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Wave adjustment: general concept and examples
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We formulate a general theory of wave adjustment applicable to any physical system
(not necessarily a hydrodynamic one), which, being linearized, possesses linear
invariants and a complete system of waves harmonically depending on the time t.
The invariants are determined by the initial conditions and are zero for the waves,
which, therefore, do not transport and affect the invariants. The evolution of such
a system can be represented naturally as the sum of a stationary component with
non-zero invariants and a non-steady wave part with zero invariants. If the linear
system is disturbed by a small perturbation (linear or nonlinear), then the state vector
of the system is split into slow balanced and fast wave components. Various scenarios
of the wave adjustment are demonstrated with fairly simple hydrodynamic models.
The simplest scenario, called ‘fast radiation’, takes place when the waves rapidly
(their group speed cgr greatly exceeds the slow flow velocity U) radiate away from
the initial perturbation and do not interact effectively with the slow component. As a
result, at large times, after the waves propagate away, the residual flow is slow and
described by a balanced model. The scenario is exemplified by the three-dimensional
non-rotating barotropic flow with a free surface. A more complicated scenario,
called ‘nonlinear trapping’, occurs if oscillations with small group speed cgr 6 U
are present in the wave spectrum. In this case, after nonlinear wave adjustment, the
state vector is a superposition of the slow balanced component and oscillations with
small cgr trapped by this component. An example of this situation is the geostrophic
adjustment of a three-dimensional rotating barotropic layer with a free surface. In
the third scenario, called ‘incomplete splitting’, the wave adjustment is accompanied
by non-stationary boundary layers arising near rigid and internal boundaries at large
times. The thickness of such a layer tends to zero and cross-gradients of physical
parameters in the layer tend to infinity as t→∞. The layer is an infinite number of
wave modes whose group speed tends to zero as the mode number tends to infinity.
In such a system, complete splitting of motion into fast and slow components
is impossible even in the linear approximation. The scenario is illustrated by an
example of stratified non-rotating flow between two rigid lids. The above scenarios
describe, at least, the majority of known cases of wave adjustment.
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1. Introduction
The representation of motion as the sum of slow quasi-geostrophic (QG) and fast

ageostrophic (AG) components forms the basis of several interrelated concepts of
geophysical fluid dynamics: geostrophic adjustment, balanced models, slow and
fast manifolds, and the initialization problem (see e.g. Reznik & Zeitlin 2007,
and references therein). Almost all works on this subject treat the slow and fast
components separately. A large (probably the major) part of the vast literature is
devoted to balance models that govern the slow motion in the absence of fast waves.
These models are derived from the full dynamical equations by filtering the fast waves
under the assumption of slowness of motion (see e.g. Hoskins 1975; Leith 1980; Gent
& McWilliams 1983; Pedlosky 1984; Allen 1993; Warn et al. 1995; Mohebalhojeh
& Dritschell 2001, and references therein). On the other hand, there are a number of
works on the dynamics of fast waves propagating in a prescribed slow flow (see e.g.
Young & Ben Jelloul 1997; Balmforth, Llewellyn Smith & Young 1998; Balmforth
& Young 1999; Klein & Llewellyn-Smith 2001; Klein, Llewellyn-Smith & Lapeyre
2004).

One aim of this paper is to study both the slow and fast components when the
fast component is not assumed to be small in comparison with the slow one, and
both components evolve freely from an arbitrary initial state. An important part of
this general problem is the geostrophic adjustment, which can be determined as the
long-term evolution of an arbitrary spatially localized perturbation in a rotating fluid
(cf. McWilliams 2006). The evolution is conditioned by radiating fast inertia–gravity
waves propagating away from the initial perturbation domain and leaving behind
them a spatially localized flow, which in the leading order does not contain the fast
waves capable of radiating away. Generally, in the nonlinear case this residual flow
is not necessarily the QG slow one – it can contain trapped AG fast modes (inertial
oscillations). The nonlinear QG–AG splitting was examined in a number of papers
by the present author with various co-authors (Reznik, Zeitlin & Ben Jelloul 2001;
Reznik & Grimshaw 2002; Zeitlin, Reznik & Ben Jelloul 2003; Reznik & Sutyrin
2005; Reznik 2013, 2014a,b) and this study is a development of these works.

In a ‘pure’ form the QG–AG splitting occurs in the linear approximation when
the QG component is geostrophic and time-independent, and the AG one consists of
linear waves. In this case the geostrophic component is determined only by the initial
potential vorticity (PV) and geostrophic relationships and can be found without solving
an initial problem (see e.g. Reznik et al. 2001; Zeitlin et al. 2003). If the initial state
is localized, then the linear waves decay because of dispersion and the system tends
to the geostrophic state: geostrophic adjustment occurs. The typical time Tw of the
adjustment is determined as the ratio Tw = L/cg, where L is the horizontal scale of
the initial perturbation and cg is the typical group velocity of radiated waves.

The effect of nonlinearity on the geostrophic splitting depends on the Rossby
number Ro=U/fL, where U is the scale of horizontal velocity and f is the Coriolis
parameter. At small Rossby number Ro�1 (fast rotation), the QG component changes
slowly (as compared to the inertial time 1/f ) on the advective time Ta = O(1/Rof )
and the scenario of the adjustment depends on the relationship between the times Ta
and Tw. In the case Tw� Ta, the group velocity cg greatly exceeds the flow velocity
U, i.e. the waves rapidly radiate away from the initial perturbation, leaving behind
them the residual QG flow slowly changing on the advective time and not affecting
the waves in the leading order. If, however, Tw > Ta and, therefore, cg 6 U, then the
waves can effectively interact with the geostrophic mode (see e.g. Reznik et al. 2001;
Zeitlin et al. 2003).
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516 G. M. Reznik

For large Rossby numbers Ro > 1 (moderate rotation and strong nonlinearity),
a general theory of geostrophic splitting is still lacking: it is unclear under what
conditions (if any) strongly nonlinear motion can be represented as a superposition
of slow component and radiating fast waves. However, on the assumption of splitting,
the final balanced state can be calculated for some symmetric initial perturbations
(for example, one-dimensional or axisymmetric) using Lagrangian conservation of
PV, absolute or angular momentum, and mass – see the pioneering work by Rossby
(1938) and, for example, that by McWilliams (1988, 2006) and Kalashnick (2004).

For spatially periodic flows, the theory of geostrophic splitting was also developed
(see e.g. Embid & Majda 1996; Babin, Mahalov & Nikolaenko 1998; Wingate et al.
2011, and references therein). For small Rossby number, the spatially periodic motion,
too, is split into the slow QG and fast wave components, and the fast–fast interactions
(i.e. interactions between the fast waves) do not make a contribution to the slow
component, at least on times O(1/fRo) (longer times were not considered), despite
the fact that in periodic geometry the waves cannot ‘escape’. Unlike the localized
flow, in the periodic case the fast waves are coupled to the slow flow regardless of
the relationship between the group velocity cg and the slow flow velocity U.

Another aim of the paper is to show that no rotation or stratification are necessary
for the splitting of motion into slow and wave components; splitting can take place
in any physical system meeting the simple general constraints formulated in § 2. By
analogy with the geostrophic adjustment described above, the splitting will be called
wave adjustment. Two key elements are needed for wave adjustment to exist in a
linear system: linear invariants and linear waves harmonically depending on time.
The invariants are determined by initial conditions and are not affected by the waves,
which are characterized by zero linear invariants. The evolution of such a system
can be represented in a natural way as the sum of a stationary component with
non-zero invariants and a non-steady wave part with zero invariants. If the governing
equations of the system are perturbed by a small perturbation (linear or nonlinear),
then the stationary component ceases to be time-independent and slowly changes in
time. Under some conditions, the slow component can be described by a closed set
of equations, which can be naturally called the balanced equations.

In §§ 3–5 various scenarios of the wave adjustment in different hydrodynamic
systems are presented using full three-dimensional equations without the shallow-water
and hydrostatic approximations. In all cases the flow is assumed to be spatially
localized. Each scenario is illustrated by a simple example supplemented with a brief
discussion of similar situations. The simplest case of non-rotating barotropic fluid
layer with free surface is considered in § 3. The same layer with rotation is examined
in § 4. A non-rotating stratified fluid layer between two rigid lids is analysed in § 5.
In each case we obtain corresponding invariants of linearized equations, analyse the
linear adjustment and examine the effect of small nonlinearity. Section 6 contains a
summary and conclusions. Some technical details are relegated to appendices A–C.

2. General analysis

In this section we consider a general physical system characterized by the state
vector f = (f1, f2, . . . , fn)(x, t) consisting of n physical parameters that depend on the
space point x= (x, y, z) and the time t. In § 2.1 linear dynamics is discussed, in § 2.2
weak nonlinearity and balanced models are examined.
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2.1. Linear invariants and waves
In the linear approximation let the system obey the equation

L f t = R f , (2.1)

where L and R are some linear matrix operators, L being independent of the time t.
For simplicity let the state vector f satisfy the homogeneous boundary condition at
time-independent boundary Γ ,

B f |Γ = 0, (2.2a)

and the initial condition,
f |t=0 = f I. (2.2b)

The linear operator B can depend on time; here and below the subscript ‘I’ denotes
initial values.

