and vice versa.

These results stand in contrast to previous models showing that population struc-
ture can promote an even allocation of resources in the mini-Nash demand game. For
example, Alexander and Skyrms (1999) and Alexander (2000) show that spatial struc-
ture makes it very likely that a population will converge on the fair equilibrium. But
this is due to the fact that spatial organization is a form of population structure in
which every agent interacts with four neighbors and there is no variation in the
degree distribution. When the population structure leads many to interact with
few and few to interact with many, my model shows that the resulting heterogeneous
degree distribution can promote unequal outcomes.

My model thus adds to a growing body of work showing that a heterogeneous
degree distribution can give rise to inequalities in strategic settings. In a network
model of the prisoner’s dilemma, for example, Du et al. (2008) find that a heteroge-
neous degree distribution favors the spread of cooperation but that it also promotes
an unequal payoff distribution. In public-good games, network heterogeneity induces
diversity in group size and thus promotes contributions to the public good (Santos
et al. 2006; Santos et al. 2008). But network heterogeneity can also lead to unequal
outcomes in public-good games because the proliferation of altruistic behaviors ends
up harming some individuals (McAvoy et al. 2020).

My model also reveals two “regimes” in the emergence of inequality in collabora-
tion networks. One regime is when L is low. In this case, poorly connected scientists in
the periphery of the collaboration network play Low, whereas their well-connected
collaborators play High. The other regime is when L is high. In this case, well-
connected scientists play Low, whereas their poorly connected collaborators play
High. An analogous pattern is apparent in the way that the Red King/Queen effect
leads to inequality in the mini-Nash bargaining game with coevolving groups of dif-
ferent sizes (Bruner 2019; O’Connor 2019, 2017). When L is high, the Red King effect
leads the minority to get less than the majority. When L is low, the Red Queen effect
kicks in, and the minority gets more than the majority.

Despite this superficial similarity, the mechanism driving the emergence of
inequality in my model is not the same as in the Red King/Queen effect. First, the
Red King/Queen effect depends on the minority adapting more quickly to the strategy
of the majority. In contrast, the update rule used in my model is the myopic best
response. Strictly speaking, the myopic best response is not an evolutionary update rule
because agents do not update their behavior by copying the behavior of others. Thus, it is
not a difference in evolutionary tempo that drives inequality in my model. Second, the
Red King/Queen effect relies on there being two groups, groups having different sizes,
and individuals conditionalizing their behavior on the group membership of others. In
my model, however, the mechanism that gives rise to inequality does not depend on
a categorical distinction between groups. In fact, there is no partition of the population
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into groups at all—let alone groups of different sizes. Third, the Red King/Queen effect
causes the minority groups to be at a disadvantage when L is high and thus when payoff
inequality is low. But in my model, those who are poorly connected end up at a disad-
vantage when L is low and payoff inequality is high. For all these reasons, the mechanism
leading to inequality in my model is not the same as that in the Red King/Queen effect.

So what explains the two regimes of inequality that we observe in mymodel? Because
the update rule my model uses is the myopic best response, to answer this question, I
follow Rubin and O’Connor’s (2018, 386–88) account of how discrimination arises in their
model and consider the probability that a strategy is a best response.4 A strategy is a best
response if there is no other strategy that would yield a higher payoff, given the strategies
that other agents play in the previous round. The probability that a particular strategy is
a best response thus depends on the probability with which other agents choose each
strategy. For an agent who only interacts with one other agent, the probability that the
strategy Low, Med, or High is a best response is just the probability with which the agent
encounters another agent who plays High, Med, or Low. Initially, agents choose a strategy
at random. The initial probability that each strategy is a best response is thus 1=3.

In scale-free networks, some agents do interact with only one other agent. But
other agents interact with many more. In such cases, the probability that a strategy
is a best response can be found in three steps. The first step is to determine what
strategy is a best response to every possible combination of strategies that other
agents may choose. The second step is to calculate the probability with which each
one of these combinations of strategies occurs. The third step is to compute the prob-
ability that a strategy is a best response by summing over the probabilities of every
combination of strategies to which the strategy in question is a best response.
Assuming that agents pick a strategy at random, as they do at first, the probability
that Low, Med, or High is a best response is shown in figure 7.

Notice that the probability that a strategy is a best response depends on the
degree. As already noted, each strategy is a best response with probability 1=3 when

Figure 7. Initial probabilities that Low and lHigh are a best response. Left: Initial probability that Low and High
are a best response for d= 1, d= 2, and d= 5 when L= 0.1. Right: Initial probability that Low and High are a
best response for d= 1, d= 2, and d= 5 when L= 0.4.

4 I thank an anonymous referee for raising this point.
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an agent interacts with only one other agent—and this is so regardless of L. But when
an agent interacts with more than one agent, the probability that a strategy is a best
response depends on how many other agents they interact with. When L= 0.1, for
example, the probability that Low is a best response for an agent who interacts with
two other agents is approximately 0.11. But the probability that Low is a best response
for an agent who interacts with five other agents is only 0.025. When L= 0.4, the
probability that Low is a best response for an agent who interacts with two other
agents is approximately 0.55. But the probability that Low is a best response for
an agent who interacts with five other agents is approximately 0.85.

