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AN ADJACENT-SWAP MARKOV CHAIN ON COALESCENT TREES
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Abstract

The standard coalescent is widely used in evolutionary biology and population genetics
to model the ancestral history of a sample of molecular sequences as a rooted and ranked
binary tree. In this paper we present a representation of the space of ranked trees as a
space of constrained ordered matched pairs. We use this representation to define ergodic
Markov chains on labeled and unlabeled ranked tree shapes analogously to transposition
chains on the space of permutations. We show that an adjacent-swap chain on labeled
and unlabeled ranked tree shapes has a mixing time at least of order n3, and at most of
order n4. Bayesian inference methods rely on Markov chain Monte Carlo methods on
the space of trees. Thus it is important to define good Markov chains which are easy to
simulate and for which rates of convergence can be studied.
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1. Introduction

The standard Kingman coalescent [16] is often used in evolutionary biology and population
genetics to model the ancestry of n molecular sequences, such as DNA from a single segment
(locus). This ancestry is represented by a genealogy, a timed and rooted binary tree [33]. In
the neutral coalescent, the tree topology and the coalescent times, i.e. the times when two
branches merge into a single node, are independent, and the density of the coalescent times is
usually parameterized in terms of parameters of interest, such as the effective population size.
The central idea of coalescent modeling in population genetics is that the observed molecular
sequences at the tips are the result of a process of mutations superimposed on the geneal-
ogy. Therefore the more similar sequences are, the more recent their common ancestors (short
coalescent times) are in the genealogy.

Bayesian inference methods under this model usually approximate the posterior distribution
of model parameters via Markov chain Monte Carlo (MCMC) methods [10]. Therefore it is
important to understand the mixing of Markov chains on the space of genealogies. In particular,
we are interested in understanding the mixing of Markov chains on discrete tree topologies
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(a) (b)

FIGURE 1. Examples of coalescent tree topologies: (a) ranked and unlabeled; (b) ranked and labeled. A
ranked and unlabeled tree shape T has internal nodes labeled by their ranking from leaves to root and
unlabeled leaves. Tree (a) has ordered matched pairs: (0, 0)1, (0, 0)2, (0, 1)3, (0, 3)4, (2, 4)5, (0, 5)6. A
ranked and labeled tree TL has unique leaf and internal node labels. Tree (b) has ordered matched pairs:

(�3, �4)1, (�1, �2)2, (�5, 1)3, (�6, 3)4, (2, 4)5, (�7, 5)6.

FIGURE 2. Example of an adjacent-swap move on ranked tree shapes. The pair k = 6 is selected uniformly
at random among pairs 1, . . . , 6. We then select uniformly at random one element from pair 6 and one
element from pair 7. The only allowable swaps are 5 and 0 or 3 and 0. The new state (right tree) is

obtained by swapping 5 and 0 from pairs 6 and 7 respectively in the left tree.

only: labeled and unlabeled ranked tree shapes. We will therefore assume a unit interval length
between consecutive coalescing (branching) events.

A labeled ranked tree shape TL ∈ T L
n with n leaves is a rooted labeled and ranked

binary tree. The leaves are labeled by the set {�1, �2, . . . , �n} and internal nodes are labeled
1, . . . , n − 1 in increasing order, with label n − 1 at the root (Figure 1(b)). The cardinality of
T L

n is given by

|T L
n | = n!(n − 1)!

2n−1
.

This equation can be derived by imagining building the tree from leaves to root: Initially there
are n leaves and n lineages, and at successive steps two lineages are chosen to merge. It takes
n − 1 merges to get to a single lineage and at merge k + 1 there are

(n−k
2

)
choices. The total

number of trees is
n−2∏
k=0

(
n − k

2

)
=

n∏
j=2

j(j − 1)/2.

In many applications, the quantity of interest is the overall shape of the tree [14, 17, 22];
the specific labels of the samples are unimportant. In fact, a key feature of simple coalescent
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models, such as the Kingman coalescent, is the assumption that the leaves are exchangeable.
Recently, Palacios et al. [25] proposed a new Bayesian approach from binary molecular data in
which the Kingman coalescent model on genealogies is replaced by the Tajima coalescent. The
Tajima coalescent is a lumping of the Kingman coalescent that ignores leaf labels. The premise
in [25] is that the new target Tajima posterior distribution is more evenly spread among several
tree topologies than the Kingman posterior distribution, and hence Markov chain exploration
of the whole state space is more efficient [4]. This motivates the study of unlabeled ranked
tree shapes with n leaves Tn (Figure 1(a)). The cardinality of Tn is given by the (n − 1)th
Euler zig-zag number En−1 [18] and En−1 � |TL

n |. While one appealing feature of modeling
unlabeled ranked tree shapes (Tajima coalescent) is the reduction in the cardinality of the state
space, when compared to the cardinality of the state space under Kingman coalescent [3],
the mixing of the chains can still be of the same order. Although the initial motivation is to
compare the mixing of Markov chains on labeled and unlabeled ranked tree shape posterior
distributions, we center our work on the Markov chains whose stationary distributions are
uniform (or coalescent) distributions on the corresponding spaces (ignoring the data). This
study should provide a first step towards a better understanding of coalescent chains in more
general settings.