Our consideration is based on the two following assumptions.
(i) There exists a time-independent linear operator M 6=0 that nullifies the right-hand

side of (2.1), i.e.
MR = 0. (2.3)

In this case in view of the time independence of L and M , (2.1) possesses the linear
invariant

Λ=Λ(x)=ML f , (2.4)

since
∂Λ

∂t
= ∂(ML f )

∂t
= 0. (2.5)

The operator M will be called the invariant operator. The value of the invariant Λ is
determined by the initial conditions (2.2b):

Λ=ML f I. (2.6)

(ii) The equations (2.1) and (2.2a) possess harmonic wave solutions of the form

f w =Aw(x)eiσ t, σ = const. 6= 0. (2.7)

The key point is that for the wave solution (2.7) the linear invariant (2.4) is identically
zero since the product ML is linear and time-independent; therefore we have

ML f w = eiσ tMLAw = const. ⇒ ML f w = 0. (2.8)

Physically, this means that the waves do not transport and affect the invariant Λ.
In this case it is natural to represent the solution f to the problem (2.1) and (2.2)

as a sum of two solutions:
f = f̄ (x)+ f̃ (x, t). (2.9)

The stationary solution f = f̄ (x) possesses the non-zero invariant Λ and satisfies the
equations

Rf̄ = 0, MLf̄ =Λ, Bf̄ |Γ = 0, (2.10a−c)

and the solution f̃ obeys (2.1) and has the zero invariant, i.e.

Lf̃ t = Rf̃ , MLf̃ = 0, Bf̃ |Γ = 0, f̃ I = f I − f̄ . (2.11a−d)
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518 G. M. Reznik

If the system of waves (2.7) is complete, then the solution f̃ is a linear superposition
of these waves; therefore it is natural to call f̃ the wave component. We now introduce
the time average

〈a〉 = lim
T0→∞

1
T0

∫ T0

0
a dt, (2.12)

and assume the operators R and B to be such that

〈Rf̃ 〉 = R〈f̃ 〉 = 0, 〈Bf̃ 〉 =B〈f̃ 〉 = 0. (2.13a,b)

This takes place, for example, if R and B are either time-independent or include only
time derivatives (as in the examples below). In this case, averaging (2.11) in time, we
obtain

R〈f̃ 〉 = 0, ML〈f̃ 〉 = 0, B〈f̃ 〉|Γ = 0. (2.14a−c)

The system (2.14) coincides with (2.10) for Λ = 0. Therefore if the problem (2.10)
has a unique solution, then we have from (2.14) that

〈f̃ 〉 = 0, (2.15)

i.e. the wave solution oscillates near the stationary one. If the waves (2.7) are able
to radiate away from the initial perturbation domain, then the wave component f̃
gradually decays at any fixed point x and the solution (2.9) tends to the stationary
component f̄ with increasing time – so-called wave adjustment takes place.

Thus the sufficient condition for the state vector f of the linear system to split into
stationary and oscillating parts is that the system possesses linear invariants and a
complete set of linear waves.

An alternative way of achieving the linear fast–slow splitting exploits the
decomposition of the state vector into normal modes of the system considered.
If the normal modes can be divided into two sets consisting, respectively, of slow
(low-frequency) modes and fast (high-frequency) modes, then the state vector can be
decomposed into the slow and fast components, which are the vector’s projections
onto the slow and fast sets, respectively (Leith 1980; Salmon 1998). This kind of
splitting is used as a first step in initialization (see e.g. Leith 1980; Daley 1981;
Temperton 1988). This way is more general than the way that we use because it
works in the absence of linear invariants, too. The price paid for this universality is
that dynamical equations should be represented in phase space (space of the normal
modes) instead of the physical one. Such a representation may be useful for numerical
modelling, but for our analytical treatment the equations in physical space are much
more convenient. The splitting in physical space based on linear invariants also was
used for initialization (Temperton 1988) and for derivation of balanced models (Lynch
1989) as applied to the rotating shallow-water (RSW) model.

2.2. Weak nonlinearity and balanced models
We now consider the perturbed model (2.1) written in a non-dimensional form:

L f t = R f + εNf , ε� 1. (2.16)

The term εNf is a small perturbation, N is a linear or nonlinear operator, which
can depend on ε, and the boundary and initial conditions (2.2a,b) are assumed to be
ε-independent. Applying the invariant operator M to (2.16) one obtains

ML f t = εMNf , (2.17)
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i.e. the ‘former’ linear invariant ML f ceases to be invariant but changes slowly in time.
There are two time scales in the system – the slow one ∼1/ε and the fast one ∼1.
Therefore, a solution to the problem is sought in the form of a multiple-time-scale
asymptotic expansion:

f = f (0)(x, t, T1, T2, . . .)+ εf (1)(x, t, T1, T2, . . .)+ · · · , Tn = εnt, (2.18)

where Tn, n= 1, 2, . . ., are the slow times.
Substitution of (2.18) into (2.16) gives in the lowest order:

L f (0)t = R f (0). (2.19)

Applying the invariant operator M to (2.19), one obtains that the quantity ML f (0) does
not depend on the fast time t:

ML f (0) =Λ(x, T1). (2.20)

We now represent f (0) as a sum of slow and fast components (cf. (2.9)),

f (0) = f̄ (0)(x, T1)+ f̃
(0)
(x, t, T1), (2.21)

which obey the equations (cf. (2.10) and (2.11))

Rf̄ (0) = 0, MLf̄ (0) =Λ(x, T1), (2.22a,b)

Lf̃
(0)
t = Rf̃

(0)
, MLf̃

(0) = 0. (2.23a,b)

Initial conditions for f̄ (0) and f̃
(0)

are determined from the equations following from
(2.22) and (2.23):

Rf̄ (0)I = 0, MLf̄ (0)I =ML f I, f̃
(0)
I = f I − f̄ (0)I . (2.24a−c)

The function Λ(x, T1) in (2.22b) has yet to be found; the slow evolution is
determined from boundedness of the first-order correction, which obeys the equation

L f (1)t − R f (1) =−L f (0)T1
+ N (0)f (0), (2.25)

where N (0) is the lowest-order term in the expansion of the operator N in ε. We now
apply the invariant operator to (2.25), taking into account (2.22) and (2.23):

ML f (1)t =−MLf̄ (0)T1
+MN (0)f (0). (2.26)

It readily follows from (2.26) that the first-order correction f (1) is bounded in the fast
time t if

MLf̄ (0)T1
− 〈MN (0)f (0)〉 = 0, (2.27)

where the angle brackets denote time averaging (2.12).
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520 G. M. Reznik

Equation (2.27) determines the slow evolution of the zero-order invariant MLf̄ (0). To
close the problem for f̄ (0), one should express 〈MN (0)f (0)〉 in terms of f̄ (0); in this case
f̄ (0) could be determined from (2.22a) and (2.27). It is unlikely that the problem can
be solved in the general case, but if one assumes that the wave component f̃

(0)
can

be neglected, at least, on times ∼1/ε, i.e.

〈MN (0)f (0)〉 =MN (0)f̄ (0), (2.28)

then the time evolution of the slow component is described by the equation

MLf̄ (0)T1
−MN (0)f̄ (0) = 0. (2.29)

In addition, f̄ (0) should obey the corresponding boundary conditions and equations
(2.24a,b), which filter out the fast waves from the initial field f I . The set of equations
(2.22a), (2.29) and (2.24a,b) and the boundary conditions determine the balanced
model (in which the fast waves are absent) related to the system (2.16).

Of course, the important question is under what conditions (2.28) is valid. Analysis
of various examples from fluid dynamics shows that (2.28) is fulfilled (as could be
expected) if the fast waves are absent in initial fields or their group speeds greatly
exceed the velocities typical of the slow component. The corresponding scenario of
wave adjustment will be referred to as ‘fast radiation’ (see § 3). More surprisingly,
(2.28) is valid also if the group speeds are of the order of or smaller than the slow
velocities. In this case the waves are trapped by the slow component but their self-
interaction gives no contribution to the left-hand side of (2.28), at least, on times
∼1/ε. The scenario of such adjustment will be called ‘nonlinear trapping’ (see § 4).
In § 5 we consider the situation when non-stationary boundary layers arise near the
boundary Γ or inside the motion domain at large times t in the linear problem (2.1)
and (2.2). Each boundary layer consists of an infinite number of very short harmonic
waves (2.7) with vanishingly small group speeds; therefore the corresponding scenario
of adjustment is called ‘imperfect splitting’.

In the theory developed we have used the basic equations in the operator form
(2.1), (2.2) and (2.16). This is convenient for general theory but for ‘practical’
calculations in the examples considered below the matrix operators L, R and N are
too cumbersome and we examine the equations written in ‘standard’ form. Operator
forms of the models in use are given in appendix A.

3. ‘Fast radiation’ scenario: barotropic fluid layer with free surface

In this section we examine the ‘fast radiation’ scenario using the non-rotating
barotropic fluid layer with a free surface (figure 1) as an example. This is probably
the simplest hydrodynamic system in which the wave adjustment occurs without
rotation and stratification.

3.1. Statement of the problem
The corresponding equations of motion are written in the form:

ut + (u · ∇)u=−∇p, ∇ · u= 0. (3.1a,b)
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H

z
gw gw

3D 3D

(a) (b)

FIGURE 1. Wave adjustment of non-rotating barotropic layer. (a) Schematic representation
of the layer; (b) schematic representation of the adjustment. Here 3D means three-
dimensional motion, and gw are the surface gravity waves.

