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ABSTRACT
Carrier-based unmanned aerial aircraft (UAV) structure is subjected to severe tensile load dur-
ing takeoff, especially the drawbar, which affects its fatigue performance and structural safety.
However, the complex structural features pose great challenges for the engineering design.
Considering this situation, a structural design, fatigue analysis, and parameters optimisation
joint working platform are urgently needed to solve this problem. In this study, numerical
analysis of strain fatigue is carried out based on the laboratory fatigue failure of the carrier-
based aircraft drawbar. Taking the sensitivity of drawbar parameters to stress and life into
account and optimum design of drawbar with fatigue life as a target using the parametric
method, this study also includes cutting-edge parameters of milling cutters, structural details
of the drawbar and so on. Then an experimental design is applied using the Latin hypercube
sampling method, and a surrogate model based on RBF neural network is established. Lastly, a
multi-island genetic algorithm is introduced for optimisation. The results show that the error
between the obtained optimal solution and simulation is 0.26%, while the optimised stress
level is reduced by 15.7%, and the life of the drawbar is increased by 122%.
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NOMENCLATURE

b fatigue strength exponent

Beta cutting edge angle of slotted feed knife

c fatigue ductility exponent

d dimension of the design space

D1 the distance between the axis of the drawbar body and center of groove outline

cutter

D2 the distance between the axis of drawbar head and center of groove outline

cutter

D3 the distance between the axis of the drawbar head and groove outline

D4 the distance between the axis of the drawbar head and center of groove edge

D5 height of groove

D6 the distance between the axis of the drawbar head and gradient starting point

D7 the distance between the axis of the drawbar head and gradient ending point

D8 the initial thickness of web

E elastic modulus

K′ cyclic strength coefficient

li lower limit on the dimension

σ ′
f fatigue strength coefficient

σm mean stress

ε′
f fatigue ductility coefficient

εea elastic strain

εpa plastic strain

εa total strain

L life repeats of the structure

me elastic poisson’s ratio

mp plastic poisson’s ratio

n number of sample points

φ basis function

λi coefficient of the ith basis function

n′ cyclic strain hardening exponent

N life repeats of the bar

Nc cut-off

Nx′
i

percentage form of the model coefficient

R1 cutting edge radius of groove outline

R2 arc radius of groove outline

R3 radius of groove fillet
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R2 R-Squard

Rε strain ratio

RMSE Root Mean Square Error

RMAE Relative Maximum Absolute Error

RAAE Relative Average Absolute Error

Sx′
i

model coefficient

Sf′ fatigue strength coefficient

Theta gradient angle of the grooved web

ui upper limit on the dimension

UTS Ultimate Tensile Strength

X Latin hypercube matrix

Xiu lower ranges of the variables

Xil upper ranges of the variables

yi true value of test point responses

ỹi approximate value of test point responses

ȳ mean value of test point responses

YS yield strength

x design variable vector

xi vector of the design variable

1.0 INTRODUCTION
To realise short-distance and instantaneous takeoff, carrier-based UAVs always utilise catapult
takeoff as its takeoff method, but consequently, the drawbar suffers great tensile loads, which
will reduce its life cycles and eventually lead to takeoff failure. In order to overcome this
problem, the fatigue characteristic should be considered in the initial structure design.

The optimisation of the structure subjected to fatigue is of vital importance for aircraft
landing system design, especially those with complex geometry characteristics and suffering
severe working conditions. Formerly long computational times are also a barrier to these
optimisation problems involved with many structural parameters. To save time, most tra-
ditional optimisation methodologies focus on the structures’ static or quasi-static response
or frequency response. However, modern computer development makes it possible using
optimisation strategy based on fatigue analysis.