Related work in the context of evolutionary models includes the analysis of Markov chains
on cladograms (or phylogenies). Cladograms are rooted or unrooted binary trees with labeled
leaves and no ranking of internal nodes. In [5], the space of cladograms with l leaves is shown
to be in bijection with the space of perfect matchings of 2n labels, with n = l − 1. The bijec-
tion with perfect matchings is used to define a Markov chain on the space of cladograms. Using
the perfect matching perspective, the chain is analogous to a random transpositions chain on
the space S2n of permutations of 2n elements. This representation allows the use of known
results for the random transposition chain to be applied to the chain on trees to determine sharp
bounds on rates of convergence [6]. Motivated by this result, we propose a new representation
of labeled and unlabeled ranked tree shapes as a type of matching. We use this representation to
define an adjacent-swap chain on the spaces of labeled and unlabeled ranked tree shapes, and
to study their mixing time. It is important to study the mixing time for chains on ranked trees
because these results have implications for the design of MCMC algorithms used to infer evolu-
tionary parameters from molecular data in a Bayesian setting [8, 10]. Another use for Markov
chains on the space of ranked tree shapes is combinatorial optimization, either for finding
the maximum likelihood tree topology [13] or for summarizing samples from the output of a
Bayesian algorithm via finding the Fréchet mean ranked tree shape [26]. These models are rou-
tinely used for analyzing molecular sequences of pathogens and tracking epidemics [32], and
for understanding past population dynamics from present day and ancient DNA samples [21].

In the rest of this section we define a bijective representation of ranked trees as constrained
ordered matchings and define the adjacent-swap chain. We then state our main results concern-
ing mixing times and discuss related work. In Section 2, we state known results on Markov
chains that will be used in the following sections. In Section 3 we state important properties of
the proposed adjacent-swap chain. The lower bound for the mixing time of the adjacent-swap
chains is proved in Section 4 and it is obtained by finding a specific function that gives a lower
bound for the relaxation time of the chains. In Section 5 we prove the upper bounds on the mix-
ing time of the adjacent-swap chains via a coupling argument. In the discussion in Section 6
we mention future directions and other related chains on labeled and unlabeled coalescent
trees which could be defined using the matching representations, and discuss implications for
MCMC methods applied in practice.
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1246 M. SIMPER AND J. A. PALACIOS

1.1. Matching representations

We first establish some definitions. Let m be an integer and S a multiset of size 2m. A
matching of S objects is a partition of the elements into m disjoint subsets of size two. An
ordered matching is a matching with a linear ordering (ranking) of the m pairs.

Definition 1. The space COMm(S) (constrained ordered matchings) is the set of all ordered
matchings of S with pairs labeled p1, p2, . . . , pm, which satisfy, for k = 1, . . . , m and a ∈ S,

a ∈ pk =⇒
⎧⎨
⎩

a ∈Z and a < k, or

a ∈ {�1, . . . , �n}.
(1)

To represent a labeled ranked tree shape as a constrained ordered matching, we take S to be
the set of leaf and internal node labels, and each pair in the matching represents a coalescence
in the tree, with pk representing the kth coalescence event. The condition (2) then simply
ensures that no interior node can be merged before it has been introduced. A leaf can merge at
any point and thus there is no constraint on a leaf’s position in the matching.

Lemma 1. With S = {�1, �2, . . . , �n, 1, 2, . . . , n − 2}, the space COMn−1(S) is in bijection
with T L

n . With multiset S = {0, 0, . . . , 0, 1, 2, . . . , n − 2}, with 0 repeated n times, the space
COMn−1(S) is in bijection with Tn.

Proof. First assume that S = {�1, �2, . . . , �n, 1, 2, . . . , n − 2}. The first matched pair can be
formed by any two leaves in

(n
2

)
possible ways. The second pair can be formed by any of the

n − 2 remaining leaves or 1, the label of the first matched pair, in
(n−1

2

)
ways; in general, the

kth matched pair can be formed in
(n−k+1

2

)
ways, because there are n − k + 1 unique labels that

could be matched at that time. Thus

|COMn−1(S)| =
n∏

i=2

(
i

2

)
= |T L

n |

and for every element TL ∈ T L
n there is a one-to-one mapping between every coalescence event

in TL and every matched pair in one element of COMn−1(S). These two facts imply there is a
one-to-one mapping between T L

n and COMn−1(S).
With the leaf labels �1, . . . , �n replaced by the repeated element 0, the space of match-

ings is in bijection with Tn due to the fact that the space of Tn is equivalent to the space
of T L

n with the leaf labels removed. That is, there is a surjection T L
n → Tn equivalent to

the surjection COMn−1(S1) → COMn−1(S2), with S1 = {�1, �2, . . . , �n, 1, 2, . . . , n − 2} and
S2 = {0, 0, . . . , 0, 1, 2, . . . , n − 2}. The bijective matching representations of the ranked trees
Tn and T L

n of Figure 1 are shown in the legend. �

1.2. Markov chain and main results

Definition 2. The adjacent-swap Markov chain on the space COMn−1(S) is defined by the
following update move.

1. Pick an index k ∈ {1, . . . , n − 2} uniformly at random.

2. Pick labels a1 and a2 uniformly from the pairs pk and pk+1 respectively.

(a) If swapping the positions of a1, a2 does not violate constraint (1), make the swap.

(b) Otherwise, remain in the current state.
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For the sets S which give the bijections with Tn and T L
n , this Markov chain is connected and

reversible. In the case of T L
n it is also symmetric and hence it has a uniform stationary distri-

bution. For Tn, the chain is not symmetric; the stationary distribution is the Tajima distribution
on the space of ranked unlabeled trees. These facts, as well as the relationship between the two
chains, will be proved in a later section.