Here u = (u, v, w) is the velocity, with components u, v, w along the axes x, y, z,
respectively; p is the deviation of pressure from the hydrostatic one divided by the
fluid density. At the free surface z= ς and bottom z=−H the dynamic and kinematic
conditions are fulfilled:

w|z=ς = ςt + (uςx + vςy)z=ς , p|z=ς = gς, w|z=−H = 0. (3.2a−c)

The velocity and elevation are given at the initial moment t= 0:

(u, ς)t=0 = (uI, ςI). (3.2d)

In what follows all fields are assumed to decay at infinity, i.e. as
√

x2 + y2→∞.

3.2. Linear invariants and waves
In the linearized problem (3.1) and (3.2),

ut =−∇p, ∇ · u= 0, (w, p)z=0 = (ςt, gς), w|z=−H = 0, (3.3a−d)

the vorticity vector curl u = (Ωx, Ωy, Ω z) is conserved in view of (3.3a), i.e. there
are three linear invariants:

Ωx =wy − vz =Ωx
I , Ωy = uz −wx =Ωy

I , Ω z = vx − uy =Ω z
I . (3.4a−c)

Following § 2, we represent the solution in the form (2.9), i.e.

(u, p, ς)= (ū, p̄, ς̄)+ (ũ, p̃, ς̃), (3.5)

where the stationary solution (ū, p̄, ς̄) obeys the equations

p̄= ς̄ = 0, ∇ · ū= 0, curl ū= (Ωx, Ωy, Ω z) (3.6a−c)

and the boundary conditions
w̄|z=0,−H = 0. (3.6d)

For the wave solution (ũ, p, ς) we have

ũt =−∇p, ∇ · ũ= 0, curl ũ= 0, (w̃, p)z=0 = (ςt, gς), w̃|z=−H = 0. (3.7a−e)

To find the stationary solution, one obtains the vertical velocity w̄ from the equation
1w̄ = Ωx

Iy − Ωy
Ix and boundary conditions (3.6d), and then the horizontal velocities

from the equations 12ū=−w̄xz−Ω z
Iy and 12v̄=−w̄yz+Ω z

Ix, where 1= ∂xx+ ∂yy+ ∂zz
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and 12 = ∂xx + ∂yy. Knowing the stationary component one can determine the initial
conditions for the wave component:

(ũ, ς)t=0 = (uI − ū, ςI). (3.8)

In view of (3.7c) the system (3.7a,b,d,e) can be represented in terms of the potential
Φ:

ũ=∇Φ, p=−Φt, 1Φ = 0, (gΦz +Φtt)z=0 = 0, Φz|z=−H = 0. (3.9a−e)

The solution for the potential is written as a superposition of the irrotational surface
gravity waves,

Φ =
∫

A(κ) cosh[κ(z+H)]ei(κx2−σ t) dκ, κ = (k, l), σ 2 = gκ tanh(κH), (3.10a−c)

where the Fourier amplitude A(κ) is determined by the initial conditions (3.8) and
x2 = (x, y). If the initial fields are localized in space, then Φ decays at a fixed point
x, y as t→∞ because of geometrical scattering and dispersion of the waves:

Φ =O(1/t), ũ=O(1/t), t→∞. (3.11a,b)

Thus in the process of wave adjustment the system tends with increasing time to
the vortical three-dimensional stationary state (ū, p̄, ς̄) specified by (3.4) and (3.6).
Importantly, the stationary residual flow does not perturb the free surface in view of
(3.6a,d) (see figure 1).

3.3. Weak nonlinearity and balanced equations
We now write the system (3.1) and (3.2) in non-dimensional form using the scales of
length L=H, time T = L/

√
gH, velocity U, pressure U

√
gH and elevation εH, where

ε=U/
√

gH:
ut + ε(u · ∇)u=−∇p, ∇ · u= 0, (3.12a,b)

w|z=ες = ςt + ε(uςx + vςy)z=ες , p|z=ες = ς, w|z=−1 = 0. (3.13a−c)

Let the nonlinearity be weak, i.e. the parameter ε� 1. According to § 2 the solution
is sought in the asymptotic form (2.18) and the lowest-order solution (u(0), p(0), ς (0))
obeys equations coinciding with (3.3) in which g and H are replaced by 1. Therefore
the formulae (3.4)–(3.11) are valid (mutatis mutandis) for the lowest-order solution if
we assume that the invariants Ωx, Ωy and Ω z in (3.6) and the amplitude A in (3.10)
depend on the slow time, i.e.

curl u(0) = (Ωx, Ωy, Ω z)(x, T1, . . .), A= A(κ, T1, . . .). (3.14a,b)

As in § 2, this dependence is determined from the boundedness of higher-order
corrections.

For the first-order correction (u(1), p(1), ς (1)) we have

u(1)t +∇p(1) =−u(0)T1
− (u(0) · ∇)u(0). (3.15)
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Applying the curl operator to (3.15) one finds

∂t curl u(1) =−[D(0)
T1

curl u(0) − (curl u(0) · ∇)u(0)], D(0)
T1
= ∂T1 + u(0) · ∇. (3.16a,b)

The fast time averaging (2.12) of (3.16a) taking into account the asymptotic equation
(3.11) gives

D(0)
T1

curl ū(0) − (curl ū(0) · ∇)ū(0) = 0. (3.17)

Equation (3.17) describes the evolution of the slow vortex component and should be
solved for the initial conditions coinciding with the stationary component ū of the
linear problem (3.6) and (3.4) considered above. In addition, the boundary conditions
(3.6d) should be satisfied:

w̄(0)|z=0,−1 = 0. (3.18)

Equation (3.17) together with the no-flux boundary condition (3.18) and initial
conditions constitute a closed balanced model for calculation of the slow vortex
component of motion. Analysis of the fast first-order component (very similar to that
in Reznik et al. (2001)) shows that the amplitude (3.14b) does not depend on the
slow time T1, i.e. it can be considered as constant on times t∼ 1/ε.

In view of (3.18) the lowest-order vortex component does not perturb the free
surface on times t ∼ 1/ε (see figure 1). Time averaging of (3.15) gives the equation
for p̄(1):

∇p̄(1) =−[ū(0)T1
+ (ū(0) · ∇)ū(0)]. (3.19)

Knowing p̄(1) one can find the slow part of the first-order elevation correction ς̄ (1) =
p̄(1)(x, y, 0, T1), which, generally, is non-zero, i.e. the first-order slow component of
motion contributes to the elevation. In turn, the first-order fast component ceases to
be irrotational, as readily follows from the vortex equation (3.16a).

Thus the nonlinear wave adjustment in a non-rotating homogeneous fluid with free
surface follows the ‘fast radiation’ scenario when the leading-order slow and wave
components evolve independently of one another, at least on times ∼1/ε. This takes
place because the assumed smallness of the nonlinearity parameter ε means that the
typical fluid particle velocity U is small as compared to the typical group speed√

gH of surface gravity waves. In this case the waves rapidly radiate away from the
initial perturbation and do not interact effectively with the slow component. We have
considered the case L=H; analysis of the long-wave motion L�H (not given here)
also confirms the validity of this scenario. In the short-wave case L � H, in view
of (3.10c) the frequency σ ∼√g/L and the group speed cgr ∼√gL, i.e. σ increases
and cgr decreases with decreasing L. However, the typical phase speed σL is of the
order of cgr and the nonlinearity parameter here is equal to U/

√
gL. Smallness of the

parameter means again that the wave group speed greatly exceeds the typical velocity
U, similarly to the case L > H. Therefore one can think (we did not examine this
case in detail) that the ‘fast radiation’ scenario takes place in the short-wave limit
too.

Note that, in the absence of rotation, the frequencies of the gravity waves are not
bounded from below; the dispersion relation (3.10c) gives for long waves σ ∼=√gHκ
for κ→ 0, i.e. there is no frequency gap between the waves and the stationary flow in
this case. Nevertheless, the fast time average works well. The point is that the result
of the averaging depends strongly on the structure of the initial perturbation. If the
perturbation is localized, then the contribution of very long waves with very small
frequencies to its Fourier integral is vanishingly small and the wave part tends to
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H

z

3D

Waves Waves
(a) (b)

FIGURE 2. Wave adjustment of the rotating barotropic layer. (a) Schematic representation
of the layer; (b) schematic representation of the adjustment. Here QG+ IO means that the
residual flow consists of QG two-dimensional flow and inertial oscillations.

zero with increasing time at a fixed point of space. In moving coordinates the wave
perturbation can be non-decaying, for example in the case of one-dimensional non-
dispersive waves any localized perturbation propagates at a constant speed, conserving
its shape. Obviously, the time average of such a wave perturbation at a fixed space
point is zero. A similar situation takes place for the geostrophic adjustment in RSW on
a half-plane with rigid lateral boundary (Reznik & Grimshaw 2002; Reznik & Sutyrin
2005) where the wave spectrum contains Kelvin waves whose frequency tends to zero
in the long-wave limit.

The ‘fast radiation’ scenario also occurs in one- and two-layer RSW models if the
dominating horizontal scale L is smaller than or of the order of the corresponding
Rossby scale LR (for details, see Reznik et al. 2001; Zeitlin et al. 2003). In the next
section we will see that a different wave adjustment scenario is realized in this scale
range in a three-dimensional homogeneous rotating fluid.

