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Abstract. There are many examples in the literature that suggest that indistinguishability is in-
transitive, despite the fact that the indistinguishability relation is typically taken to be an equivalence
relation (and thus transitive). It is shown that if the uncertainty perception and the question of when
an agent reports that two things are indistinguishable are both carefully modeled, the problems
disappear, and indistinguishability can indeed be taken to be an equivalence relation. Moreover,
this model also suggests a logic of vagueness that seems to solve many of the problems related
to vagueness discussed in the philosophical literature. In particular, it is shown here how the logic
can handle the sorites paradox.

§1. Introduction. While it seems that indistinguishability should be an equivalence
relation and thus, in particular, transitive, there are many examples in the literature that
suggest otherwise. For example, tasters cannot distinguish a cup of coffee with one grain
of sugar from one without sugar, nor, more generally, a cup with n 4 1 grains of sugar
from one with n grains of sugar. But they can certainly distinguish a cup with 1,000 grains
of sugar from one with no sugar at all.

These intransitivities in indistinguishability lead to intransitivities in preference. For
example, consider someone who prefers coffee with a teaspoon of sugar to one with no
sugar. Since she cannot distinguish a cup with n grains from a cup with n 4+ 1 grains, she
is clearly indifferent between them. Yet, if a teaspoon of sugar is 1,000 grains, then she
clearly prefers a cup with 1,000 grains to a cup with no sugar.

There is a strong intuition that the indistinguishability relation should be transitive, as
should the relation of equivalence on preferences. Indeed, transitivity is implicit in our
use of the word “equivalence” to describe the relation on preferences. Moreover, it is
this intuition that forms the basis of the partitional model for knowledge used in game
theory (see, e.g., Aumann, 1976) and in the distributed systems community (Fagin et al.,
1995). On the other hand, besides the obvious experimental observations, there have been
arguments going back to at least Poincaré (1902) that the physical world is not transitive in
this sense. In this paper, I try to reconcile our intuitions about indistinguishability with the
experimental observations, in a way that seems (at least to me) both intuitively appealing
and psychologically plausible. I then go on to apply the ideas developed to the problem of
vagueness.

To understand the vagueness problem, consider the well-known sorites paradox: If n + 1
grains of sand make a heap, then so do n. But 1,000,000 grains of sand are clearly a
heap, and 1 grain of sand does not constitute a heap. Let Heap to be a predicate such
that Heap(n) holds if n grains of sand arranged in a pyramidal shape make a heap. What
is the extension of Heap? That is, for what subset of natural numbers does Heap hold?
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Is this even well defined? Clearly the set of numbers for which Heap holds is upward
closed: if n grains of sand is a heap, then surely n 4 1 grains of sand is a heap. Similarly,
the set of grains of sand which are not a heap is downward closed: if n grains of sand
is not a heap, then n — 1 grains of sand is not a heap. However, there is a fuzzy middle
ground, which is in part the reason for the paradox. The relationship of the vagueness of
Heap to indistinguishability should be clear: n grains of sand are indistinguishable from
n + 1 grains. Indeed, just as Heap is a vague predicate, so is the predicate Sweet, where
Sweet(n) holds if a cup of coffee with n grains of sugar is sweet. So it is not surprising that
an approach to dealing with intransitivity has something to say about vagueness.

The rest of this paper is organized as follows. In Section 2, I discuss my solution to
the intransitivity problem. In Section 3, I show how this solution can be applied to the
problem of vagueness. There is a huge literature on the vagueness problem. Perhaps the
best-known approach in the Al literature involves fuzzy logic, but fuzzy logic represents
only a small part of the picture; the number of recent book-length treatments, including
Keefe (2000), Keefe & Smith (1996), Sorenson (2001), and Williamson (1994), give a
sense of the activity in the area. I formalize the intuitions discussed in Section 2 using a
logic for reasoning about vague propositions, provide a sound a complete axiomatization
for the logic, and show how it can deal with problems like the sorites paradox. I compare
my approach to vagueness to some of the leading alternatives in Section 4. Finally,
I conclude with some discussion in Section 5.

§2. Intransitivity. Clearly part of the explanation for the apparent intransitivity in the
sugar example involves differences that are too small to be detected. But this cannot be the
whole story. To understand the issues, imagine a robot with a simple sensor for sweetness.
The robot “drinks” a cup of coffee and measures how sweet it is. Further imagine that
the robot’s sensor is sensitive only at the 10-grain level. Formally, this means that a cup
with 0-9 grains results in a sensor reading of 0, 10-19 grains results in a sensor reading
of 1, and so on. If the situation were indeed that simple, then indistinguishability would
in fact be an equivalence relation. All cups of coffee with 0-9 grains of sugar would be
indistinguishable, as would cups of coffee with 10-19 grains, and so on. However, in this
simple setting, a cup of coffee with 9 grains of sugar would be distinguishable from cups
with 10 grains.

To recover intransitivity requires two more steps. The first involves dropping the as-
sumption that the number of grains of sugar uniquely determines the reading of the sensor.
There are many reasons to drop this assumption. For one thing, the robot’s sensor may not
be completely reliable; for example, 12 grains of sugar may occasionally lead to a reading
of 0; 8 grains may lead to a reading of 1. A second reason is that the reading may depend in
part on the robot’s state. After drinking three cups of sweet coffee, the robot’s perception
of sweetness may be dulled somewhat, and a cup with 112 grains of sugar may result in a
reading of 10. A third reason may be due to problems in the robot’s vision system, so that
the robot may “read” 1 when the sensor actually says 2. It is easy to imagine other reasons;
the details do not matter here. All that matters is what is done about this indeterminacy.
This leads to the second step of my “solution”.

To simplify the rest of the discussion, assume that the “indeterminacy” is less than 4
grains of sugar, so that if there are actually n grains of sugar, the sensor reading is between
|(n —4)/10] and | (n 4+ 4)/10]." Tt follows that two cups of coffee with the same number

1| x], the floor of x, is the largest integer less than or equal to x. Thus, for example, [3.2] = 3.
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of grains may result in readings that are not the same, but they will be at most one apart.
Moreover, two cups of coffee which differ by one grain of sugar will also result in readings
that differ by at most one.

The robot is asked to compare the sweetness of cups, not sensor readings. Thus, we
must ask when the robot reports two cups of coffee as being of equivalent sweetness.
Given the indeterminacy of the reading, it seems reasonable that two cups of sugar that
result in a sensor reading that differ by no more than one are reported as indistinguishable,
since they could have come from cups of coffee with the same number of grains of sugar.
It is immediate that reports of indistinguishability will be intransitive, even if the sweetness
readings themselves clearly determine an equivalence relation. Indeed, if the number of
grains in two cups of coffee differs by one, then the two cups will be reported as equivalent.
But if the number of grains differs by at least eighteen, then they will be reported as
inequivalent.