We are interested in the convergence rates of this Markov chain and how this rate compares
depending on the space Tn or T L

n . The measure that we study for convergence rate is the mixing
time. That is, for a Markov chain on a space � with transition probability P and stationary
distribution π , the mixing time is defined as

tmix = sup
x0∈�

inf{t > 0: ‖Pt(x0, ·) − π ( · )‖TV < 1/4}.

To state the result, let tn and tLn be the mixing times for the chains on Tn and T L
n respectively.

Our main result is as follows.

Theorem 1. There exist constants C1, C2, C3 such that

C1 · n3 ≤ tn ≤ C2 · n4

and
C1 · n3 ≤ tLn ≤ C3 · n4.

The lower bound of n3 comes from the relaxation time, and involves a standard trick of find-
ing a specific function for which the variance under the stationary distribution can be bounded.
The chain on Tn is a certain type of ‘lumping’ of the chain on T L

n , and so the same lower
bound applies to both spaces. The upper bounds are obtained using a coupling argument. We
conjecture that the mixing time tn is indeed smaller than the time tLn , though it is not evident
whether this is by a significant order, or just a constant factor.

1.3. Related work

Mixing of chains on other tree spaces have been previously studied, in particular, the mix-
ing of Markov chains on the space of cladograms. An n-leaf cladogram is a rooted or unrooted
tree with n labeled leaves and unlabeled internal nodes of degree 3. The main difference
between cladograms and the tree topologies studied in this manuscript is that cladograms do
not rank internal branching events. The cardinality of the space of cladograms of n leaves is
(2(n − 1))!/2n−1(n − 1)!, smaller than the cardinality of the space of ranked and labeled trees
but larger than the cardinality of the space of ranked unlabeled trees. Cladograms are fun-
damental objects in phylogenetics to model ancestral relationships at the species level, while
ranked tree shapes are fundamental objects in population genetics and phylodynamics of infec-
tious diseases. Ranked tree shapes are used to model ancestral relationships of a sample of
individuals from a single population of the same species [12].

Markov chains on cladograms. Aldous [2] studied a chain on unrooted cladograms that
removes a leaf chosen uniformly at random from the current cladogram and reattaches it to
a random edge. Using coupling methods, Aldous [2] showed that the relaxation time for this
chain is τrel ≤ c2n3. The same chain was later analyzed by Schweinsberg [28], who showed
that τrel = O(n2) using a modified method of distinguished paths. In [5], Diaconis and Holmes
show that the space of rooted cladograms with n leaves is in bijection with the space of per-
fect matchings in the complete graph on 2(n − 1) vertices. This bijection was later used by
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Diaconis and Holmes [6] to define a Markov chain by randomly choosing two pairs and trans-
posing two randomly selected entries of each pair. They showed that this random transposition
chain mixed after 1

2 n log n steps. In [29], Spade, Herbei, and Kubatko study the nearest neigh-
bor interchange (NNI) chain and a subtree prune and regraft (SPR) chain on the space of rooted
cladograms. They showed that the upper bounds on the relaxation time of the SPR and the NNI
chains are O(n5/2) and O(n4) respectively.

Other related work includes the study of mixing times of chains whose stationary distribu-
tion is the posterior distribution over cladograms [24, 31]. In [24], Mossel and Vigoda show
exponential mixing times under a misspecified model in which data is generated from a mixture
of cladograms.

Markov chains on related spaces. The adjacent-swap Markov chain on the space of ranked
trees studied in this manuscript is closely related to the adjacent transposition chain on the
space Sn of permutations. As is often done, one can think of an element σ ∈ Sn as an order-
ing of a deck of cards with unique labels 1, . . . , n. In [1, Example 4.10], the chain is defined
by picking at random two adjacent cards from the deck; with probability 1/2, the cards are
swapped and with probability 1/2 nothing happens. The chain is symmetric with uniform sta-
tionary distribution. Aldous [1] showed that the mixing time of this chain has a lower bound
of c1n3 and an upper bound of c2n3 log (n). In [34], the now-famous ‘Wilson’s method’ was
introduced and applied to the adjacent transposition chain as an example to improve the lower
bound to order n3 log (n) with the explicit constant (1/π2)n3 log (n), as well as an upper bound
of (2/π2)n3 log (n). Finally, in [19], the upper bound was improved to (1/π2)n3 log (n), so
that the upper and lower bounds matched; in addition, the chain was proved to follow the cut-
off phenomenon. Durrett generalized the adjacent transposition chain to the L-reversal chain,
introduced as a model for the evolution of DNA in a chromosome [11].

As noted in [23], to the best of our knowledge, bounds on the mixing time of chains on
ranked tree shapes have not been studied before.

2. Preliminaries

In this section we review some results of Markov chain theory that will be used to bound the
mixing time of the adjacent-swap chains on T L

n and Tn. We use the coupling method to find the
upper bounds. A coupling of Markov chains with transition matrix P is a process (Xt, Yt)t≥0
such that both (Xt) and (Yt) are marginally Markov chains with transition matrix P. The goal is
to define a coupling of two chains from different starting distributions such that the two chains
will quickly reach the same state, and once this occurs the two chains stay matched forever.
This coupling time gives an upper bound on the mixing time; see Chapter 5 from [20] for more
details.