4. ‘Nonlinear trapping’ scenario: rotating barotropic layer
In this section the ‘nonlinear trapping’ scenario is examined using a uniformly

rotating three-dimensional barotropic fluid layer with a free surface (figure 2) as
a model. The rotation drastically changes both the linear invariants and the wave
spectrum: in a rotating fluid only one non-local linear invariant exists and gyroscopic
waves appear in addition to the gravity ones. The gyroscopic waves are characterized
by small group speeds in a physically relevant range of scales and can be trapped by
the slow component of motion.

4.1. Statement of the problem
Let the barotropic layer considered above rotate at a constant angular speed Ω = f /2
as shown in figure 2. The modified equations of motion are written as follows (see
also appendix A):

ut + (u · ∇)u+ f ez × u=−∇p, ∇ · u= 0. (4.1a,b)

The boundary and initial conditions (3.2) remain unchanged. Here ez is the vertical
unit vector.

4.2. Linear invariants and waves
Without nonlinear terms equations (4.1) and (3.2a−c) take the form (cf. (3.3)):

ut + f ez × u=−∇p, ∇ · u= 0, (w, p)z=0 = (ςt, gς), w|z=−H = 0. (4.2a−d)
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The system (4.2) conserves the non-local invariant Π , which can be naturally treated
as a PV for a rotating three-dimensional barotropic layer with free surface:

Π =
∫ 0

−H
(vx − uy) dz− fς =ΠI(x, y)=

∫ 0

−H
(vIx − uIy) dz− fςI. (4.3)

In the representation (3.5) the stationary part now obeys the geostrophic relations

ū=−p̄y/f , v̄ = p̄x/f , w̄= 0, p̄= gς̄ (4.4a−d)

and is determined from the equation following from (4.3) and (4.4),

12ς̄ − f 2

gH
ς̄ = f

gH
ΠI. (4.5)

The wave component in (3.5) is a solution to the system (4.2) with the zero
invariant (4.3) and is a superposition of the wave harmonics

(u(w), v(w),w(w), p(w), ς (w))= (U, V,W, P, Z) exp[i(kx+ ly− σ t)], (4.6)

where the amplitudes U, V , W, P and Z depend on z and κ(k, l). Substitution of (4.6)
into (4.2) and exclusion of U, V , P and Z gives the following eigenvalue problem for
W(z) and σ :

Wzz − sgn(σ − f )q2W = 0, (4.7a)

[Wz − sgn(σ − f )(gq2/σ 2)W]z=0 = 0, W|z=−H = 0, (4.7b,c)

where q= σκ/√|σ 2 − f 2|. The wave spectrum consists of super-inertial gravity waves
with the eigenfunctions and dispersion relation

W = sinh[q(z+H)], qH tanh(qH)= σ 2H/g, σ = σ g > f (4.8a−c)

and sub-inertial gyroscopic waves for which

W = sin[q(z+H)], qH tan(qH)=−σ 2H/g, σ = σ gir 6 f . (4.9a−c)

In the case of low frequencies

σ �√g/H, (4.10)

one obtains the following approximate dispersion relations:

σ g ∼= (f 2 + gHκ2)1/2, σ gir ∼= f /(1+ κ2H2/n2π2)1/2, n= 1, 2, . . . . (4.11a,b)

For typical geophysical parameters f = 10−4 s−1 and H = 105 cm, we have
f 2H/g = 10−6 � 1, and therefore for gyroscopic waves whose frequencies obey
(4.9c) the dispersion relation (4.11b) is a good approximation throughout the range
of wavenumbers. This is not the case for the gravity waves since (4.11a) is fulfilled
only for the long waves with wavenumbers

κH� 1. (4.12)
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For the gravity waves with moderate and short wavelengths we have σ g� f and the
dispersion relation (4.8b) takes the form (3.10c):

σ g = [gκ tanh(κH)]1/2, κH > 1. (4.13)

In the range of horizontal scales from H to the Rossby scale LR =√gH/f ,

H 6 L 6 LR, (4.14)

one obtains from (4.11) and (4.13) the following estimates for the group velocities of
the gravity and gyroscopic waves:

cg
gr ∼

√
gH, cgir

gr ∼ δfH� cg
gr, δ =H/L. (4.15a,b)

4.3. Weak nonlinearity and balanced equations
Nonlinear effects are considered in the long-wave approximation when

H� L 6 LR, δ =H/L� 1. (4.16a,b)

There exist three time scales in the problem:

Tg = L/
√

gH, T r = f−1, Tad = (εf )−1. (4.17a−c)

Here Tg, T r and Tad are the typical times of gravity waves, rotation and advection,
respectively; the Rossby number ε=U/fL is assumed to be small,

ε� 1. (4.18)

We now write (4.1) in non-dimensional form. In the range (4.16a), Tg 6 T r, and
therefore Tg is chosen as the time scale. Also we use the scales of horizontal and
vertical velocities U and W = δU, pressure U

√
gH and elevation εBH, where B =

L/LR 6 1. The resulting equations are written as

ut + εB(u · ∇)u+ Bez × u=−∇̂p, ∇ · u= 0, ∇̂= (∂x, ∂y, ∂z/δ
2). (4.19a−c)

The boundary conditions (3.2a−c) take the form

w|z=εBς = ςt + εB(uςx + vςy)z=εBς , p|z=εBς = ς, w|z=−1 = 0. (4.20a−c)

There are two small parameters ε and δ in (4.19) and (4.20). We put

δ2 6 ε, (4.21)

which, in view of (4.15), is equivalent to the assumption U > δfH ∼ cgir
gr . Since B 6 1

and, therefore, εB=U/
√

gH� 1, this choice of scales means that

cg
gr�U > cgir

gr , (4.22)

i.e. the typical flow velocity is much smaller than the group speed of gravity waves
and exceeds the group speed of gyroscopic waves. Therefore, as we will see (cf. § 3),
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the balanced slow component affects weakly the gravity waves and strongly the
gyroscopic ones.

The solution is again sought in the asymptotic form (2.18). Here only results are
given; details can be found in appendix B. The lowest-order equations are a simplified
version of the set (4.2), and (4.3) takes the form

Π (0) =
∫ 0

−1
(v(0)x − u(0)y ) dz− Bς (0) =Π (0)(x, y, T1, . . .). (4.23)

The slow solution (ū(0), p̄(0), ς̄ (0)) in the representation (2.21) obeys the geostrophic
equations analogous to (4.4),

v̄(0) = ψ̄ (0)
x , ū(0) =−ψ̄ (0)

y , w̄(0) = 0, p̄(0) = ς̄ (0) = Bψ̄ (0), (4.24a−d)

and the non-dimensional version of (4.5),

12ψ̄
(0) − B2ψ̄ (0) =Π (0)(x, y, T1, . . .). (4.25)

The wave solution (ũ(0), p̃(0), ς̃ (0)) is characterized by the zero invariant (4.23), i.e.

Π̃ (0) =
∫ 0

−1
(ṽ(0)x − ũ(0)y ) dz− Bς̃ (0) = 0, (4.26)

and can be written as the sum

(ũ(0), p̃(0), ς̃ (0))= (ũ(g), ς̃ (0), ς̃ (0))+ (û, 0, 0). (4.27)

The first term on the right-hand side of (4.27) describes the long gravity waves with
depth-independent horizontal velocities:

(ũ(g), ṽ(g))=
∫ 0

−1
(ũ(0), ṽ(0)) dz, w̃(g) = ς̃ (0)t (z+ 1). (4.28a,b)

The elevation ς̃ (0) obeys the Klein–Gordon equation:

ς̃ (0)tt −12ς̃
(0) + B2ς̃ (0) = 0. (4.29)

The second term on the right-hand side of (4.27) corresponds to the inertial
oscillations (i.e. long gyroscopic waves) in which the pressure, elevation and
depth-averaged horizontal velocities are zero:

û+ iv̂ = A(x, y, z, T1, . . .)e−iBt,

∫ 0

−1
A dz= 0, (4.30a,b)

ŵ=−1
2

e−iBt
∫ z

−1
(Ax − iAy) dz+ c.c. (4.30c)

For localized initial fields the gravity waves decay at a fixed point x, y proportionally
to 1/t because of the dispersion (see e.g. Reznik et al. 2001):

ũ(0) =O(1/t), ς̃ (0) =O(1/t), t→∞. (4.31a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

39
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.391


528 G. M. Reznik

At the same time the inertial oscillations do not propagate (in this approximation) and
remain to be localized in the initial perturbation domain.

Knowing the PV Π (0)(x, y, T1, . . .) and the amplitude of inertial oscillations
A(x, y, z, T1, . . .), one can calculate all other fields. Slow evolution of Π (0) and
A is determined from the condition of boundedness of the first-order solution (see
appendix B).

The evolution equation for the slow QG component is written for the geostrophic
streamfunction ψ̄ (0):

Π
(0)
T1
+ BJ(ψ̄ (0), Π (0))= 0, Π (0) =12ψ̄

(0) − B2ψ̄ (0), (4.32a,b)

where J is the Jacobian. Equations (4.32) together with the initial streamfunction
ψ̄
(0)
I (which is determined as the solution of (4.25) with the right-hand side equal to

ΠI in (4.3)) constitute the balanced model for the rotating layer. Obviously, (4.32)
express conservation of the QG PV Π (0) and coincide exactly with the corresponding
equations derived in the model of RSW (see e.g. Reznik et al. 2001), in which the
horizontal velocities and pressure are assumed to be z-independent, i.e. the gyroscopic
waves (4.30) are neglected.