Of course, I would like to argue that what applies to robots applies to people as well.
The “indistinguishability problem” comes from confounding reports of perceptions with
the perceptions themselves. Reports of relative sweetness (and, more generally, reports
about perceptions) exhibit intransitivity; there are cases when, given three cups of sugar,
say a, b, and c, an agent will report that @ and b are equivalent in sweetness, as are b and c,
but will report that c is sweeter than a. Nevertheless, the underlying “perceived sweetness”
relation can be taken to be transitive. But what exactly is “perceived sweetness”? To make
sense of this, we must assume that an agent has some internal analogue of a sensor; the
perceived sweetness is then the sensor reading. (Of course, the “sensor reading” might well
correspond to the firing of certain neurons.) Note that, in general, the perceived sweetness
of a cup of coffee will depend on more than just the number of grains of sugar in the
cup; it will also depend on the agent’s subjective state just before drinking the coffee and
perhaps some other factors. Thus, rather than considering a Sweeter-Than relation where
Sweeter-Than(n, n) holds if a cup of coffee with n grains is reported as sweeter than
one with n’ grains of sugar, we should consider a Sweeter-Than’ relation, where Sweeter-
Than’((c, w), (¢, w")) holds if cup of coffee ¢ tried by the agent in world w (where the
world includes the time, features of the agent’s state such as how many cups of coffee
she has had recently, and whatever other features are relevant to the agent’s perception) is
perceived as sweet as cup of coffee ¢’ tried by the agent in world w’. The latter relation is
transitive almost by definition; the former relation may not even be well defined. For some
pairs (n, n’), an agent may sometimes report a cup of n grains of sugar to be sweeter than
one with n’, and at other times report a cup with n’ grains of sugar to be sweeter than (or
indistinguishable from) one with n grains. It is perfectly consistent to have intransitivities
in reports of sweetness although there is no intransitivity in actual perceptions.

§3. Vagueness. The term “vagueness” has been used somewhat vaguely in the litera-
ture. A common interpretation has been to take a term is said to be vague if its use varies
both between and within speakers. (According to Williamson (1994), this interpretation
of vagueness goes back at least to Peirce (1931-1956), and was also used by Black (1937)
and Hempel (1939).) In the language of the previous section, this would make
P vague if, for some a, some agents may report P (a) while others may report — P (a) and,
indeed, the same agent may sometimes report P(a) and sometimes — P (a). While this is
a consequence of vagueness, it does not seem to quite capture the notion. For example,
agents may disagree as a result of one of them making a silly mistake; for similar reasons,
an agent may give different answers at different times as a result of having made what he
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later feels is a silly mistake the first time. We would not want to call a predicate vague in
this case.” I return to this issue in Section 3. For now, rather than trying to give a precise
definition of vagueness, I present a formal logic of vagueness, that allows us to reason
about vague and context-sensitive notions, without trying to distinguish them.

3.1. A modal logic of vagueness: syntax and semantics. To reason about vagueness,
I consider a modal logic LER with two families of modal operators: Ry, ..., R,, where R; ¢
is interpreted as “agent i reports ¢”, and Dy, ..., D,, where D;¢ is interpreted as “accord-
ing to agent i, ¢ is definitely the case”. For simplicity, I consider only a propositional logic;
there are no difficulties extending the syntax and semantics to the first-order case. As the
notation makes clear, I allow multiple agents, since some issues regarding vagueness (in
particular, the fact that different agents may interpret a vague predicate differently) are best
considered in a multiagent setting.

Start with a (possibly infinite) set of primitive propositions. More complicated formulas
are formed by closing off under conjunction, negation, and the modal operators Ry, ..., R,
and Dy, ..., D,.

A vagueness structure M has the form (W, Py, ..., Py, xy(,...,n,), Where P; is a
nonempty subset of W for i = 1,...,n, and x; is an interpretation, which associates
with each primitive proposition a subset of W. Intuitively, P; consists of the worlds that
agent / initially considers plausible. For those used to thinking probabilistically, the worlds
in P; can be thought of as those that have prior probability greater than € according to
agent i, for some fixed € > 0.3 A simple class of models is obtained by taking P, = W
for i = 1,...,n; however, as we shall see, in the case of multiple agents, there are
advantages to allowing P; # W. Turning to the truth assignments rz;, note that it is
somewhat nonstandard in modal logic to have a different truth assignment for each agent;
this different truth assignment is intended to capture the intuition that the truth of formulas
like Sweet is, to some extent, dependent on the agent, and not just on objective features of

the world.
I assume that W C O x S; x ...S,, where O is a set of objective states, and S; is
a set of subjective states for agent i. Thus, worlds have the form (o, s1, ..., s,). Agent

i’s subjective state s; represents i’s perception of the world and everything else about the
agent’s makeup that determines the agent’s report. For example, in the case of the robot
with a sensor, o could be the actual number of grains of sugar in a cup of coffee and s; could
be the reading on the robot’s sensor. Similarly, if the formula in question was Thin(TW)
(“Tim Williamson is thin”, a formula often considered in Williamson (1994)), then o could
represent the actual dimensions of TW, and s; could represent the agent’s perceptions.
Note that s; could also include information about other features of the situation, such as
the relevant reference group. (Notions of thinness are clearly somewhat culture-dependent
and change over time; what counts as thin might be very different if TW is a sumo wrestler.)
In addition, s; could include the agent’s cutoff points for deciding what counts as thin, or

2 1 thank Zoltan Szabo for pointing out this example.

3 In general, the worlds that an agent considers plausible depends on the agent’s subjective state.
That is why I have been careful here to say that P; consists of the worlds that agent i initially
considers plausible. P; should be thought of as modeling the agent i’s prior beliefs, before
learning whatever information led to the agent i to its actual subjective state. It should shortly
become clear how the model takes into account the fact that the agent’s set of plausible worlds
changes according to the agent’s subjective state.
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what counts as red. In the case of the robot discussed in Section 2, the subjective state
could include its rule for deciding when to report something as sweet.*

If p is a primitive proposition then, intuitively, (o, s1,...,s,) € =m;(p) if i would
consider p true if i knew exactly what the objective situation was (i.e., if i knew o),
given i’s possibly subjective judgment of what counts as “p-ness”. Given this intuition,
it should be clear that all that should matter in this evaluation is the objective part of the
world, o, and (possibly) agent i’s subjective state, s;. In the case of the robot, whether
(0,81, ...,8,) € mi(Sweet) clearly depends on how many grains of sugar are in the cup
of coffee, and may also depend on the robot’s perception of sweetness and its cutoff points
for sweetness, but does not depend on other robots’ perceptions of sweetness. Note that
the robot may give different answers in two different subjective states, even if the objective
state is the same and the robot knows the objective state, since both its perceptions of
sweetness and its cutoff point for sweetness may be different in the two subjective states.