Theorem 2. (Theorem 5.4 [20].) Suppose that for each pair of states x, y ∈X there is a cou-
pling (Xt, Yt) with X0 = x and Y0 = y. For each such coupling, let τcouple be the coalescence
time of the chains, that is,

τcouple := min{t : Xs = Ys for all s ≥ t}.
Then

tmix ≤ 4 max
x,y

Ex,y(τcouple).

To find a lower bound on the mixing time, we bound the relaxation time and use the
following result.
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Theorem 3. (Theorem 12.5 [20].) Suppose P is the transition matrix of an irreducible,
aperiodic, and reversible Markov chain. Then

tmix ≥ (τn − 1) log (2). (2)

The relaxation time is defined as the inverse of the absolute spectral gap, τn = 1/γ ∗, where
γ ∗ = 1 − |λn,2|, one minus the absolute value of the eigenvalue of the transition matrix of the
chain that has second-largest magnitude. The spectral gap γ is one minus the second-largest
eigenvalue. If the Markov chain is lazy, then γ = γ ∗, since all eigenvalues are positive. As we
defined it, the adjacent-swap chain is not lazy, so we have γ ∗ ≤ γ . We will get a lower bound
on τn by finding an upper bound on γ using the following variational characterization.

Theorem 4. (Lemma 13.7 [20].) Let P be the transition matrix for a reversible Markov chain.
The spectral gap γ satisfies

γ = min
f : X→R,Varπ (f )
=0

E(f )

Varπ (f )
,

where

E(f ) := 1

2

∑
x,y∈X

[f (x) − f (y)]2π (x)P(x, y).

3. The adjacent-swap chain on ranked tree shapes

Lemma 2. The adjacent-swap Markov chain on T L
n is irreducible, aperiodic, and reversible

with respect to the uniform stationary distribution πL(x) := 1/|T L
n |.

Proof. This can be seen by noting the transition matrix is symmetric. Let PL be the transition
matrix for the adjacent-swap chain on T L

n . That is, for x, y ∈ T L
n ,

PL(x, y) = 1

n − 2
· 1

4
,

where y is a tree that can be obtained by swapping two elements from two adjacent pairs in x,
e.g. consider the following states at pairs k and k + 1:

x : (a, b)k, (c, d)k+1,

y : (a, c)k, (b, d)k+1.

In a labeled ranked tree shape TL
n , all pairs are formed by distinct elements, so a, b, c, d are all

unique and the only way to transition from x to y is to swap the labels b and c, which happens
with probability 1/4(n − 2) if c < k or c ∈ {�1, . . . , �n}.

To see that the chain is irreducible, we note that any label can be moved to any pair to the
right, one pair (or step) at a time with positive probability, and that any label can be moved
to a pair with index k to the left (one pair at a time) as long as the label corresponds to a leaf
or an internal node smaller than k, satisfying constraint (1). To see that the chain is aperiodic,
we note that PL(x, x) > 0, for all x ∈ T L

n . Independent of the current state, we can pick pair
k = n − 2 and attempt to swap any element of the n − 2 pair with label n − 2 from the n − 1
pair with probability 1/2(n − 2). Since this move violates constraint (1), the move is rejected
and the chain remains in the current state. �
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We note that the transition matrix P of the adjacent-swap chain on unlabeled ranked tree
shapes is not symmetric. For example, consider the transition x to y of the type

(0, a)k, (0, b)k+1 → (0, 0)k, (a, b)k+1 (3)

for labels a, b 
= 0 (recall the 0s represent leaf labels). The probability of this transition is
P(x, y) = 1/(n − 2) · 1/4, since once pairs k and k + 1 are chosen, there is a 1/4 chance of
choosing label a from pair k and label 0 from pair k + 1. However, the reverse transition,

(0, 0)k, (a, b)k+1 → (0, a)k, (0, b)k+1,

has probability 1/(n − 2) · 1/2. It turns out that the stationary distribution π for the chain is the
Tajima coalescent distribution [27] (also known as the Yule distribution). For T ∈ Tn,

π (T) = 2n−c(T)−1

(n − 1)! ,

where c(T) is the number of cherries of T , i.e. the number of pairs of the type (0,0) in the
COMn−1(S) representation. Indeed, for transitions x to y of the type of (3), y has one more
cherry than x and π (x)P(x, y) = π (y)P(y, x); for other types of transitions P(x, y) > 0 that
do not affect the number of cherries, P(x, y) = P(y, x), π (x) = π (y) and the detailed balance
equation is satisfied.

Another way of proving that the Tajima coalescent distribution is the stationary distribution
on unlabeled ranked tree shapes is to view the chain as a lumping of the chain on T L

n . This
perspective also gives us an initial comparison of the relaxation times of the chains. The space
Tn of unlabeled ranked tree shapes can be considered as a set of equivalency classes of the trees
T L

n . That is, for trees x, y ∈ T L
n , define the equivalence relation x ∼ y if the trees have the same

ranked tree shape. From the COMn−1(S) perspective with S = {�1, . . . , �n, 1, 2, . . . , n − 2},
two matchings are equivalent if all internal node labels 1, . . . , n − 2 occur in the same pairs.

This equivalence relation induces a partition of T L
n using equivalence classes. That is, we

can write T L
n as the disjoint union of sets �1, . . . , �M , where M = |Tn|, and all trees in �i

have the same ranked tree shape.