C. S. Johnson(1) put forward a computational framework for the optimisation of various
aspects of rotor blades and applied metamodels and genetic algorithms to the model. Haiba
et al.(2) introduced a life optimisation method to a suspension system of the vehicle. Meng
et al.(3) used a surrogate model to solve a turbine blade design problem based on structural
reliability analysis and uncertainties-based collaborative design. Xue et al.(4) improved parti-
cle swarm optimisation algorithm to take a lightweight design in a nose landing gear forward
strut considering its fatigue life based on S-N analysis. Munk et al.(5) applied topology opti-
misation to aerospace design problems and designed a light aircraft landing gear. Xia et al.(6)

applied DOE (design of experiments) and Kriging model in the optimisation to minimise the
weight of the bolted connection of a wing bar, and specimen fatigue tests were carried out to
evaluate the optimisation process.
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Although previous studies have solved problems in their corresponding fields, the structure
optimisation method involving multi-parameter ejection structures is still a challenge to engi-
neers concerned. For structures containing complex features, how to carry out structural and
finite element parametric modeling, and build a joint optimisation platform for strain fatigue
analysis remain a challenge for engineers. Moreover, parameters extraction, design of exper-
iments, approximate model definition, and multi-parameter optimisation are also barriers to
theoretical analysis and application research of each module. A joint simulation platform is
established to achieve this goal, which combines parametric geometry modeling and finite
element modeling, fatigue analysis, and parameters optimisation. By using this platform, a
parametric drawbar model is built in 3D and discrete FEM model. Also, fatigue analysis
based on lab tests and simulation is carried out for the validation of the model. Furthermore,
a complete optimisation framework is built to obtain the optimum solution to improve the
load-bearing and life of the drawbar.

This study is organised as follows. The lab fatigue test is carried out in Section 2, the
numerical fatigue analysis and simulation model is also introduced, which can be verified by
the test data. In Section 3, the geometry and FEM parametric model of the drawbar is built and
the DOE method is introduced to select the most sensitive parameters for further optimization.
In Section 2, sensitivity analysis is carried out to narrow the range of the parameters. In
Section 5, a joint simulation platform is established to obtain an improving structure, during
which process, a surrogate model is firstly provided to approximate the fatigue analysis in the
given range, and then a global optimization algorithm is utilised.

The drawbar of a carrier-based aircraft suffers great overload during takeoff. Consequently,
extreme tensile load acts instantaneously on the drawbar. This severe situation puts forward
a great test on its bearing capacity and durability. The drawbar is manufactured based on
traditional design criteria in structural strength without considering its fatigue life. As a result,
in actual use, the drawbar is frequently confronted with a fatigue failure.

Due to the traditional design criteria’ fault, a parameter optimisation based on the fatigue
life is proposed to improve the load-bearing and life repeats of the drawbar.

2.0 FATIGUE LIFE EXPERIMENT AND NUMERICAL
ANALYSIS OF A CARRIER-BASED AIRCRAFT
DRAWBAR

2.1 Laboratory fatigue test of the drawbar
Laboratory fatigue test of the drawbar is carried out to examine the durability of the structure
and test whether the structural fatigue life can meet the service requirements and improve the
design, optimising the structure and prolonging service life.

Before structure experiments, the material basic mechanical properties are measured.
Figure 1 shows the true stress-strain curve of the high-strength steel, which is obtained
through variation from the nominal stress-strain relationship.

The drawbar suffers a shocking load during taking off. Figure 2 presents the load history.
It can also be illustrated that the R ratio is zero in the fatigue test.

Then a laboratory test is carried out, the fracture is found on the head drawbar in the lab
experiment, and the rest tests of the fatigue experiment are found the failure in the same
region during 2,575 life repeats on average.
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Figure 1. The true strain-stress curve of high-strength steel under tensile load.

Figure 2. Load history of the drawbar.

The crack initiates from the groove root of the drawbar, then spreads upward to form a
fracture and ultimately causes a fracture failure. Through the analysis of the fracture of the
drawbar, and the life repeats reveal that failure belongs to the strain fatigue category.

2.2 Laboratory test results compared with simulation
FEM analysis software HyperMesh is used to simulate the stress feedback in the process of
drawbar under tensile load. The FEM model is established as shown in the picture, meshing
by Tetra10, with an amount of 94,572 elements in the size of 3 mm. The load direction is
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Figure 3. FEM model of the drawbar.

Figure 4. Stress contour plot.

along the drawbar axis. All degrees of freedom at the end of the drawbar are restrained except
the degree of freedom around the axis of the hole. It can be seen from Fig. 3, all nodes degrees
except Rotation-X are constrained.

A general implicit algorithm is utilised under statistic load conditions, Von-Mises stress
contour plot (Fig. 4) shows good coincidence with the result of lab experiments drawn from
the figure of comparison.