I write w ~; w’ if w and w’ agree on agent i’s subjective state, and I write w ~,
w’ if w and w’ agree on the objective part of the state. Intuitively, the ~; relation can
be viewed as describing the worlds that agent i considers possible. Put another way, if
w ~; w’, then i cannot distinguish w from w’, given his current information. Note that the
indistinguishability relation is transitive (indeed, it is an equivalence relation), in keeping
with the discussion in Section 2. I assume that z; depends only on the objective part of
the state and i’s subjective state, so that if w € 7;(p) for a primitive proposition p, and
w ~; w' and w ~, w’, then w’ € 7m;(p). Note that j’s state (for j # i) has no effect on
i’s determination of the truth of p. There may be some primitive propositions whose truth
depends only on the objective part of the state (e.g., Crowd(n), which holds if there are at
least n people in a stadium at a given time, is such a proposition). If p is such an objective
proposition, then 7; (p) = 7 ;(p) for all agents i and j, and, if w ~, w’, then w € 7;(p)
iff w’ € 7; (p).

I next define what it means for a formula to be true. The truth of formulas is relative to
both the agent and the world. I write (M, w, i) = ¢ if ¢ is true according to agent i in
world w. In the case of a primitive proposition p,

M, w,i) = p iff weri(p).

I define [= for other formulas by induction. For conjunction and negation, the definitions
are standard:

M, w,i) |E—p iff (M,w,i)F ¢;
M,w,i)EpAy iff (M,w,i)E¢eand (M, w,i) = y.

In the semantics for negation, I have implicitly assumed that, given the objective situa-
tion and agent i’s subjective state, agent i is prepared to say, for every primitive proposition
p, whether or not p holds. Thus, if w ¢ x;(p), so that agent i would not consider p true
given i’s subjective state in w if i knew the objective situation at w, then I am assuming
that i would consider —p true in this world. This assumption is being made mainly for
ease of exposition. It would be easy to modify the approach to allow agent i to say (given

4 This partition of the world into objective state and subjective states is based on the “runs
and systems” framework introduced in Halpern and Fagin (1989) (see Fagin et al., 1995, for
motivation and discussion). The framework has been used to analyze problems ranging from
distributed computing (Fagin et al., 1995) to game theory (Halpern, 1997) to belief revision
(Friedman & Halpern, 1997). More recently, it has been applied to the Sleeping Beauty problem
(Halpern, 2005).
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the objective state and i’s subjective state), either “p holds”, “p does not hold”, or “T am
not prepared to say whether p holds or p does not hold”.> However, what I am explicitly
avoiding here is taking a fuzzy logic-like approach of saying something like “p is true
to degree .3”. While the notion of degree of truth is certainly intuitively appealing, it has
other problems. The most obvious in this context is where the .3 is coming from. Even if
p is vague, the notion “p is true to degree .3” is precise. It is not clear that introducing
a continuum of precise propositions to replace the vague proposition p really solves the
problem of vagueness. Having said that, there is a natural connection between the approach
I am about to present and fuzzy logic (see Section 4.2).

Next, I consider the semantics for the modal operators R;, j = 1,...,n. Recall that
R is interpreted as “agent j reports ¢”. Formally, I take R ;¢ to be true if ¢ is true at all
plausible states j considers possible. Thus, taking R j (w) = {w' : v ~; w'},

(M, w,i) = Rjp iff (M,w',j)E¢forallw e Rj(w)N P;.

The use of P; allows reports to be mistaken. That is, we may have (M, w, i) = —=¢p ARj¢
ifw ¢ P;.

Note that, in evaluating R ¢ from i’s point of view at world w, we evaluate the truth of
@ according to j at all worlds w’ that j considers possible at w (i.e., those worlds v’ €
R j(w) N P;). Thus, the truth of R ;¢ at world w is independent of i; all agents agree on the
truth value of R;¢ at w. This may seem a little strange at first, since it implicitly assumes
that all agents “know” the worlds w’ that j considers possible at w and j’s interpretation
of ¢; at w’. But this is a standard concern in all multiagent logics of knowledge and belief,
and is dealt with the same way in all of them: i’s uncertainty about j’s interpretation or
about the worlds that j considers possible is modeled by having other worlds w’ that i
considers possible at w where the worlds that j considers possible and/or j’s interpretation
is different from w.

Of course, for a particular formula ¢, an agent may neither report ¢ nor —¢. An agent
may not be willing to say either that TW is thin or that TW is not thin. Note that, effectively,
the set of plausible states according to agent j given the agent’s subjective state in world w
can be viewed as the worlds in P; that are indistinguishable to agent j from w. Essentially,
the agent j is updating the worlds that she initially considers plausible by intersecting them
with the worlds she considers possible, given her subjective state at world w.

Note that, in general, agents can give conflicting reports; that is, a formula such as R; p A
R;—p is consistent. This can happen, for example, if P; and P; are disjoint, or if 7;(p)
is disjoint from 7 ; (p). However, if agents i and j both consider all worlds possible and
agree on their interpretation of all primitive propositions, then they cannot give conflicting
reports.

Finally, ¢ is definitely true at state w if the truth of ¢ is determined by the objective state
at w:

(M,w,i) = Djp iff (M,w’, ) ¢ forall w’ such that w ~, w’.

5 The resulting logic would still be two-valued; the primitive proposition p would be replaced by
a family of three primitive propositions, py, pn, and p9, corresponding to “p holds”, “p does
not hold”, and “I am not prepared to say whether p holds or does not hold”, with a semantic
requirement (which becomes an axiom in the complete axiomatization) stipulating that exactly

one proposition in each such family holds at each world.

https://doi.org/10.1017/51755020308090084 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020308090084

536 JOSEPH Y. HALPERN

A formula is said to be agent-independent if its truth is independent of the agent. That
is, ¢ is agent-independent if, for all worlds w,

M, w,i) k=g iff (M,w, )9

As we observed earlier, objective primitive propositions (whose truth depends only on the
objective part of a world) are agent-independent; it is easy to see that formulas of the form
D;p and R;¢ are as well. If ¢ is agent-independent, then I often write (M, w) [= ¢ rather
than (M, w, i) &= ¢.