This allows us to gain some insight into the two regimes for the emergence of
inequality in the model. Consider two groups of agents: poorly connected agents with
d= 1 and well-connected agents with d 	 5. When L= 0.1, the initial probability that
Low or High is a best response for poorly connected agents is one-third. But for well-
connected agents, the initial probability that High is a best response is a lot higher
than the initial probability that Low is a best response. This is because the relative
payoff to High is relatively high, so well-connected individuals respond best by “stick-
ing to their guns” and making a High demand that yields a large increase in payoff. For
this reason, well-connected agents tend to play High and end up at an advantage when
L is low; at the same time, poorly connected agents tend to play Low and end up at a
disadvantage. When L= 0.4, the initial probability that Low or High is a best response
for poorly connected agents is again one-third. For well-connected agents, however,
the initial probability that Low is a best response is now a lot higher than the initial
probability that High is a best response. This is because the relative payoff to Low is
relatively high, so well-connected individuals respond best by playing it safe and mak-
ing a Low demand instead of holding out for what would be a small increase in payoff.
Well-connected individuals therefore tend to play Low and end up at a disadvantage
when L is high, whereas poorly connected agents play High and end up at an advan-
tage. The two regimes of inequality we observe in scale-free networks are thus due to
differences in the initial probability that a strategy is a best response.5

From a social-epistemological perspective, this raises a series of important ques-
tions about the structure of collaboration networks. Well-connected scientists are
more likely to play Low and end up at a disadvantage when L is high. This means that
well-connected scientists are at a disadvantage in egalitarian communities where the
payoff inequality is low. Poorly connected scientists, however, are more likely to play
Low and thus end up at a disadvantage when L is low. Low values of L correspond to
elitist communities where the payoff inequality is high. My model therefore raises the
specter of a twofold harm: low values of L put poorly connected scientists at a disad-
vantage when doing so is particularly harmful.

The twofold harm of structural inequality is all the more worrisome because
members of minority or underrepresented groups are often poorly connected in
real-world collaboration networks. Female scientists, for example, have fewer

5 The initial probabilities that either Low or High is a best response are higher when L= 0.4 than when
L= 0.1 for d 	 2. This helps explain why a smaller share of the population will play Med in scale-free
networks and regular networks with d= 2 when L is high. In regular networks with d = 5, the initial
probability that Low is a best response is so high that the population quickly becomes saturated with
Low. This decreases the probability that Low is a best response and allows Med to take over.
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collaborators than their male colleagues (Araujo et al. 2017; Abramo, D’Angelo, and
Caprasecca 2009). Black scientists also have fewer collaborators, at least in some dis-
ciplines (Del Carmen and Bing 2000). When the payoff inequality is especially high, the
twofold harm is likely to arise, and members of these groups might therefore be at a
disadvantage. To make matters worse, implicit and explicit biases linked to social cate-
gories might only exacerbate the problem: prejudice and discrimination tend to put those
groups that are already vulnerable as a result of the position that they occupy in the
collaboration network at a further disadvantage. For example, if scientists choose what
collaborations to enter on the basis of biases against visible group markers, then biases
and social categories might contribute to the formation of collaboration networks where
pernicious forms of structural inequality are likely to emerge.

6. Conclusion
Philosophers have long worried that implicit and explicit biases are inevitable in science
and that they often contribute to various forms of epistemic injustice (Longino 1990;
Fricker 2007). In recent years, formal models in the philosophy of science have further
shown that it is possible for discriminatory norms to lead to an unequal allocation of
epistemic credit even when there are no biases (O’Connor and Bruner 2019; Rubin
and O’Connor 2018; O’Connor et al. 2019). But the models proposed so far account for
these worrisome patterns in research by positing the existence of social categories.
Although biases and social categories remain a source of concern, I show that unequal
outcomes are possible even in the absence of social categories: when scientists bargain
with collaborators in a scale-free network, inequality arises simply because of the struc-
ture of the collaboration network. I also bring empirical considerations to bear on models
of the social organization of science by showing that structural inequality can likewise
arise in real-world collaboration networks (cf. Martini and Pinto 2017).

It is important to keep in mind, however, that my model makes several simplifying
assumptions. First, it assumes that scientists play the same strategy with all their col-
laborations. This is unlikely to hold in reality because scientists often negotiate dif-
ferent arrangements with different collaborators. Second, it considers a dynamic
population of scientists who change their strategies over time, but it assumes that
the structure of the collaboration network is static. This is not the case in the real
world, where scientists can not only update their behavior but also adjust their social
ties. Third, it assumes that all scientists are equally competent. This is again unreal-
istic because scientists often differ with respect to how productive they are. Fourth, it
assumes that scientists update their strategies by the method of myopic best
response. This is a reasonable assumption, but update rules based on imitation are
also plausible. Although these simplifying assumptions allow us to isolate and better
understand an important phenomenon, it would be interesting to relax these assump-
tions. Future work could therefore consider collaboration networks where scientists
pursue different strategies with different collaborators, change whom they interact
with over time, differ with respect to how productive they are, or update their strat-
egies according to different rules.
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Appendix

I use a simple program to simulate the behavior of agents in a network who interact with their neighbors
by playing the mini-Nash demand game. In pseudo-code, the program proceeds as follows:

FOR each Network Topology, DO:
FOR each Agent, DO:
Choose Demand at random from options L, M, and H
FOR each Time Step, DO:
FOR each Agent, DO:
Get Agent’s Demand
Get Demand for each of Agent’s neighbors
Get Agent’s payoff based on own Demand and neighbors’ Demands
With probability 0.1, DO:
Find Agent’s Best Response in previous Time Step
Update Agent’s Demand
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