Lemma 3. For any x, x′ ∈ T L
n , equivalence class �i, and x ∼ x′, the following relation holds:

PL(x, �i) :=
∑
y∈�i

PL(x, y) = PL(x′, �i).

Proof. If x ∈ �i, then the transition from x to y ∈ �i is of the type

(a, b)k, (c, d)k+1 → (c, b)k, (a, d)k+1,

where a, c ∈ {�1, �2, . . . , �n} correspond to leaf labels. Since x and x′ differ only at leaf labels,
the transition probability of swapping two leaf labels is the same and PL(x, �i) = PL(x′, �i).
If x 
∈ �i, and therefore x′ 
∈ �i, then the transition from x to y is of the type

(a, b)k, (c, d)k+1 → (c, b)k, (a, d)k+1,

where a and c are not both in {�1, �2, . . . , �n}. Since x and x′ differ only at leaf labels, again
PL(x, �i) = PL(x′, �i). �
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In words, Lemma 3 says that the probability of transitioning to a different ranked tree
shape is independent of the leaf configuration of the current tree. A well-known result (e.g.
Lemma 2.5 in [20]) is that the induced chain on the space of equivalence classes defined by
P̃([x], [y]) := P(x, [y]) is a Markov chain; then observe that the induced chain P̃ is equivalent
to adjacent-swap Markov chain P on the space Tn. This allows a comparison of the spectral
gaps of the two chains. Lemma 12.9 in [20] states that the eigenvalues of the transition matrix
of the lumped chain are eigenvalues of the transition matrix of the full chain, hence we have
the following lemma.

Lemma 4. Let γ, γ L be the spectral gaps of the chains P, PL respectively. Then γ L ≤ γ .

From Lemma 3 we can immediately see that the stationary distribution for P is indeed the
Tajima coalescent distribution. Suppose T ∈ Tn corresponds to the equivalence class �i ⊂ T L

n .
Then

π (T) =
∑
y∈�i

πL(y) = |�i|
|T L

n | .

A uniformly sampled labeled ranked tree shape with the leaf labels erased gives an unlabeled
ranked tree shape according to the Tajima distribution [27]. This implies that |�i|/|T L

n | is equal
to the probability under the Tajima distribution for the ranked tree shape corresponding to �i.

4. Lower bound

To prove the lower bounds in Theorem 1, we use the variational characterization of the
relaxation time from Theorem 4:

τn = sup
f : �→R

Varπ (f )

E(f )
. (4)

The variational characterization can be used to obtain a lower bound on the relaxation time
using a specific function f . To achieve a tight lower bound, a common strategy is to find a
function f which has a large variance but can only be changed by a constant amount by one
step of the Markov chain. That is, for x, y ∈ � such that P(x, y) > 0, we have (f (x) − f (y))2 ≤ C.

We will use the internal tree length as a function ϕ(x) : Tn →R to find a lower bound for τn.
Since the internal tree length is independent of the leaf labels, we get the same lower mixing
time bound for the adjacent-swap chains on Tn and T L

n . For ease of exposition we will focus
the following discussion on Tn.

We will define the internal tree length function on the space Tn using the correspondence
with COMn−1(S) and assuming unit length between consecutive coalescence events. For a label
j ∈ {1, . . . , n − 2}, let Ix(j) denote the pair index k such that j ∈ pk. In the example of Figure 3,
Ix(2) = 5. Note that from the constraints (equation (1)), we have

Ix(j) ∈ {j + 1, . . . , n − 1}.
We now define the internal tree length function on Tn as follows:

ϕ(x) =
n−2∑
j=1

(Ix(j) − j).

As an example consider the ranked unlabeled tree shape with n = 7 depicted
in Figure 3. Note that the function is minimized for the ‘caterpillar tree’,
(0, 0)1, (0, 1)2, (0, 2)3, . . . , (0, n − 2)n−1, where Ix(j) = j + 1 for all j, giving ϕ(x) = n − 2.
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FIGURE 3. Example of internal tree length calculation. A ranked tree shape T with ordered matched pairs:
x = (0, 0)1, (0, 0)2, (0, 1)3, (0, 3)4, (2, 4)5, (0, 5)6. The corresponding total internal tree length is the sum

of the lengths of the internal branches: ϕ(x) = (3 − 1) + (5 − 2) + (4 − 3) + (5 − 4) + (6 − 5) = 8.

This function ϕ is useful in bounding the relaxation time because it is ‘local’ with respect
to the Markov chain. That is, suppose P(x, y) > 0 and x 
= y. The change from x to y could
have moved an interior node label to the left, in which case ϕ(y) = ϕ(x) − 1. If it moved an
interior node label to the right, then ϕ(y) = ϕ(x) + 1. If two interior node labels were swapped,
then ϕ(y) = ϕ(x). Thus (ϕ(x) − ϕ(y))2 ≤ 1. The denominator of equation (4) can then be upper-
bounded by 1/2.

To find the variance of the internal tree length, we note that Varπ [ϕ(X)] = VarπL [ϕ(X)] since
the internal tree length is independent of the leaf labels. We now restate the standard coalescent
of labeled ranked tree shapes as an urn process.