3.2. A modal logic of vagueness: axiomatization and complexity. 1tis easy to see that
R; satisfies the axioms and rules of the modal logic KD45.% It is also easy to see that D,
satisfies the axioms of KD45. It would seem that, in fact, D; should satisfy the axioms
of S5, since its semantics is determined by ~;, which is an equivalence relation. This is
not quite true. The problem is with the so-called truth axiom of S5, which, in this context,
would say that anything that is definitely true according to agent j is true. This would be
true if there were only one agent, but is not true with many agents, because of the different
7; operators.

To see the problem, suppose that p is a primitive proposition. It is easy to see that
(M,w,i) E Dijp = p for all worlds w. However, it is not necessarily the case that
(M,w,i) = Djp = pifi # j.Just because, according to agent i, p is definitely true
according to agent j, it does not follow that p is true according to agent i. What is true
in general is that Djp = ¢ is valid for agent-independent formulas. Unfortunately, agent
independence is a semantic property. To capture this observation as an axiom, we need
a syntactic condition sufficient to ensure that a formula is necessarily agent-independent.
I observed earlier that formulas of the form R;¢ and D¢ are agent-independent. It is
immediate that Boolean combination of such formulas are also agent-independent. Say that
a formula is necessarily agent-independent if it is a Boolean combination of formulas of
the form R ¢ and D¢’ (where the agents in the subscripts may be the same or different).
Thus, for example, (—R;D2p A D1p) V Ry p is necessarily agent-independent. Clearly,
whether a formula is necessarily agent-independent depends only on the syntactic form
of the formula. Moreover, Djp = ¢ is valid for formulas that are necessarily agent-
independent. However, this axiom does not capture the fact that (M, w,i) = Djp = ¢
for all worlds w. Indeed, this fact is not directly expressible in the logic, but something
somewhat similar is. For arbitrary formulas ¢1, ..., ¢,, note that at least one of D;p; =
@1, --.» Dho, = @, must be true respect to each triple (M, w,i),i = 1, ..., n. Thus, the
formula (D1p; = ¢1) V...V (Dyp, = @) is valid. This additional property turns out to
be exactly what is needed to provide a complete axiomatization.

Let AX be the axiom system that consists of the following axioms Taut, R1-R4, and
D1-D6, and rules of inference Necg, Necpy, and MP:

Taut. All instances of propositional tautologies.
Rl Ri(p = yv) = (Rjo = Rjy).
R2. Rj([) = RjRjg().
R3. =Rjp = R;—Rj¢.

% For modal logicians, perhaps the easiest way to see this is to observe a relation R j on worlds
can be defined consisting of all pairs (w, w’) such that w ~; " and w’ € P;. This relation,
which characterizes the modal operator R, is easily seen to be Euclidean and transitive, and thus
determines a modal operator satisfying the axioms of KD45.
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R4. =R (false).
D1. Di(p = v) = (Djp = Djy).
D2. Djp = D;Djo.
D3. —1Dj(p = Dj—'ngD.
D4. —D;(false).
DS. Djp = ¢ if ¢ is necessarily agent-independent.
D6. (Dip1 = ¢1) V...V (Dnon = ¢n)-
Necgr. From ¢ infer R ¢.
Necpy. From ¢ infer Dj¢.
MP. From ¢ and ¢ = y infer y.

Using standard techniques of modal logic, it is can be shown that AX characterizes L2R.

THEOREM 3.1. AX is a sound and complete axiomatization with respect to vagueness
structures for the language EnD R,

This shows that the semantics that I have given implicitly assumes that agents have
perfect introspection and are logically omniscient. Introspection and logical omniscience
are both strong requirements. There are standard techniques in modal logic that make it
possible to give semantics to R; that is appropriate for non-introspective agents. With more
effort, it is also possible to avoid logical omniscience. (See, e.g., the discussion of logical
omniscience by Fagin ef al. (1995).) In any case, very little of my treatment of vagueness
depends on these properties of R;.

The complexity of the validity and satisfiability problem for the L2F can also be deter-
mined using standard techniques.

THEOREM 3.2. Foralln > 1, determining the problem of determining the validity (or
satisfiability) of formulas in L’ER is PSPACE-complete.

Proof. The validity and satisfiability problems for KD45 and S5 in the case of two
or more agents is known to be PSPACE-complete (Halpern & Moses, 1992). The modal
operators R; and D; act essentially like KD45 and S5 operators, respectively. Thus, even if
there is only one agent, there are two modal operators, and a straightforward modification
of the lower bound argument in Halpern & Moses (1992) gives the PSPACE lower bound.
The techniques of Halpern & Moses (1992) also give the upper bound, for any number of
agents. g

3.3. Capturing vagueness and the sorites paradox. Although I have described this
logic as one for capturing features of vagueness, the question still remains as to what it
means to say that a proposition ¢ is vague. I suggested earlier that a common view has
been to take ¢ to be vague if, in some situations, some agents report ¢ while others report
—@, or if the same agent may sometimes report ¢ and sometimes report —¢ in the same
situation. Both intuitions can be captured in the logic. As we have seen, it is perfectly
consistent that (M, w) = R;p A Rj—¢ if i # j; that is, the logic makes it easy to express
that two agents may report different things regarding ¢. Expressing the second intuition
requires a little more care; it is certainly not consistent to have (M, w) = Rjp A Rj—p.
However, a more reasonable interpretation of the second intuition is to say that in the same
objective situation, an agent i may both report ¢ and report —¢. It is consistent that there
are two worlds w and v’ such that w ~, w’, (M, w) E Rjp, and (M, w’) = R;j—¢.
In the case of one agent, under this interpretation, ¢ is taken to be vague if (M, w) =
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—D;=Rjp A—=D;—=R;—¢.Itis easy to show that, as a consequence, (M, w) = =D;R;¢.
This statement just says that the objective world does not determine an agent’s report. In
particular, a formula such as ¢ A —=D; R ¢ is consistent; if ¢ is true then an agent will not
necessarily report it as true. This can be viewed as one of the hallmarks of vagueness.
I return to this point in Section 4.5.