The equation describing the slow evolution of the inertial oscillation amplitude A
on times t∼ 1/ε has the form:

AT1 + BJ(ψ̄ (0), A)+ iB
2
12ψ̄

(0)A+ i
δ2B
2ε
12

(∫ z

−1
A dz− z

∫ z

−1
A dz+ 1

2

∫ 0

−1
z2A dz

)
= 0.

(4.33)
Without the last term on the left-hand side of (4.33) we have

|A|T1 + BJ(ψ̄ (0), |A|)= 0, (4.34)

i.e. the inertial oscillations are trapped by the slow QG component. The term
proportional to δ2/ε counteracts the trapping and arises due to slow dispersion
of the long gyroscopic waves. The dispersion is effective on times t∼ 1/ε if δ2/ε∼ 1
or, in the dimensional form,

U ∼ δfH ∼ cgir
gr , (4.35)

i.e. the group speed of inertial oscillations and the typical QG velocity are of the same
order.

In the barotropic, two-layer and stably continuously stratified RSW models, only
gravity waves exist, the gyroscopic ones are absent, but the ‘nonlinear trapping’
scenario occurs if the dominating horizontal scale L greatly exceeds the corresponding
Rossby scale LR (Reznik et al. 2001; Zeitlin et al. 2003). Physically, this is due to
the fact that the surface and internal gravity waves with L� LR are close to inertial
oscillations with small group speeds (see e.g. (4.11a)).

Surprisingly, the fast inertial oscillations, being trapped by the slow component, do
not contribute to the latter on times ∼1/ε as readily seen from (4.32). Self-interaction
of the oscillations gives a contribution to the first-order PV equation (B 7) only on
a double inertial frequency; the corresponding terms with zero frequency cancel
each other. The same is valid in the RSW models (Reznik et al. 2001; Zeitlin et al.
2003), in a three-dimensional rotating barotropic fluid confined between two rigid lids
(Reznik 2014a) and in a rotating stably neutrally stratified (SNS) fluid (Reznik 2014b).
In the RSW models, the trapped oscillations do not affect the slow motion even on
longer times ∼1/ε2. At the same time, in a three-dimensional rotating fluid, the long
gyroscopic waves affect the slow component on times ∼1/ε2 (Reznik 2014a).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

39
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.391


Wave adjustment: general concept and examples 529

H

z

3D Quasi-2D

Boundary layer

Boundary layer

Internal waves Internal waves

(a) (b)

FIGURE 3. Wave adjustment of the stratified layer. (a) Schematic representation of the
layer; (b) schematic representation of the adjustment. Here the domains between the rigid
boundaries and horizontal dashed lines represent the non-stationary boundary layers with
thickness ∼1/t.

5. ‘Imperfect splitting’ scenario: continuously stratified fluid layer

In this section we present the ‘imperfect splitting’ scenario, which in the simplest
case occurs in a continuously stratified fluid confined between two rigid lids (figure 3).
The wave adjustment in this model is accompanied by non-stationary boundary layers
arising near the surface and bottom at large times. Each boundary layer consists of
an infinite number of wave modes with vanishingly small group speeds, and complete
splitting of motion into fast and slow components is impossible even in the linear
approximation.

5.1. Statement of the problem
We now consider a layer of continuously stratified fluid of constant depth H confined
between two rigid lids z = 0, −H (figure 3). In the Boussinesq approximation, the
system is described by the equations (see also appendix A)

ut + (u · ∇)u+ ezb=−∇p, bt + u · ∇b−N2w= 0, ∇ · u= 0, (5.1a−c)

with the no-flux boundary conditions and initial conditions

w|z=0,−H = 0, (u, v, b)t=0 = (uI, vI, bI). (5.2a,b)

Here b = gρ/ρ0 is the buoyancy, ρ/ρ0 and p are the variations of density and
pressure from their hydrostatic profiles divided by the reference density ρ0, and N is
the buoyancy frequency.

5.2. Linear invariants and linear waves
The linearized system (5.1),

ut + ezb=−∇p, bt −N2w= 0, ∇ · u= 0, (5.3a−c)

conserves the vertical component of vorticity,

Ω z = vx − uy =Ω z
I = vIx − uIy, (5.4)

and, in view of (5.3b) and (5.2), the buoyancy at the boundaries z= 0,−H,

b|z=0,−H = bI|z=0,−H. (5.5)
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In the corresponding representation (2.9), the stationary solution obeys the equations

∇p̄+ ezb̄= 0, w̄= 0, ūx + v̄y = 0. (5.6a−c)

Assuming the fields to decay at infinity in any horizontal plane, one finds that

p̄= b̄= 0, ū=−ψ̄y, v̄ = ψ̄x, (5.7a−c)

where the streamfunction ψ̄ is found from the equation

12ψ̄ =Ω z
I , (5.8)

following from (5.6c) and (5.4).
Lighthill (1996) examined the linear wave adjustment of localized perturbation in an

unbounded (vertically and horizontally) stratified ocean and showed that the motion
is split into a steady vortical flow obeying (5.6)–(5.8) and radiated internal waves
propagating away from the initial perturbation. In our case the fluid is bounded by
two rigid lids, which results in the existence of two additional ‘boundary’ invariants
(5.5) absent in the vertically unbounded fluid. These invariants are not used when
determining the stationary solution (5.7), which does not satisfy (5.5) if the initial
buoyancy bI is non-zero at the boundaries. In this case the time-independent non-zero
boundary conditions (5.5) should be satisfied by the wave part of the solution ũ =
(ũ, ṽ,w), p, b, which obeys the equations

ũt + ezb=−∇p, bt −N2w= 0, ∇ · ũ= 0, Ω̃ z = ṽx − ũy = 0, (5.9a−d)

w|z=0,−H = 0, (ũ, ṽ, b)t=0 = (uI − ū, vI − v̄, bI). (5.10a,b)

As a rule, the equations of internal waves (5.9) and (5.10) are reduced to a problem
for the vertical velocity w (see e.g. Miropol’sky 2001). From (5.9a–c) one derives the
equation

1wtt +N212w= 0, (5.11)

which should be solved under the no-flux conditions (5.10a) and initial conditions

(w,wt)t=0 = (wI, ẇI), wI =−
∫ z

−H
(∂xuI + ∂yvI) dz. (5.12a,b)

The initial field ẇI in (5.12a) can be expressed in terms of uI , vI and bI (see e.g.
Reznik 2013).

The solution to the problem (5.11), (5.10a) and (5.12a) is well known (see e.g.
Miropol’sky 2001). The velocity w is written as the Fourier integral in the horizontal
coordinates,

w=
∫

ŵ(κ, z, t)ei(kx+ly) dκ, κ = (k, l), (5.13)

and for the Fourier amplitude ŵ we have

(ŵzz − κ2ŵ)tt − κ2N2ŵ= 0, ŵ|z=0,−H = 0, (ŵ, ŵt)t=0 = (ŵI, ˆ̇wI). (5.14a−c)

Here and below the hat denotes the corresponding Fourier amplitude. The solution for
ŵ can be written as the series

ŵ=
∞∑

n=1

[ŵIn cos(σnt)+ ( ˆ̇wIn/σn) sin(σnt)]Gn(z, κ), σn = 1/
√
λn, (5.15a,b)
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where Gn and λn are the eigenfunctions and eigenvalues of the Sturm–Liouville
problem:

Gzz − κ2G=−λκ2N2G, G|z=0,−H = 0. (5.16a,b)

In the case N = const. we have

λn = (1+ n2π2/κ2H2)/N2, Gn =
√

2/H sin(nπz/H). (5.17a,b)

In view of the conditions
(wI, ẇI)z=0,−H = 0, (5.18)

the coefficients ŵIn and ˆ̇wIn decay rapidly with increasing n:

ŵIn =O(n−3), ˆ̇wIn =O(n−3), n→∞. (5.19a,b)

Since σn =O(n−1), n→∞, the series (5.15a) converges absolutely and uniformly in
the domain [−H 6 z 6 0] × [0 6 t 6∞]. Solutions for the horizontal velocities ũ, ṽ
and pressure p are given in appendix C.

The problem for the buoyancy is conveniently reduced to the form

1ctt +N212c= 0, c|z=0,−H = (bI/N2)z=0,−H, (c, ct)t=0 = (cI,wI), (5.20a−c)

where c= b/N2 is the normalized buoyancy and cI = bI/N2. If the initial buoyancy is
zero at the boundaries, i.e. bI|z=0,−H=0, then (5.20) is analogous to the problem (5.11)
and (5.12) and the buoyancy Fourier amplitude can be represented as an absolutely
and uniformly converging series of the form (5.15). However, for

bI|z=0,−H 6= 0, (5.21)

the situation becomes somewhat more complicated. First, in view of (5.20a), the time
average 〈c〉 = 0 inside the interval [−H, 0], but 〈c〉 6= 0 at the boundaries by virtue of
(5.20b) and (5.21). Second, the vertical gradients of horizontal velocities grow linearly
in time near the boundaries since it readily follows from (5.9a,b) and (5.10) that

(ũz, ṽz)z=0,−H = t∇2(bI)z=0,−H + (ũIz, ṽIz)z=0,−H. (5.22)

These peculiarities indicate that in close vicinities of the boundaries the solutions for
ũ, ṽ, c have a boundary-layer structure when, for example, near z= 0 the normalized
buoyancy c at large times is represented as

c= c(x, y, zt), (5.23)

where the right-hand side tends to zero at any z< 0, t→∞ but c(x, y, 0) 6= 0.
To understand better the physics of the boundary layer, we consider the solution to