Consider an urn containing n balls labeled �1, . . . , �n. At step k, draw two balls without
replacement from the urn. Let a1, a2 be the labels of the balls drawn, then set pk = (a1, a2)k.
Add in a new ball with label k. Repeat this process for k = 1, . . . , n − 1 until only a single ball
labeled (n − 1) remains in the urn. The resulting sequence of pairs p = (p1, . . . , pn−1) corre-
sponds to a labeled ranked tree shape T ∈ T L

n drawn from the standard coalescent, i.e. p ∼ πL.
We can now simplify the urn process as follows. Start with n white balls in the urn. At each

step, draw two balls and add back in a single red ball (representing an interior node of the tree).
Let R0 = 0 and Rk be the number of red balls in the urn after k coalescence events. Note that
after k mergers (coalescence events), there are n − k total balls left and Rn−1 = 1.

The simplified urn process is useful because the internal tree length can be computed by
counting the number of red balls at each step and adding them all together (Figure 3), that is,

ϕ(p) =
n−2∑
k=1

Rk.

The quantities {Rk}n−2
k=1 are fairly easy to analyze and have been studied before in various

contexts. In [15], the values are used to study the asymptotic behavior of the external tree
length of the Kingman coalescent and it is shown that

E[Rk] = k(n − k)

n − 1
,

Cov(Rk · Rl) = k(k − 1)(n − l)(n − l − 1)

(n − 1)2(n − 2)
, k ≤ l.
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Using this, we get

Eπ [ϕ(p)] =
n−2∑
k=1

k(n − k)

n − 1
= 1

6
(n2 + n − 6).

Then we calculate

n−2∑
k=1

E[R2
k] = 1

30
(n3 + 3n2 + 2n − 30), (5)

2 ·
n−3∑
k=1

n−2∑
l=k+1

E[RkRl] = 1

180
(n − 3)(5n3 + 21n2 − 14n − 120). (6)

The second moment Eπ [ϕ(p)2] is the sum of these two lines (5) and (6), which gives

Varπ (ϕ(p)) =Eπ [ϕ(p)2] −Eπ [ϕ(p)]2 = 1

90
n(n + 1)(n − 3).

Theorem 5. Let τn, τL
n be the relaxation time of the adjacent-swap chains on Tn and T L

n ,
respectively. Then

τL
n ≥ τn ≥ Varπ (ϕ)

E(ϕ)
≥ 2

90
n(n + 1)(n − 3).

The lower bound on the relaxation time is applicable to labeled and unlabeled ranked tree
shapes, but Lemma 4 further allows us to state the first inequality on the left-hand side of
Theorem 5.

5. Upper bound

In this section we prove the upper bounds in Theorem 1 using a coupling argument. The
coupling is similar to the one used by Aldous for analyzing the adjacent transposition chain
on Sn [1]. The main difference from our approach is that in order to preserve the constraints
of the ranked tree shapes, the coupling matches the labels in a specific order. This results in
the pairs matching, starting at the root and becoming matched successively from right to left,
ending with the first cherry.

We analyze a lazy version of the chain to make the coupling. That is, at each step, we
generate a random coin flip θ ∼ Bernoulli(1/2). If θ = 1, attempt a move of the chain, and
if θ = 0 then make no change. Let Xt = (p1, . . . , pn−1) and Yt = (q1, . . . , qn−1) be the two
copies of the chain at time t, one started from x and the other from y. We will first describe the
coupling for the chain on Tn.

Coupling of unlabeled ranked tree shapes. We will define a coupling that jointly matches
the internal node labels of the two copies in the order n − 2, n − 3, n − 4, . . . , 1. Note that
label n − 2 is already jointly matched in the n − 1 pairs because it can only occur in the final
pair. Let Nt ∈ {1, 2, . . . , n − 2} be the minimum label that is jointly matched, i.e. Nt − 1 is the
maximum element that occurs in different pairs in Xt and Yt. Let Xt(a) denote the index of
the air in the matching Xt that contains a, i.e. Xt(a) = i if a ∈ pi at time t. Then, at time t, the
elements ≥ Nt match in both Xt and Yt, i.e. for every a ≥ Nt there is Xt(a) = Yt(a).

For any label a ∈ {1, 2, . . . , n − 2}, the coupling will have two properties.

Property 1. If a ≥ Nt, then Xs(a) = Ys(a) for all s ≥ t.
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Property 2. If a = Nt − 1 and Xt(a) < Yt(a) then Xt+1(a) ≤ Yt+1(a), and if Xt(a) > Yt(a) then
Xt+1(a) ≥ Yt+1(a). This condition will ensure that the label ‘a’ will eventually get matched in
the two copies.

Define the following quantities.

• Let Mt be the set of all indices 2 ≤ i ≤ n − 2 that contain labels ≥ Nt jointly matched.
That is, there is a label a ≥ Nt such that Xt(a) = Yt(a) = i. Note that it is possible to have
other matches for labels < Nt, but we do not keep track of those matches and breaking
those matches does not violate the two properties of the coupling.

• Let AMt = i if label Nt − 1 is in pairs pi and qi+1, or if it is in pairs pi+1 and qi.
Otherwise, set AMt = 0.

At each step, pick an index 1 ≤ i ≤ n − 2 uniformly at random and consider the following
cases.

1. i, i + 1 /∈ Mt and i 
= AMt. There are no joint matchings of labels ≥ Nt in pairs i and
i + 1 and swapping two elements in both copies will not match label Nt − 1. In this case,
propose independent swaps in Xt and Yt according to their (lazy) marginal dynamics.

2. i ∈ Mt and/or i + 1 ∈ Mt, and i 
= AMt. There is at least one joint matching of labels ≥ Nt

in pairs i or i + 1 and swapping two elements in both copies will not create a new joint
matching of Nt − 1. To preserve Property 1 it is necessary to perform the same move
(or no move at all) on both chains. Toss a single coin θ ∼ Bernoulli(1/2) to determine
whether a move will be proposed on both copies or not.