While I take the consistency of formulas such as Ri¢p A Rj—¢ and ¢ A =D;Rj¢p to
be a characteristic feature of a vague predicate ¢, I do not view this as the definition of
vagueness. For example, if ¢ is the statement “there are 25 children playing in the room”,
then an agent j may not notice all 25, and hence not report there are 25 children in the
room. Moreover, if agent i observes all 25 children, and thus reports that there are 25
children, agent i and agent j’s reports differ. Hence neither R ;o nor D;R;p may hold,
although “there are 25 children in the room” would not typically be taken to be vague.
Similarly, if y is a context-sensitive statement such as “TW is the leftmost person in the
lineup”, then an agent i might report ¢ to be true in some states although not in others,
although y is not at all vague.

Having borderline cases has often been taken to be a defining characteristic of vague
predicates. Since I am considering a two-valued logic, propositions do not have borderline
cases: at every world, either ¢ is true or it is false. However, it is not the case that ¢ is either
definitely true or false. That is, there are borderline cases between D¢ and D—¢. But the
fact that neither D¢ and D—¢ holds cannot be taken to be a definition of vagueness either;
an agent may be uncertain about the number of children in a room (and thus not be prepared
to say that it is definitely 25 or definitely not 25), even though the statement “there are 25
children in a room” is not vague.

I believe that perhaps the best characterization of vagueness is that vague predicates
satisfy sorites-like paradoxes. Very roughly speaking, a unary predicate P is vague if
there exist N domain elements dy, ..., dy, all of which differ slightly in some dimension
relevant to P, such that

. there is common agreement that P (d;);
. there is common agreement that =P (dy);
. there is common agreement that if P(d;), then P(d;) for j* < j; and

A W N =

. there is common agreement that if =P (d;), then —P(d;/) for j > j.

We may also want to add a fifth condition, which is meant to capture the intuition of
“borderline cases”:

5. For some intermediate domain elements d in the sequence (i.e., for some domain
elements d; with I < j < N), an agent finds it difficult to categorize d; as
satisfying P or —P.

These conditions are indeed very rough. For example, to make them precise, one would
have to make clear what it means for a dimension to be “relevant”. But even ignoring
that, there are some subtleties involved in these statements, subtleties that the logic
I have introduced can help clarify. What does it mean that there is “common agreement
that P(d;)”? It seems reasonable to say that this means, in a state that includes domain
element dy, all agents would report P (d;). With only one agent in the picture, we can get an
analogue to this statement: in all states that include d, the agent would report P (d;). That
is, we would expect D; R; P(d1) to hold for all agents i in all models that include d; where
P is given the intended interpretation. (Note that these statements all make sense even if
there is no objective truth to the statement P(d) for any domain element d.) The second
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statement can be expressed in the logic in a similar way. Perhaps the most reasonable
interpretation of the third statement is that if an agent i would report P(d;) in a particular
situation, then he would also report P(d;) for j* > j in the same situation; similarly for
the fourth statement. If we take the difficulty of categorizing o as meaning that in some
circumstances the agent i reports P (0) and in some circumstances he reports — P (0), then
the fifth statement becomes —D; R; P(0) A =D; R;—P(0).

Although this rough definition applies only to unary predicates, it should be clear that
it can be modified to deal with predicates of arbitrary arity. The definition presumes a
reasonably large number of domain elements. I do not believe that vagueness is an issue
if there are only three domain elements. On the other hand, I interpret “domain element”
somewhat liberally here. For example, suppose that I have a car in my driveway, and
I keep chipping pieces away from it until eventually (after a large but finite number of
chips) it becomes a pile of metal shards. Initially it is a car; at the end, it is not. I would be
comfortable taking the domain here to include a different element denoting the car after n
chips, for the various values of n. We can then consider whether the “Car” predicate applies
to each one.’

With this background, let us now see how the framework can deal with the sorites
paradox. The sorites paradox is typically formalized as follows:

1. Heap(1,000,000).
2. Vn > 1(Heap(n) = Heap(n — 1)).
3. —=Heap(1).

It is hard to argue with Statements 1 and 3, so the obvious place to look for a problem
is in Statement 2, the inductive step. And, indeed, most authors have, for various reasons,
rejected this step (see, e.g., Dummett, 1975; Sorenson, 2001; Williamson, 1994 for typical
discussions). As I suggested in the Introduction, it appears that rejecting the inductive step
requires committing to the existence of an n such that n grains of sand is a heap and n — 1
is not. While I too reject the inductive step, it does not follow that there is such an 7 in the
framework I have introduced here, because I do not assume an objective notion of heap
(whose extension is the set of natural numbers n such that n grains of sands form a heap).
What constitutes a heap in my framework depends not only on the objective aspects of the
world (i.e., the number of grains of sand), but also on the agent and her subjective state.

To be somewhat more formal, assume for simplicity that there is only one agent. Con-
sider models where the objective part of the world includes the number of grains of sand
in a particular pile of sand being observed by the agent, and the agent’s subjective state
includes how many times the agent has been asked whether a particular pile of sand
constitutes a heap. What I have in mind here is that sand is repeatedly added to or removed
from the pile, and each time this is done, the agent is asked “Is this a heap?”. Of course,
the objective part of the world may also include the shape of the pile and the lighting
conditions, while the agent’s subjective state may include things like the agent’s sense
perception of the pile under some suitable representation. Exactly what is included in the
objective and subjective parts of the world do not matter for this analysis.

In this setup, rather than being interested in whether a pile of n grains of sand constitutes
a heap, we are interested in the question of whether, when viewing a pile of n grains of
sand, the agent would report that it is a heap. That is, we are interested in the formula

7 1 thank Zoltan Szabo for pointing out this example.
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Pile(n) = R(Heap), which I hereafter abbreviate as S(n). The formula Pile(n) is true at
a world w if, according to the objective component of w, there are in fact n grains of sand
in the pile. Note that Pile is not a vague predicate at all, but an objective statement about
the number of grains of sand present.® By way of contrast, the truth of Heap at world w
depends on both the objective situation in w (how many grains of sand there actually are)
and the agent’s subjective state in w.

There is no harm in restricting to models where S(1,000,000) holds in all worlds and
S(1) is false in all worlds where the pile actually does consist of one grain of sand. If there
are actually 1,000,000 grains of sand in the pile, then the agent’s subjective state is surely
such that she would report that there is a heap; and if there is actually only one grain of
sand, then the agent would surely report that there is not a heap. We would get the paradox
if the inductive step, Vn > 1(S(n) = S(n — 1)), holds in all worlds. However, it does not,
for reasons that have nothing to do with vagueness. Note that in each world, Pile(rn) holds
for exactly one value of n. Consider a world w where there is one grain of sand in the pile
and take n = 2. Then S(2) holds vacuously (because its antecedent Pile(2) is false), while
S(1) is false, since in a world with one grain of sand, by assumption, the agent reports that
there is not a heap.