(5.20) in terms of the Fourier amplitude ĉ, which can be written in the forms (see
appendix C)

ĉ= ĉI +
∞∑

n=1

{ĉIn[cos(σnt)− 1] + (ŵIn/σn) sin(σnt)}Gn(z, κ) (5.24)

or

ĉ=
∞∑

n=1

[ĉIn cos(σnt)+ (ŵIn/σn) sin(σnt)]Gn(z, κ). (5.25)
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In the case (5.21) we have (appendix C)

ĉIn =O(n−1), n→∞, (5.26)

and therefore the terms of the series in (5.24) behave as O(n−3), n → ∞, at a
fixed t, i.e. the series converges absolutely and uniformly in the domain [−H, 0] ×
[0, T0], where T0 is an arbitrary finite time. However, the convergence gets worse
with increasing time t since in (5.24) the terms ĉIn[cos(σnt) − 1] ∼ t2/n3 and
(ŵIn/σn) sin(σnt) ∼ t/n3 as n→∞. The series (5.25) has the same form as (5.15)
but it converges much slower because of (5.26). Any partial sum in the series has
zero time average (2.12); the sum does not have ‘boundary layer’ form (5.23) and its
contribution to the corresponding Fourier integral of the form (5.13) for c tends to
zero with increasing time because of dispersion. This means that the non-stationary
boundary layers developing at large times near the surface and bottom arise as a
result of joint impact of the low-frequency wave harmonics with numbers 1� n6∞
in the series (5.24) and (5.25), characterized by a very weak dispersion.

5.3. Non-stationary boundary layer
To describe the buoyancy at large times, one uses the new variable (cf. Il’in 1970,
1972; Kamenkovich & Kamenkovich 1993)

C= 1
t

∫ t

0
c dt, c= (tC)t. (5.27a,b)

The meaning of the variable C is that the contribution of the rapidly oscillating part of
the field c to C becomes negligible at large times t�1, as seen from (5.25). Equations
(5.20) are rewritten in non-dimensional form using the length scale H and the time
scale 1/N:

1Ctt + 2
t
1Ct +12C= 1

t
1wI, C|z=0,−1 = cI|z=0,−1, (C,Ct)t=0 = (cI,wI/2).

(5.28a−c)
For simplicity, N is assumed to be constant.

Let us consider the problem (5.28) at large times. Outside the boundary layers the
vertical scale is assumed to be of the order of the layer depth and the solution here
is sought in the following asymptotic form:

C= 1
t

C1(x, y, z)+ 1
t2

C2(x, y, z)+ · · · . (5.29)

Substitution of (5.29) into (5.28a) gives

12C1 =1wI. (5.30)

Generally, C1/t does not satisfy the boundary conditions (5.28b); this discrepancy is
corrected by boundary layers confined to narrow vicinities near the boundaries. The
solution near z= 0 is sought in the form of the expansion

C=D0(x, y, ξ)+ 1
t

D1(x, y, ξ)+ · · · , ξ =−zt, (5.31)

where ξ is the boundary layer stretched variable.
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In the leading order we have the equation

ξ 2D(4)
0 + 6ξD(3)

0 + 6D′′0 +12D0 = 0, (5.32)

where the superscripts and primes mean differentiation with respect to ξ . The function
D0 should satisfy the boundary conditions

D0|ξ=0 = cI|z=0, D0→ 0, ξ→∞. (5.33a,b)

The corresponding equations for the Fourier amplitude D̂0 are written as

ξ 2D̂(4)
0 + 6ξ D̂(3)

0 + 6D̂′′0− κ2D̂0= 0, D̂0|ξ=0= ĉI|z=0, D̂0→ 0, ξ→∞. (5.34a−c)

The solution to (5.34) has the form (Kamke 1976)

D̂0 = ĉI|z=0√
κξ

J1(2
√
κξ), (5.35)

where here and below Jn is the Bessel function of nth order. The lowest-order
normalized buoyancy and vertical velocity are found from (5.27b), (5.35) and (5.9b)
as

ĉ0 = (tD̂0)t = ĉI|z=0J0(2
√
κξ), ŵ0 = ĉ0t =−b̂I|z=0

√
κξ

t
J1(2

√
κξ). (5.36a,b)

Using (5.36b) and (5.9c,d) we find the Fourier amplitudes of the lowest-order
boundary layer horizontal velocities:

( ˆ̃u0, ˆ̃v0)= i
κ
(k, l)b̂I|z=0J0(2

√
κξ). (5.37)

One can readily check that (5.37) agrees with (5.22) and the horizontal boundary layer
velocity is time-independent at z= 0. The boundary layer near the bottom z=−H is
analysed in the same way.

5.4. Weak nonlinearity and balanced equations
We now write (5.1) in non-dimensional form using the scales of length L= H, time
T = 1/N0, velocity U, pressure UHN0 and buoyancy UN0:

ut + ε(u · ∇)u+ ezb=−∇p, bt + εu · ∇b−N2w= 0, ∇ · u= 0. (5.38a−c)

Here N0 is the typical buoyancy frequency and the nonlinearity parameter ε is assumed
to be small:

ε=U/HN0� 1. (5.39)

The boundary and initial conditions (5.2) keep their form with H replaced by 1.
Again, the solution is sought in the asymptotic form (2.18); details are given

in appendix C. The lowest-order solution (u(0), v(0), w(0), b(0), p(0)) obeys the linear
equations (5.3) and conditions (5.2), and therefore the slow component of the solution
ū(0)(x, T1, . . .), . . . satisfies (5.6) and (5.7),

p̄(0) = b̄(0) = w̄(0) = 0, ū(0) =−ψ̄y, v̄(0) = ψ̄x, (5.40a−c)
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and (5.8) takes the form
12ψ̄ =Ω z(x, T1). (5.41)

The initial conditions for the slow component follow from (5.41):

12ψ̄I =Ω z
I , ū(0)I =−ψ̄Iy, v̄

(0)
I = ψ̄Ix. (5.42a−c)

The buoyancy at z= 0,−1 also depends on the slow time T1, i.e. instead of (5.5) we
have

b(0)|z=0 = b0(x, y, T1, . . .), b(0)|z=−1 = b−1(x, y, T1, . . .). (5.43a,b)

The functions b0,−1 are known only at the initial moment:

b0,−1|t=0 = bI|z=0,−1. (5.44)

The dependence of Ω z and b0,−1 on T1 is determined from the condition of
boundedness of first-order fields (see appendix C).

The lowest-order wave component is described by (5.9) and (5.10); in this case
the solution (5.15) for the vertical velocity remains unchanged, at least up to times
t=O(1/ε) (see Reznik et al. 2001). As for the buoyancy and horizontal velocity, the
representations (5.24), (5.25) and (C 3b) remain relevant for t� 1/ε; for t = O(1/ε)
the solution for the boundary layer becomes relevant, with the quantities bI|z=0,−1
replaced by b0,−1(x, y, T1, . . .) in (5.22), (5.36b) and (5.37), and cI|z=0,−1 replaced by
b0,−1/N2|z=0,−1 in (5.28b), (5.33a), (5.34b), (5.35) and (5.36a).

The streamfunction ψ̄ obeys the equation for two-dimensional hydrodynamics,

12ψ̄T1 + J(ψ̄, 12ψ̄)= 0, (5.45)

while the surface buoyancy is described by the equations

z= 0,−1: b(0)T1
+ J(ψ̄, b(0))+ ũ0b(0)x + ṽ0b(0)y = 0. (5.46a)

The ‘wave’ velocities ũ0 and ṽ0 do not depend on the fast time at the boundaries in
view of (5.37) and in terms of the Fourier amplitudes are given by

( ˆ̃u0, ˆ̃v0)z=0,−1 = i
κ
(k, l)b̂(0)

∣∣∣∣
z=0,−1

. (5.46b)

Equations (5.45) and (5.46) determine the evolution of the slow component and should
be solved under the initial conditions following from (5.42a) for the streamfunction
and from (5.43) and (5.44) for the boundary buoyancy. The slow vertical velocity w̄(0)

is zero in view of (5.40a), and therefore the slow motion is quasi-two-dimensional,
i.e. the motion at any plane z = z0 = const. does not depend on the motion at other
planes, whereas the motions at different horizons differ from one another if the initial
vorticity Ω z

I varies with z.
During the wave adjustment (see figure 3) the wave parts of the vertical velocity

and pressure decay with increasing time at any fixed point x, y, z. As for the
buoyancy and wave part of the horizontal velocity, they turn out to be confined
to the non-stationary boundary layers near the surface and bottom at large times.
Thus any localized initial perturbation tends with increasing time to the sum of
a quasi-two-dimensional state determined by the vortex equation (5.45) and the
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boundary layer fields. The boundary layers are characterized by sharp vertical
gradients of the buoyancy and horizontal velocity growing proportionally to the
time t; the layer thicknesses decrease proportionally to t. The time dependence of
the buoyancy and wave horizontal velocities slows down when approaching the
boundaries; at the boundaries the quantities do not depend on the fast time t. It is
impossible to split the slow and wave components even in the linear approximation;
therefore we call this the ‘imperfect splitting’ scenario.