(a) Suppose θ = 1 and the pairs at i and i + 1 are of the type

X : (a, b)i, (c, d)i+1,

Y : (a, e)i, (f , g)i+1,

with the possibility of b = e, and {c, d} ∩ {f , g} = ∅. The concern here comes since
the probability that a specific label in pair i moves to the right depends on whether
or not label i occurs in pair i + 1. That is, for X, if c, d 
= i then the probability
of moving a, given that index i has been chosen, is 1/2. If c = i or d = i then the
probability of moving a is 1/4.
The coupling procedure, however, ensures that none of c, d, f , g are equal to i:
because label a occurs in pair i, it must either represent a leaf or have value less
than i; and a ≥ Nt since it is a label that was jointly matched before. Then c, d, f or
g cannot be label i since i is already a match. This implies that the labels c, d, f , g
can all occur in either pair i or i + 1, thus there are no constraints on possible swap
moves, and the marginal probability of swapping a would be the same in each chain.

(b) Suppose θ = 1 and the pairs at i and i + 1 are of the type

X : (a, b)i, (c, d)i+1,

Y : (e, f )i, (g, d)i+1,

with the possibility of d = i, or

X : (a, b)i, (i, d)i+1,

Y : (e, f )i, (i, d)i+1,
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TABLE 1. Coupling transition probabilities in case 4(a).

Move in X Move in Y Probability

No change No change 3/8
No change c ↔ f 1/8
b ↔ c No change 1/8
b ↔ d c ↔ g 1/8
a ↔ c e ↔ f 1/8
a ↔ d e ↔ g 1/8

and allowing the possibility i ∈ Mt in both cases. Then, if a matched label, e.g. d, is
chosen to be swapped in chain X, it must also be swapped in Y .

3. i, i + 1 /∈ Mt and i = AMt. There are no joint matchings of labels ≥ Nt in pairs i and
i + 1, and label Nt − 1 is either in pi and qi+1 or in pi+1 and qi. In order to preserve
Property 2, simply set θY = 1 − θX . This ensures that label a = Nt − 1 will only possibly
move in one of the chains.

4. i ∈ Mt and/or i + 1 ∈ Mt, and i = AMt. There is one joint matching in pair i and/or i + 1,
and label Nt − 1 is either in pi and qi+1 or in pi+1 and qi. To preserve Properties 1 and 2
while keeping the correct marginal transition probabilities for each chain we define the
joint transitions as follows.

(a) Suppose c = Nt − 1 and the pairs at indices i, i + 1 are of the type

X : (a, b)i, (c, d)i+1,

Y : (e, c)i, (f , g)i+1,

with a = e and/or d = g. By the same argument as for case 2, c, d, g, f 
= i.
Table 1 defines the joint proposal probabilities that preserve Properties 1 and 2
with the correct marginal transition probabilities.

Note that this would preserve the matches if a = e and/or d = g.

(b) Suppose now that c = Nt − 1 and that pairs at indices i and i + 1 are of the type

X : (a, b)i, (c, i)i+1,

Y : (e, c)i, (f , i)i+1,

with possibly a = e. Table 2 defines the joint proposal probabilities that preserve
Properties 1 and 2 with correct marginal transition probabilities.

Coupling of labeled ranked tree shapes. The coupling for T L
n can proceed exactly as the

coupling for Tn until every interior node label is matched, say at time T . After that point, the
leaf labels can be matched in any order. We extend the set Mt to contain the indices 1 ≤ i ≤
n − 2 of any label a ∈ {�1, . . . , �n} such that Xt(a) = Yt(a) and AMt to be the set of indices i
such that any label a ∈ {�1, . . . , �n} is in pair pi and qi+1 or pi+1 and qi.

The transition probabilities defined in cases 1–4 above work with these sets Mt, AMt and
have the following properties, for t ≥ T and label a.
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TABLE 2. Coupling transition probabilities in case 4(b).

Move in X Move in Y Probability

No change No change 5/8
No change c ↔ f 1/8

b ↔ c No change 1/8
a ↔ c e ↔ f 1/8

1. Property 1. If Xt(a) = Yt(a), then Xs(a) = Ys(a) for all s ≥ t.

2. Property 2. If Xt(a) < Yt(a), then Xs(a) ≤ Ys(a) for all s ≥ t. If Xt(a) > Yt(a), then Xs(a) ≥
Ys(a) for all s ≥ t.

Note that now in case 4(a) we have the possibility b = f , and the transition probabilities
defined in Table 1 will work to preserve Property 2.

5.1. Coupling time

For the chain on unlabeled ranked tree shapes Tn, the time to couple is T = Tn−3 + Tn−4 +
· · · + T1, where Ta is the time it takes to match interior node label a, after the labels a +
1, . . . , n − 2 are already matched. Property 2 is crucial to study Ta. Suppose that at time t =
Tn−3 + · · · + Ta+1, when label a + 1 is matched we have Xt(a) < Yt(a). Let Sa be the time it
takes for Yt to hit the left boundary of its range, i.e. Yt(a) = a + 1. Then necessarily at this time,
by Property 2, Xt(a) = Yt(a).