The problem here is that the inductive statement Vn > 1(S(n) = S(n — 1)) does not
correctly capture the intended inductive argument. Really what we mean is more like “if
there are n grains of sand and the agent reports a heap, then when one grain of sand is
removed, the agent will still report a heap”.

Note that removing a grain of sand changes both the objective and subjective compo-
nents of the world. It changes the objective component because there is one less grain of
sand; it changes the subjective component even if the agent’s sense impression of the pile
remains the same, because the agent has been asked one more question regarding piles of
sand. The change in the agent’s subjective state may not be uniquely determined, since the
agent’s perception of a pile of n — 1 grains of sand is not necessarily always the same. But
even if it is uniquely determined, the rest of my analysis holds. In any case, given that the
world changes, a reasonable reinterpretation of the inductive statement might be “For all
worlds w, if there are n grains of sand in the pile in w, and the agent reports that there is a
heap in w, then the agent would report that there is a heap in all the worlds that may result
after removing one grain of sand.” This reinterpretation of the inductive hypothesis cannot
be expressed in the logic, but the logic could easily be extended with dynamic logic-like
operators so as to be able to express it, using a formula such as

Pile(n) A R(Heap) = [remove 1 grain](Pile(n — 1) A R(Heap).

Indeed, with this way of expressing the inductive step, there is no need to include Pile(n)
or Pile(n — 1) in the formula; it suffices to write R(Heap) = [remove 1 grain] R(Heap).

Is this revised inductive step valid? Again, it is not hard to see that it is not. Consider a
world where there is a pile of 1,000,000 grains of sand, and the agent is asked for the first
time whether this is a heap. By assumption, the agent reports that it is. As more and more
grains of sand are removed, at some point the agent (assuming that she has the patience to
stick around for all the questions) is bound to say that it is no longer a heap.”?

8 While I am not assuming that the agent knows the number of grains of sand present, it would
actually not affect my analysis at all if the agent was told the exact number.

9 There may well be an in-between period where the agent is uncomfortable about having to decide
whether the pile is a heap. As I observed earlier, the semantics implicitly assumes that the agent
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Graff (2000) points out that a solution to the sorites paradox that denies the truth of the
inductive step must deal with three problems:

e The semantic question: If the inductive step is not true, is its negation true? If so,
then is there a sharp boundary where the inductive step fails? If not, then what
revision of classical logic must be made to accommodate this fact?

e The epistemological question: If the inductive step is not true, why are we unable
to say which one of its instances is not true?

e The psychological question: If the inductive step is not true, then why are we so
inclined to accept it?

I claim that the solution I have presented here handles the first two problems easily, and
suggests a plausible solution for the third. For the semantic question, as I have observed,
although the inductive argument fails, there is no fixed n at which it fails. The n at which
it fails may depend on the person and (even in the case that there is only one person
in the picture), may depend on the state of that person. The answer that someone gives
to the question the first time it is asked may be different from the answer given the kth
time it is asked, even if all objective features of the world remain the same. The logic has
this feature despite being two-valued (although it extends classical logic both by allowing
modal operators and allowing the truth of a formula to depend on the agent).

The answer to the epistemological question is essentially the same as that for the seman-
tic question. We cannot say at which n the induction fails because there is no fixed n at
which it fails. The n depends on features on the subjective state of the person being asked
(e.g., how many she has been asked before). Note that this claim that can be confirmed
easily experimentally. We can ask different people a series of questions and see when their
answer change from “heap” to “not heap”. We can also ask the same person such a series of
questions, with different starting points (so that different numbers of questions have been
asked at the point when, say, a pile of 10,000 grains is reached). Clearly, the change will
not always come at the same value of n in all these cases.

A convincing answer to the psychological question requires a deeper understanding of
how people answer questions involving universal quantification. One possible answer may
be that if a statement of the form Vx¢ (x) is true for “almost all” instances of x, then people
are inclined to accept Vx¢(x). To test this would require making precise what “almost
all” means. But even if this could be made precise, it seems to me that this is not quite
how people deal with universals. For example, suppose we are interested not in whether
there is a heap, but whether there is at least one grain of sand. Consider the statement “For
all worlds w, if there is more than one grain of sand in the pile in w, then there is still
at least one grain of sand after removing one grain of sand.” I do not think that people
would be inclined to accept this statement. If we are interested in worlds where there can
be up to 1,000,000 grains of sand, the statement is certainly true for almost all of them.
Nevertheless, it would be rejected because it is so easy to think of a counterexample.

Thus, it seems that for someone to accept a statement of the form Vx¢(x), it does not
suffice that there exist very few counterexamples. It must be difficult to think of counterex-
amples. To the extent that this is true, the question is then why people find it hard to think
of counterexamples to the statement “For all worlds w, if there are n grains of sand in

is willing to answer all questions with a “Yes” or “No”, but it is easy to modify things so as to
allow “I’'m not prepared to say”. The problem of vagueness still remains: At what point does the
agent first start to say “I’m not prepared to say”?
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the pile in w, and the agent reports that there is a heap in w, then the agent would report
that there is a heap in all the worlds that may result after removing one grain of sand.”
Note that the quantification here is over worlds, not over n. Part of the problem is that it
is hard to enumerate the worlds systematically, since a world includes both the objective
state and the agent’s subjective state. (Note that, although I focused on the case where the
agent’s subjective state consisted only of the number of times the question has been asked,
it is far from clear that the agent would make this restriction when asked the question.)
I conjecture that, when looking for counterexamples, people implicitly consider only worlds
where they are asked the question the first time. I admit that this is only a conjecture, but it
does not seem so implausible. After all, in practice, people are not asked a series of sorites
questions. They are typically asked only once. Moreover, it does not immediately leap to
mind that the response might depend on how many times the question has been asked.
It would be interesting to actually test what situations people consider focus on when
trying to answer the universal. In any case, if this conjecture is true, my solution to the
psychological question rests on another assumption that should be easy to test, and is one
I alluded to earlier: whatever people answer the first time they are asked the question, they
will continue to give the same answer after one grain of sand is removed. People rarely
change their mind between the first and second question in a sorites series.

Unlike the answers to the semantic and epistemological questions, which are essentially
matters of logic, the answer to the psychological question is one that requires psychological
experiments to verify. But I claim that this is as it should be.

§4. Relations to other approaches. In this section I consider how the approach to
vagueness sketched in the previous section is related to other approaches to vagueness that
have been discussed in the literature. As I said earlier, there is a huge literature on the
vagueness problem, so I focus here on approaches that are somewhat in the same spirit as
mine.