The same scenario takes place for the wave adjustment in an SNS fluid consisting
of a stratified upper layer and a homogeneous lower layer, the density and other
fields being continuous at the interface between the layers (Reznik 2013). In this
model the vertical component of vorticity is invariant in the upper layer and the full
three-dimensional vorticity components are invariants in the lower one. Generally, the
stationary solution related to these invariants is discontinuous at the interface between
the layers. The result of this is that, in parallel with the boundary layers near rigid
surface, an internal boundary layer arises at large times near the interface between
the stratified and homogeneous fluids. The layer is characterized by sharp vertical
gradients of the horizontal velocity.

Dissipation can be important in these domains with sharp gradients. As noted by
an anonymous reviewer, ‘In the presence of dissipation, mean flow can be generated
due to the dissipative operator’. Probably, in our case the dissipation will transform
the non-stationary boundary layers into stationary ones, and, in doing so, contributes
to the slow flow. This interesting and important effect will be considered elsewhere.

5.5. Effects of rotation
Linearized equations of a rotating stratified fluid have the form (cf. (4.2) and (5.3)):

ut + f ez × u+ ezb=−∇p, ∇ · u= 0, bt −N2w= 0. (5.47a−c)

The boundary and initial conditions (5.2) remain unchanged. The conserved quantity
here is the PV,

Π = vx − uy − f (b/N2)z =ΠI. (5.48)

The stationary geostrophic solution is expressed in terms of the geostrophic
streamfunction ψ̄ as

ū=−ψ̄y, v̄ =−ψ̄y, b̄=−f ψ̄z, ψ̄ = p̄/f , (5.49a−d)

determined from the equation

12ψ̄ + f 2(ψ̄z/N2)z =ΠI, (5.50)

following from (5.48) and (5.49). The conservation of boundary buoyancy (5.5) gives
here the boundary conditions for (5.50):

ψ̄z|z=0,−H =−(1/f )bI|z=0,−H. (5.51)

That is, in the rotating case, the stationary solution and conditions (5.5) do not
‘contradict’ each other unlike in the non-rotating fluid.

Nevertheless, non-stationary boundary layers arise too in the rotating fluid. It
follows from (5.47) and (5.5) that, at the boundaries z = 0, −H (M. V. Kalashnik,
private communication),

Uzt + ifUz = bIx + ibIy, U = u+ iv, (5.52a,b)
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whence one obtains that

Uz = [UIz + (i/f )(bIx + ibIy)]e−ift − (i/f )(bIx + ibIy), z= 0,−H. (5.53)

Thus for UIz|z=0,−H 6= 0 and/or ∇2bI|z=0,−H 6= 0 inertial oscillations proportional to e−ift

are generated in the vertical gradient of the horizontal velocity at the boundaries. Let
us multiply (5.9) and (5.10a) by the harmonic e±ift and apply the time averaging
(2.12) to the resulting equations. A simple investigation of the obtained system shows
(see e.g. Reznik 2014b) that inertial oscillations localized in the horizontal plane are
prohibited inside a stably stratified fluid, i.e.

lim
T0→∞

1
T0

∫ T0

0
(u, b, p)e±ift dt= 0. (5.54)

Therefore near the boundaries z= 0,−H at large times boundary layers should arise
that provide a transition from the ‘boundary’ motion (5.53) to the motion in the inner
domain. A description of the boundary layers is given in Reznik (2014b).

In a rotating SNS fluid the boundary layer near the interface is more intense than
that near the rigid boundaries; the layer prevents penetration into the stably stratified
upper fluid of ‘prohibited’ inertial oscillations (long sub-inertial gyroscopic waves)
which occur in the homogeneous fluid and cannot exist in the stratified one (Reznik
2014b).

6. Summary and conclusions

We have shown that the geostrophic and hydrostatic adjustments can be considered
as particular cases of the more general wave adjustment which takes place in a
physical system (not necessarily a hydrodynamic one) possessing in the linear
approximation linear invariants and linear wave solutions harmonically depending
on time. The waves are characterized by zero linear invariants, i.e. they do not
transport and affect the invariants. As a result, any solution of the linearized system
is represented in a unique way as the sum of a time-independent solution with
non-zero invariants and a non-steady wave solution with zero invariants. If the waves
are able to propagate away from the initial perturbation domain, then with increasing
time any localized initial perturbation tends to the stationary solution which can be
determined using the invariants without solving an initial problem.

If the system is slightly perturbed (for example by weak nonlinearity), then the state
vector of the system is split into a component that is slowly evolving in time and a
fast wave component. If the waves are absent in the initial state or rapidly radiate
away, then at large times the system is described by the so-called balanced model,
which is presented here in most general operator form.

Various scenarios of wave adjustment are demonstrated with fairly simple
hydrodynamic examples. The simplest ‘fast radiation’ scenario occurs when the
waves rapidly (their group speed cgr greatly exceeds the slow flow velocity U) radiate
away from the initial perturbation and do not interact effectively with the slow
component. As a result, at large times, after the waves have propagated away, the
motion is slow and described by a balanced model. The scenario is illustrated by the
example of three-dimensional non-rotating barotropic flow with a free surface. In this
case, in the linear approximation, three components of the vortex are conserved and
the wave adjustment results in a slowly changing (in time) three-dimensional vortex
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motion with zero pressure, which spreads across the whole depth of the fluid but
does not perturb the free surface.

The ‘fast radiation’ scenario takes place in the hydrostatic adjustment in an
unbounded stratified fluid (Lighthill 1996), in wave adjustment in shallow-water
models (one and many layers), and in geostrophic adjustment of RSW if the
dominating horizontal scale L is smaller than or of the order of the Rossby scale LR

(Obukhov 1949; Monin & Obukhov 1958; Reznik et al. 2001; Reznik & Grimshaw
2002; Zeitlin et al. 2003; Reznik & Sutyrin 2005).

The more complicated ‘nonlinear trapping’ scenario occurs when oscillations with
group speed cgr smaller than or of the order of the slow flow velocity U are present
in the wave spectrum. A fairly simple example of this situation is the geostrophic
adjustment of a three-dimensional rotating barotropic layer with a free surface. There
is only one non-local linear invariant (PV) in this case. The slow component of motion
is QG and depth-independent. The wave spectrum consists of surface gravity waves
that rapidly radiate away and gyroscopic waves that in the long-wave approximation
L � H are inertial oscillations modulated by a slowly changing amplitude and
characterized by a moderate group speed cgr 6 U. The motion after nonlinear wave
adjustment is a superposition of the slow QG component and the inertial oscillations
trapped by this component. An analogous scenario takes place for the geostrophic
adjustment in a three-dimensional rotating homogeneous layer if L � H (Reznik
2014a), and in the RSW models when L � LR and all waves are close to inertial
oscillations (Reznik et al. 2001; Zeitlin et al. 2003).

Stratification in the presence of boundaries introduces a new element into the wave
adjustment. At large times near the surface and bottom there arise narrow boundary
layers whose thicknesses tend to zero and the vertical gradients of physical parameters
in the layers tend to infinity as t→∞. The layer consists of an infinite number of
internal wave modes with large vertical numbers n � 1. The group speeds of the
modes are very small and tend to zero as n→ ∞. In such a system a complete
splitting of motion into fast and slow components is impossible even in the linear
approximation; therefore we called this the ‘incomplete splitting’ scenario. In an SNS
fluid, in parallel with the boundary layers near the surface and bottom, analogous
boundary layers arise near the interface between stratified and homogeneous fluids
(Reznik 2013, 2014b).

Summarizing, one can state that the above scenarios describe, at least, the majority
of known cases of wave adjustment.
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Appendix A. Operator forms

In the non-rotating fluid described by (3.1) and (3.2) the state vector consists of
five parameters,

f = (u, v,w, p, ς), (A 1)

and the system can be rewritten in the operator form
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L f t = R f + Nf , (A 2)

L=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

 , R =


0 0 0 −∂x 0
0 0 0 −∂y 0
0 0 0 −∂z 0
∂x ∂y ∂z 0 0
0 0 J∂z 0 0

 , (A 3a,b)

N =


−u∇ 0 0 0 0

0 −u∇ 0 0 0
0 0 −u∇ 0 0
0 0 0 0 0
0 0 Jς∂z 0 −uς∇2

 , (A 3c)

J=
∫ 0

−H
dz, Jς =

∫ ς

0
dz, uς = (u, v)z=ς , ∇2 = (∂x, ∂y). (A 3d−g)

The corresponding invariant operators have the form:

M1 = (∂y −∂x 0 0 0), M2 = (∂z 0 −∂x 0 0),
M3 = (0 ∂z −∂y 0 0). (A 4a−c)

In the rotating layer described by (4.1) and (4.2), the state vector (A 1) remains
unchanged, the operators L and N in the operator form (A 2) coincide with (A 3a,b),
and R is modified as follows:

R =


0 f 0 −∂x 0
−f 0 0 −∂y 0
0 0 0 −∂z 0
∂x ∂y ∂z 0 0
0 0 J∂z 0 0

 . (A 5)

The modification of R results in the existence here of only one non-local invariant
operator instead of the three operators in (A4):

M = (−J∂y J∂x 0 f J −f
)
. (A 6)

In the stratified case described by (5.1) and (5.2) the state vector f has the form
f = (u, v,w, p, b); in the operator form (A 2) the operator L coincides with (A3a) and
R and N take the form:

R =


0 0 0 −∂x 0
0 0 0 −∂y 0
0 0 0 −∂z −1
∂x ∂y ∂z 0 0
0 0 N2 0 0

, N =


−u∇ 0 0 0 0

0 −u∇ 0 0 0
0 0 −u∇ 0 0
0 0 0 0 0
0 0 0 0 −u∇

. (A 7a,b)