A static loading test of the drawbar is carried out. As the structure and its working con-
dition is axial-symmetry, this study takes the mean value of the symmetrical strain gauge
and compares simulation with test results. Figure 5 presents the positions of strain gauges.
Table 1 shows the comparison between the maximum strain results measured by strain gauge
and simulation results.

The good coincidence verifies the accuracy of the FEM model. From the contour plot, it
can be seen that the maximum stress is 2,379MPa, located in the same position as the fracture
is, which also exceeds the material high-strength steel’s yield strength. It can be concluded
that the area has stepped into the plastic zone of the structure.

https://doi.org/10.1017/aer.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.1


CHEN ET AL PARAMETER OPTIMISATION OF A CARRIER-BASED UAV DRAWBAR... 1089

Table 1
Comparison of strain values

No. Strain (με) Simulation Error

C1 2,196 2,227 1.41%
C2 2,207 2,248 1.86%
C3 3,593.5 3,560 0.93%
C4 3,960 3,940 0.51%
C5 3,501 3,525 0.69%
C6 3,930.5 3,925 0.14%
C7 3,489 3,592 2.95%
C8 4,051.5 3,992 1.47%
C9 3,278.5 3,264 0.44%
C10 3,967 3,853 2.87%
C11 3,755 3,740 0.40%
C12 3,724 3,730 0.16%
C13 3,843.5 3,838 0.14%
C14 3,752 3,738 0.37%
C15 3,949.5 4,010 1.53%
C16 3,710.5 3,790 2.14%
C17 2,810 2,781 1.03%
C18 2,849 2,797 1.83%

Figure 5. Positions of strain gauges.

2.3 Fatigue life analysis of drawbar
Deductions can be made that there appears strain fatigue, inferred from the smooth fracture
surface, and 2,575 life repeats in the lab tests of this drawbar. This study applies the Coffin-
Manson empirical formula to assess the life of the drawbar on the level of numerical theory.
Of all �ε − N formulas, the Coffin-Manson formula is mostly used. The expression is defined
as the following:

εa = εea + εpa = σ ′
f

E
(2N)b + ε′

f (2N)c. · · · (1)
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Table 2
Material fatigue parameter

Property High-strength steel Description

E 1.96E+05 Elastic Modulus (MPa)
ε′

f 0.133452 Fatigue Ductility Coefficient
K′ 3,184.5 Cyclic Strength Coefficient (MPa)
Nc 2.00E+08 Cut-off
σ ′

f 2,895 Fatigue Strength Coefficient (MPa)
UTS 1,930 Ultimate Tensile Strength (MPa)
YS 1,620 Yield Strength (MPa)
b −0.087 Fatigue Strength Exponent
c −0.58 Fatigue Ductility Exponent
me 0.3 Elastic Poisson’s Ratio
mp 0.5 Plastic Poisson’s Ratio
n′ 0.15 Cyclic Strain Hardening Exponent

σ ′
f defines the fatigue strength coefficient, ε′

f is coefficient for fatigue ductility, b is fatigue
strength exponent, and c is the exponent for fatigue ductility. This formula reveals the relations
between life N and elastic strain part εea, plastic strain part εpa and the total εa.

The Coffin-Manson formula is used in structures of short or medium life repeats. When
Rε �= −1, average stress should be corrected, and this model also needs correction. In this
study, morrow total strain correction is introduced:

εa = σ ′
f −σm

σ ′
f

[
σ ′

f

E
(2N)b + ε′

f (2N)c

]
· · · (2)

where σm is the mean stress of the structure.
This study uses the fatigue analysis software nCode with its EN-CAE Fatigue module(7),

and the material parameters are entered as Table 2 shows. The low-cycle fatigue performance
parameters of metal materials under uniform temperature and axial constant amplitude strain
control are determined according to ISO 1099-2017 Metallic Materials—Fatigue Testing—
Axial Force-controlled Method.

Additionally, the E-N curve and elastoplastic boundary diagram of high-strength steel are
drawn, and Fig. 6 shows the strain life with elastic and plastic lines.

Based on the work above, strain fatigue theory is used to calculate life repeats of the
drawbar, of which life contour plot is shown as follows.

Figure 7 shows the life (repeats) contour plot, and the lowest life repeats’ region appears
at node 183,862 with 3,791 repeats. Figure 8 gives the precise location of the minimum life
repeats.