4.1. Context-dependent approaches. My approach for dealing with the sorites para-
dox is perhaps closest to what Graff (2000) has called context-dependent approaches,
where the truth of a vague predicate depends on context. The “context” in my approach can
be viewed as a combination of the objective state and the agent’s subjective state. Although
anumber of papers have been written on this approach (see, e.g., Graff, 2000; Kamp, 1975;
Soames, 1999), perhaps the closest in spirit to mine is that of Raffman (1994).

In discussing sorites-like paradoxes, Raffmman considers a sequence of colors going
gradually from red to orange, and assumes that to deal with questions like “if patch
n is red, then so is patch n — 17, the agent makes pairwise judgments. She observes that
it seems reasonable that an agent will always place patches n and n + 1, judged at the
same time, in same category (both red, say, or both orange). However, it is plausible that
patch n will be assigned different colors when paired with n — 1 than when paired with
n + 1. This observation (which I agree is likely to be true) is easily accommodated in the
framework that I have presented here: If the agent’s subjective state includes the perception
of two adjacent color patches, and she is asked to assign both a color, then she will almost
surely assign both the same color. Raffman also observes that the color judgment may
depend on the colors that have already been seen as well as other random features (e.g.,
how tired/bored the agent is), although she does not consider the specific approach to the
sorites paradox that I do (i.e., the interpretation of the inductive step of the paradox as “if,
the first time I am asked, 1 report that P (n) holds, then I will also report that P (n — 1) holds
if asked immediately afterwards”).
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However, none of the context-dependent approaches use a model that explicitly dis-
tinguishes the objective features of the world from the subjective features of a world.
Thus, they cannot deal with the interplay of the “definitely” and “reports that” opera-
tors, which plays a significant role in my approach. By and large, they also seem to
ignore issues of higher-order vagueness, which are well dealt with by this interplay (see
Section 4.4).

4.2. Fuzzy logic. Fuzzy logic (Zadeh, 1975) seems like a natural approach to dealing
with vagueness, since it does not require a predicate be necessarily true or false; rather, it
can be true to a certain degree. As I suggested earlier, this does not immediately resolve
the problem of vagueness, since a statement like “this cup of coffee is sweet to degree .8”
is itself a crisp statement, when the intuition suggests it should also be vague.

Although I have based my approach on a two-valued logic, there is a rather natural
connection between my approach and fuzzy logic. We can take the degree of truth of a
formula ¢ in world w to be the fraction of agents i such that (M, w, i) = ¢. We expect
that, in most worlds, the degree of truth of a formula will be close to either 0 or 1. We can
have meaningful communication precisely because there is a large degree of agreement in
how agents interpret subjective notions thinness, tallness, sweetness.

Note that the degree of truth of ¢ in (o, sy, ..., s,) does not depend just on o, since
S1,...,8, are not deterministic functions of 0. But if we assume that each objective situ-
ation o determines a probability distribution on tuples (sy, ..., s,) then, if n is large, for
many predicates of interest (e.g., Thin, Sweet, Tall), I expect that, as an empirical matter,
the distribution will be normally distributed with a very small variance. In this case, the
degree of truth of such a predicate P in an objective situation o can be taken to be the
expected degree of truth of P, taken over all worlds (o, s1, .. ., ;) whose first component
is o.

This discussion shows that my approach to vagueness is compatible with assigning a
degree of truth in the interval [0, 1] to vague propositions, as is done in fuzzy logic.
Moreover non-vague propositions (called crisp in the fuzzy logic literature) get degree
of truth either 0 or 1. However, while this is a way of giving a natural interpretation to
degrees of truth, and it supports the degree of truth of —¢ being 1 minus the degree of
truth of ¢, as is done in fuzzy logic, it does not support the semantics for A typically taken
in fuzzy logic, where the degree of truth of ¢ A w is taken to be the minimum of the
degree of truth of ¢ and the degree of truth of . Indeed, under my interpretation of degree
of truth, there is no functional connection between the degree of truth of ¢, v, and ¢ A .

4.3. Supervaluations. The D operator also has close relations to the notion of su-
pervaluations (Fine, 1975; van Fraassen, 1968). Roughly speaking, the intuition behind
supervaluations is that language is not completely precise. There are various ways of
“extending” a world to make it precise. A formula is then taken to be true at a world w
under this approach if it is true under all ways of extending the world. Both the R; and
D; operators have some of the flavor of supervaluations. If we consider just the objective
component of a world o, there are various ways of extending it with subjective components
(S1,...,n). Dig is true at an objective world o if (M, w,i) = ¢ for all worlds w that
extend o. (Note that the truth of D¢ depends only on the objective component of a
world.) Similarly, given just a subjective component s; of a world, R;¢ is true of s; if
(M, w, i) = ¢ for all worlds that extend s;. Not surprisingly, properties of supervaluations
can be expressed using R; or D ;. Bennett (1998) has defined a modal logic that formalizes
the supervaluation approach.

https://doi.org/10.1017/51755020308090084 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020308090084

544 JOSEPH Y. HALPERN

4.4. Higher-order vagueness. In many approaches towards vagueness, there has been
discussion of higher-order vagueness (see, e.g., Fine, 1975; Williamson, 1994). In the
context of the supervaluation approach, we can say that D¢ (“definitely ¢”) holds at a
world w if ¢ is true in all extensions of w. Then D¢ is not vague; at each world, either
D¢ or =D¢ (and D—Dyg) is true (in the supervaluation sense). But using this semantics
for definitely, it seems that there is a problem. For under this semantics, “definitely ¢”
implies “definitely definitely ¢” (for essentially the same reasons that D;p = D;D;¢ in
the semantics that I have given). But, goes the argument, this does not allow the statement
“This is definitely red” to be vague. A rather awkward approach is taken to dealing with this
by Fine (1975) (see also Williamson, 1994), which allows different levels of interpretation.

I claim that the real problem is that higher-order vagueness should not be represented
using the modal operator D in isolation. Rather, a combination of D and R should be used.
It is not interesting particularly to ask when it is definitely the case that it is definitely
the case that something is red. This is indeed true exactly if it is definitely red. What is
more interesting is when it is definitely the case that agent i would report that an object
is definitely red. This is represented by the formula D; R; D;Red. We can iterate and ask
when i would report that it is definitely the case that he would report that it is definitely
the case that he would report it is definitely red, that is, when D; R; D; R; D;Red holds, and
so on. It is easy to see that D; R; p does not imply D;R; D; R; p; lower-order vagueness
does not imply higher-order vagueness. Since I have assumed that agents are introspective,
it can be shown that higher-order vagueness implies lower-order vagueness. In particular,
D;R; D; R;p does imply D; R;¢. (This follows using the fact that D;p = ¢ and R; R;¢p =
R;p are both valid.) The bottom line here is that by separating the R and D operators in
this way, issues of higher-order vagueness become far less vague.