The invariant operator in this case corresponds to conservation of the vertical
component of vorticity:

M = (−∂y ∂x 0 0 0
)
. (A 8)
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Appendix B. Nonlinear wave adjustment of a rotating barotropic layer
The asymptotic solution to (4.19) and (4.20) has the form (2.18) in which the state

vector f is given by (A 1). In the lowest and first orders we have

u(0)t −Bv(0)=−p(0)x , v(0)t +Bu(0)=−p(0)y , p(0)z =0, u(0)x + v(0)y +w(0)
z =0, (B 1a−d)

(w(0), p(0))z=0= (ς (0)t , ς (0)), w(0)|z=−1= 0, (u(0), v(0), ς (0))t=0= (uI, vI, ςI), (B 2a−c)

u(1)t − Bv(1) =−u(0)T1
− B(u(0) · ∇)u(0) − p(1)x , (B 3a)

v(1)t + Bu(1) =−v(0)T1
− B(u(0) · ∇)v(0) − p(1)y , (B 3b)

(δ2/ε)w(0)
t =−p(1)z , u(1)x + v(1)y +w(1)

z = 0, (B 3c,d)

z= 0: w(1) = ς (1)t − Bw(0)
z ς

(0) + ς (0)T1
+ B(u(0)ς (0)x + v(0)ς (0)y ), p(1) = ς (1), (B 4a,b)

w(1)|z=−1 = 0, (u(1), v(1), ς (1))t=0 = 0. (B 4c,d)

Excluding p(0) from (B 1a,b), integrating the derived equation over the depth and
using (B 2a,b), one obtains the invariant (4.23), which takes the form (4.25) being
expressed in terms of the slow solution (4.24). The fast wave part of the solution
(ũ(0), p̃(0), ς̃ (0)) is described by (B 1) and (B 2a,b):

ũ(0)t −Bṽ(0)=−p̃(0)x , ṽ(0)t +Bũ(0)=−p̃(0)y , p̃(0)z =0, ũ(0)x + ṽ(0)y + w̃(0)
z =0, (B 5a−d)

(w̃(0), p̃(0))z=0 = (ς̃ (0)t , ς̃ (0)), w̃(0)|z=−1 = 0, (B 6a,b)

with the zero invariant (4.26). To find the solution (4.27) one integrates (B 1a,b,d)
over the depth taking into account (B 2a,b). As a result, one obtains a closed system
for ũ(g), ṽ(g) and ς̃ (0), which is readily reduced to (4.29) using (4.26). Subtracting the
integrated equations from (B 1a,b,d) gives simple equations for the inertial oscillations
(û, 0, 0), which have a zero pressure in the lowest order and are given by (4.30).

Slow evolution of the PV Π (0) and the amplitude of the inertial oscillations A
is determined from the boundedness of the first-order solution. Excluding p(1) from
(B 3a,b) and integrating the resulting equation over z from −1 to 0 one obtains

Π (1)
t =−Π (0)

T1
+ B2[(u(0)ς (0))x + (v(0)ς (0))y]z=0 − B

∫ 0

−1
N dz, (B 7)

where

N = u(0)∇Ω (0) −w(0)
z Ω

(0) +w(0)
x v

(0)
z −w(0)

y u(0)z , Ω (0) = v(0)x − u(0)y , (B 8a,b)

Π (1) =
∫ 0

−1
(v(1)x − u(1)y ) dz− Bς (1). (B 8c)

We now apply the fast time average (2.12) to (B 7) and use the representations
(2.21), (4.24), (4.27) and (4.30) and the asymptotics (4.31) to derive the evolution
equation for the slow QG component:

Π
(0)
T1
+ BJ(ψ̄ (0), Π (0))= 0, Π (0) =12ψ̄

(0) − B2ψ̄ (0), (B 9a,b)

where J is the Jacobian.
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To derive the equation for the amplitude A we integrate (B 3a,b) over z from −1 to
0 and subtract the resulting equations from (B 3a,b). As a result we have

Û(1)
t + iBÛ(1)=−(p̂(1)x + ip̂(1)y )− Û(0)

T1
−B(u(0) ·∇)U(0)+B

∫ 0

−1
(u(0) · ∇)U(0) dz, (B 10a)

where

(p̂(1), Û(0,1))= (p(1),U(0,1))−
∫ 0

−1
(p(1),U(0,1)) dz, U(0,1) = u(0,1) + iv(0,1). (B 10b,c)

The solution Û(1) is bounded for t→∞ if the right-hand side of (B 10a) does not
contain resonance terms proportional to e−iBt. It follows from (B 3c) that

p̂(1)x + ip̂(1)y =−(δ2/ε)

(∫ z

−1
s(w(0)

t ) dz+
∫ 0

−1
zs(w(0)

t ) dz
)
, s= ∂x + i∂y. (B 11a,b)

Using (B 11), (4.24) and (4.30), one can readily show that the resonance terms are
absent under the condition (4.33).

Appendix C. Wave adjustment in a stratified fluid
To determine the horizontal velocities ũ, ṽ and the pressure p, it is convenient to

introduce the potential Φ in view of (5.9d) so that

ũ=Φx, ṽ =Φy, p=−Φt, 12Φ +wz = 0. (C 1a−d)

The relations between the Fourier amplitudes ˆ̃u, ˆ̃v, p̂ and ŵ simply follow from (C 1):

( ˆ̃u, ˆ̃v)= i(k, l)ŵz/κ
2, p̂=−ŵzt/κ

2. (C 2a,b)

In view of (5.19) the series (5.15a) can be differentiated with respect to z, and
therefore the amplitudes ˆ̃u, ˆ̃v and p̂ are also represented as the following series:

p̂= 1
κ2

∞∑
n=1

[σnŵIn sin(σnt)− ˆ̇wIn cos(σnt)]Gnz(z, κ), (C 3a)

( ˆ̃u, ˆ̃v)= i(k, l)
κ2

∞∑
n=1

[ŵIn cos(σnt)+ ( ˆ̇wIn/σn) sin(σnt)]Gnz(z, κ). (C 3b)

The eigenfunction derivative Gnz = O(n) as n→∞ (e.g. Morse & Feshbach 1953).
Therefore in view of (5.19) the series (C 3a) for the pressure converges absolutely
and uniformly in the domain [−H 6 z 6 0] × [0 6 t 6∞], while the series (C 3b) for
the horizontal velocities does so in the domain [−H 6 z6 0] × [06 t 6 T0], where T0
is an arbitrary finite time.

To solve the problem (5.20) for the buoyancy we write c as the sum

c= cI + g, (C 4)

where g is the solution to the problem:

1gtt +N212g=−N212cI, g|z=0,−H = 0, (g, gt)t=0 = (0,wI). (C 5a−c)
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In terms of Fourier amplitudes one finds from (C 4) and (C 5) that

ĉ= ĉI +
∞∑

n=1

{ĉIn[cos(σnt)− 1] + (ŵIn/σn) sin(σnt)}Gn(z, κ). (C 6)

For N = const. we have

ĉIn =
√

2
H

∫ 0

−H
ĉI sin(nπz/H) dz=−

√
2H

nπ
[ĉI|z=0 − (−1)nĉI|z=−H] +O(n−2), (C 7)

whence the estimate (5.26) follows. For N 6= const. the estimate (5.26) is also valid;
to show that, one should use the asymptotics of Gn, λn for large n (e.g. Morse &
Feshbach 1953).

The solution to the nonlinear problem (5.38) is sought in the asymptotic form (2.18).
In the first two approximations we have:

u(0)t + ezb(0) =−∇p(0), b(0)t −N2w(0) = 0, ∇ · u(0) = 0, (C 8a−c)
w(0)|z=0,−1 = 0, (u(0), v(0), b(0))t=0 = (uI, vI, bI), (C 9a,b)

u(1)t =−∇p(1) − ezb(1) − u(0)T1
− (u(0) · ∇)u(0), (C 10a)

b(1)t =N2w(1) − b(0)T1
− (u(0) · ∇)b(0), ∇ · u(1) = 0, (C 10b,c)

w(1)|z=0,−1 = 0, (u(1), v(1), b(1))t=0 = 0. (C 11a,b)

As before, the lowest-order linear system (C 8) and (C 9) coincides (mutatis
mutandis) with the linearized system (5.1) and (5.2). Correspondingly, the slow
component in the representation (2.21) satisfies (5.6) and (5.7), and (5.8) transforms
into (5.41), whence the initial slow fields (5.42) are determined.

To determine the slow evolution of Ω z we obtain an equation for the vertical
component of vorticity from (C 10a) for the horizontal velocities u(1) and v(1):

Ω (1)
t =−Ω (0)

T1
− (u(0)∇Ω (0) −w(0)

z Ω
(0) +w(0)

x v
(0)
z −w(0)

y u(0)z ), (C 12)

where Ω (0,1)=v(0,1)x −u(0,1)y . Applying to (C 12) the time averaging (2.12) and using the
fact that the fast waves decay at a fixed point because of dispersion (see e.g. Zeitlin
et al. 2003) one arrives at (5.45).

Slow evolution of the surface buoyancy invariants (5.5) follows from (C 10b) written
at z= 0,−1:

z= 0,−1: b(1)t =−b(0)T1
− u(0)b(0)x − v(0)b(0)y . (C 13)

Taking into account (5.37) averaging (C 13) over the fast time gives (5.46).
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