Note that Xt(a) ∈ {a + 1, . . . , n − 2}. If a is not at the left boundary, the probability of
moving a to the left is

P(Xt+1(a) = Xt(a) − 1 | Xt 
= a + 1) = 1

n − 2
· 1

2
· 1

2
= 1

4(n − 2)
.

The probability that a moves to the right will depend on the exact configuration and whether
or not there is a constraint, e.g. in the situation

(a, b)i, (c, i)i+1,

in which the probability a moves to the right is 1/8(n − 2). Thus we can bound

1

8(n − 2)
≤ P(Xt+1(a) = Xt(a) + 1 | Xt 
= n − 2) ≤ 1

4(n − 2)
.

The following is an easy result about the hitting time of a symmetric random walk on a line.

Lemma 5. Let (Zt)t≥0 be a random walk on the line {1, 2, 3, . . . , m} with the transitions

P(i, i + 1) = p, i 
= m,

P(i, i − 1) = p, i 
= 1,

P(i, i) = 1 − 2p, i 
= 1, m,

P(m, m) = 1 − p,

P(1, 1) = 1,
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for some 0 < p ≤ 1/2. Suppose Z0 = m and let Tm = inf{t > 0: Zt = 1}. Then E[Tm] = (1/2p) ·
m(m − 1).

Proof. We can prove the result for p = 1/2, then scale. Let ax be the expected first time of
hitting 1 if Z0 = x. Note that the following identities are satisfied:

a1 = 0,

ax = 1 + 1

2
(ax+1 + ax−1), x ∈ {2, 3, . . . , m − 1},

am = 1 + 1

2
am−1 + 1

2
am.

This is a second-order recursion, with solution ax = x(2m − x + 1) − 2m. So this means am =
m(m − 1). When p < 1/2 the probability of moving is 2p < 1, so the expected time to hit 1
started from m is (1/2p)m(m − 1). �

Let Zt be a random walk on the line a + 1, . . . , n − 2 with p = 1/4(n − 2), defined as in
Lemma 5. We can couple Zt with Yt(a) so that Yt(a) ≤ Zt almost surely for all t ≥ 0, because Zt

is moving to the right with probability larger than the probability that Y(t) moves to the right.
In conclusion,

E[Ta] ≤ 2(n − 2)(n − 2 − a)2

and thus the total coupling time is

E[τcouple] ≤
n−3∑
a=1

E[Ta] ≤
n−3∑
a=1

2(n − 2)(n − 2 − a)2 = 1

3
(n − 2)2(n − 3)(2n − 5) ≤ 2

3
n4.

This together with Theorem 2 gives the upper bound in Theorem 1 for Tn:

tn ≤ 4 ·E[τcouple] ≤ 8

3
n4.

Leaf-labeled trees. The coupling time for leaf-labeled trees can be written τL
couple = T +

T leaves, where T is the time from the previous section for the interior labels to match. For
the time T leaves for the leaves to match, note that time is saved because the leaves are allowed
to match in any order. Moreover, leaf labels can be moved without constraints. In analogy with
the result from Example 4.10 in [1] for adjacent transpositions on Sn, this would take time of
order n3 log (n). Therefore

E
[
τL

couple

] ≤ 2

3
n4 + C4n3 log (n).

6. Discussion

The representation of ranked tree shapes as ordered matchings can be used to define many
other Markov chains in analogy to well-studied chains on Sn. For example, in addition to the
adjacent-swap chain, another natural chain would be a random-swap Markov chain: pick two
pairs uniformly at random, within each pair pick a label, and swap the two elements if it is
allowed. The internal tree length function defined in Section 4 gives a lower bound of n for this
chain, because a single move could change the function by at most n, and thus the Dirichlet
form can be bounded by n2. A naive coupling argument would give an upper bound of order
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FIGURE 4. Total variation distance for adjacent-swap chain on unlabeled ranked tree shapes. Each curve
depicts the total variation distance between the probability of the chain at time t and the Tajima stationary

distribution for trees with n = 6, 7, 8, and 9 leaves.

n3. The focus of this paper was on the adjacent-swap chain because it is a local-move chain
which could be more useful for Metropolis algorithms in applications.

The upper bound on the mixing time relies on a coupling that matches one label at a time
in a specific order giving a sub-optimal upper bound. We conjecture that the mixing time of
the adjacent-swap chain on unlabeled ranked tree shapes is of the order of n3 log (n), as it is in
the case of adjacent transpositions on Sn. Figure 4 shows the total variation distance between
the adjacent-swap chain on unlabeled ranked tree shapes and the Tajima stationary distribution
for trees with n < 10 leaves. Due to the large size of the state space, this calculation could not
be extended for larger trees in order to inform about the presence of a cut-off phenomenon.

We also note another connection between trees and permutations: Unlabeled ranked tree
shapes are in bijection with alternating permutations [9, 30] and hence some results concerning
Markov chains on alternating permutations could be used to analyze the mixing of Markov
chains on unlabeled ranked trees and vice versa. However, we are not aware of mixing time
results of Markov chains on the space of alternating permutations [7].

Finally, in this work we analyzed Markov chains on trees whose stationary distributions are
coalescent distributions. These coalescent distributions are used as prior distributions over the
set of ancestral relationships of samples of DNA [25]. In practice, these Markov chains are
used to approximate the posterior distribution, and hence the state space is more restricted in
the sense that some trees will not have positive likelihood under some mutation models. Future
research is needed to investigate the adjacent-swap Markov chain and its convergence times on
these restricted state spaces.
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