4.5. Williamson’s approach. One of the leading approaches to vagueness in the recent
literature is that of Williamson; see Williamson (1994, chapters 7 and 8) for an introduc-
tion. Williamson considers an epistemic approach, viewing vagueness as ignorance. Very
roughly speaking, he uses “know” where I use “report”. However, he insists that it cannot
be the case that if you know something, then you know that you know it, whereas my
notion of reporting has the property that R; implies R; R;. It is instructive to examine the
example that Williamson uses to argue that you cannot know what you know, to see where
his argument breaks down in the framework I have presented.

Williamson considers a situation where you look at a crowd and do not know the number
of people in it. He makes what seem to be a number of reasonable assumptions. Among
them is the following:

I know that if there are exactly n people, then I do not know that there
are not exactly n — 1 people.

This may not hold in my framework. This is perhaps easier to see if we think of a robot
with sensors. If there are n grains of sugar in the cup, it is possible that a sensor reading
compatible with n grains will preclude there being n — 1 grains. For example, suppose
that, as in Section2, there are n grains of sugar, and the robot’s sensor reading is between
[(n — 4)/10] and [(n + 4)/10]. If there are in fact 16 grains of sugar, then the sensor
reading could be 2 (= [ (16 + 4)/10]). But if the robot knows how its sensor works, then
if its sensor reading is 2, then it knows that if there are exactly 16 grains of sand, then
(it knows that) there are not exactly 15 grains of sugar. Of course, it is possible to change
the semantics of R; so as to validate Williamson’s assumptions. But this point seems to be
orthogonal to dealing with vagueness.

https://doi.org/10.1017/51755020308090084 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020308090084

INTRANSITIVITY AND VAGUENESS 545

Quite apart from his treatment of epistemic matters, Williamson seems to implicitly
assume that there is an objective notion of what I have been calling subjectively vague
notions, such as red, sweet, and thin. This is captured by what he calls the supervenience
thesis, which roughly says that if two worlds agree on their objective part, then they must
agree on how they interpret what I have called subjective propositions. Williamson focuses
on the example of thinness, in which case his notion of supervenience implies that “If x
has exactly the same physical measurements in a possible situation s as y has in a possible
situation ¢, then x is thin in s if and only if y is thin in #” (Williamson, 1994, p. 203). I have
rejected this viewpoint here, since, for me, whether x is thin depends also on the agent’s
subjective state. Indeed, rejecting this viewpoint is a central component of my approach to
intransitivity and vagueness.

Despite these differences, there is one significant point of contact between Williamson’s
approach and that presented here. Williamson suggests modeling vagueness using a modal
operator C for clarity. Formally, he takes a model M to be a quadruple (W, u, a, @), where
W is a set of worlds and z is an interpretation as above (Williamson seems to implicitly
assume that there is a single agent), where u is a metric on W (so that x is a symmetric
function mapping W x W to [0, 0o) such that u(w, w’") = 0iff w = w’ and u(w;, wy) +
w(wo, w3) < u(wi, ws)), and a is a non-negative real number. The semantics of formulas
is defined in the usual way; the one interesting clause is that for C:

(M, w) ECoiff (M, w’) = ¢ forall w such that u(w, w") < a.

Thus, Cg is true at a world w if ¢ is true at all worlds within a of w.

The intuition for this model is perhaps best illustrated by considering it in the frame-
work discussed in the previous section, assuming that there is only one proposition, say
Tall(TW), and one agent. Suppose that Tall(TW) is taken to hold if TW is above some
threshold height #* Since Tall(TW) is the only primitive proposition, we can take the
objective part of a world to be determined by the actual height of TW. For simplicity,
assume that the agent’s subjective state is determined by the agent’s subjective estimate of
TW’s height (perhaps as a result of a measurement). Thus, a world can be taken to be a
tuple (z,1"), where  is TW’s height and ¢’ is the agent’s subjective estimate of the height.
Suppose that the agent’s estimate is within « /2 of TW’s actual height, so that the set W of
possible worlds consists of all pairs (¢, ') such that |t — ¢’| < «/2. Assume that all worlds
are plausible (so that P = W). It is then easy to check that (M, (¢, ")) = D R(Tall(TW))
iff t > t* 4+ . That is, the agent will definitely say that TW is Tall iff TW’s true height is at
least & more than the threshold ¢* for tallness, since in such worlds, the agent’s subjective
estimate of TW’s height is guaranteed to be at least t* + a /2.

To connect this to Williamson’s model, suppose that the metric ¢ is defined so that
w((t, 1), (u,u’)) = |t —ul; that is, the distance between worlds is taken to be the difference
between TW’s actual height in these worlds. Then (M, (¢,1)) &= C(Tall(TW)) iff 1 >
t* + a. In fact, a more general statement is true. By definition, (M, (¢,1)) & Ceo iff
(M, (u,u")) & ¢ for all (u,u’) € W such that | — u| < a. It is easy to check that
(M, (t,t")) = DRy iff (M, (u,u’)) &= ¢ for all (u,u’) € W such that |t — u’| < a/2.
Finally, a straightforward calculation shows that, for a fixed ¢,

(w3 ((u,uy e W, |t —ul <o)y ={u:Iu'((u,u)eW,|t —u'| <a/2)}.

Thus, if ¢ is a formula whose truth depends just on the objective part of the world (as is
the case for Tall(TW) as I have defined it) then (M, (¢, ")) = Co iff (M, (¢,t") = DRo.
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Williamson suggests that a proposition ¢ should be taken to be vague if ¢ A =Cop is
satisfiable. In Section3.3, I suggested that p A—D Rg could be taken as one of the hallmarks
of vagueness. Thus, I can capture much the same intuition for vagueness as Williamson by
using DR instead of C, without having to make what seem to me unwarranted epistemic
assumptions.

§5. Discussion. I have introduced what seems to me a natural approach to dealing
with intransitivity of preference and vagueness. Although various pieces of the approach
have certainly appeared elsewhere, it seems that this particular packaging of the pieces is
novel. The approach leads to a straightforward logic of vagueness, while avoiding many of
the problems that have plagued other approaches. In particular, it gives what I would argue
is a clean solution to the semantic, epistemic, and psychological problems associated with
vagueness, while being able to deal with higher-order vagueness.
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