Compared with lab experiments, simulation results show a precise coincidence in the frac-
ture region and life repeats. Accordingly, the Coffin-Manson criterion is applied in subsequent
analysis. Due to the conservative prediction in life calculation, results estimating from the
Coffin-Manson criterion are higher than that testing in the lab.
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Figure 6. E-N curve and elastoplastic boundary of high-strength steel.

Figure 7. Life contour plot.

3.0 SURROGATE MODEL FOR FATIGUE LIFE

3.1 Parameters selection
Considering the structure’s practical use, the manufacturing parameters are selected, and
major structural parameters of the drawbar influencing its fatigue life and stress are illustrated
as follows:
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Table 3
Range of drawbar parameters

Parameter Lower bound Upper bound

Beta β β+10
Theta θ θ+2.2
R1 r1 r1+5
R2 r2 r2+10
R3 r3 r3+13
D1 d1 d1+10
D2 d2 d2+10
D3 d3 d3+7
D4 d4 d4+7
D5 d5 d5+10
D6 d6 d6+10
D7 d7 d7+35
D8 d8 d8+5

Figure 8. The node of minimum life repeats.

Beta: cutting edge angle of slotted feed knife
Theta: gradient angle of the grooved web
R1: cutting edge radius of groove outline
R2: arc radius of groove outline
R3: radius of groove fillet
D1: the distance between the axis of the drawbar body and center of groove outline cutter
D2: the distance between the axis of drawbar head and center of groove outline cutter
D3: the distance between the axis of the drawbar head and groove outline
D4: the distance between the axis of the drawbar head and center of groove edge
D5: height of groove
D6: the distance between the axis of the drawbar head and gradient starting point
D7: the distance between the axis of the drawbar head and gradient ending point
D8: the initial thickness of web;

Figure 9 defines the 14 parameters of the drawbar in detail.
Initial ranges are also proposed on the basis of the drawbar geometry structural limits. On

this basis, Table 3 roughly gives the range of the drawbar parameters.
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3.2 Establishment of the surrogate model
When a definite functional relationship cannot express the functional relationship between the
objective function and the variables, it can be fitted by using the approximation models based
on the data of sample points. And then, the optimal process can be carried out on this basis,
which can significantly improve the efficiency when the variable space is large.

Surrogate model methods are based on the decomposition of Y (x) = f (x) + ε(x), where the
error ε(x) is assumed to be identical independent distribution (normal distribution), ε(x) ∼
N(0, σ 2) for example. The process of creating surrogate models includes:

(i) Acquiring sample data given by DOE test design
(ii) Choosing the surrogate model type

(iii) Initializing the surrogate model
(iv) Verifying the surrogate model and the prediction effect by calculating the approximate

error of the model

If the reliability is not high enough, the surrogate model needs to be updated to improve
its prediction accuracy. The standard method is to add more sample data and change model
parameters.

If the surrogate model has enough credibility, the simulation program can be replaced by
the surrogate model;

Figure 10 shows the flow chart of the surrogate model.
The commonly used surrogate models include the response surface model, neural network

model, orthogonal polynomial model, and Kriging model. The radial basis function neural
network model (RBF)(8) is chosen in this model. Its advantages lie in its strong ability to
approximate complex non-linear functions in engineering applications, no need for math-
ematical assumptions and black box characteristics. It has a strong fault-tolerant function.
Even with noisy input, a sound network overall performance can be achieved.

The classical form of the radial basis function model can be expressed as follows(9).

f (x) =
n∑

i=1

λiφ (‖x − xi‖) · · · (3)

where n is the number of the sample points, x is the design variable vector, xi is the vector
of the design variable at the ith sample point, φ is a basis function, and λi is the coefficient of
the ith basis function. The commonly used basis functions are shown as follows.

Linear: φ(r) = r · · · (4)

Gauss: φ(r) = e−cr2
, (0 < c < 1) · · · (5)

Multiquadric: φ(r) =
√

r2 + c2, (0 < c < 1) · · · (6)

R-Squard (R2) is often used to measure the degree of consistency between the surrogate
model and sample points.

R2 = 1 −

n∑
i=1

(yi−ỹi)2

n∑
i=1

(yi−ȳ)2
· · · (7)
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Figure 9. Major parameters of the drawbar.

where yi, ỹi, ȳ represent the true values, approximate values and mean values of test point
responses. The closer the value of R2to 1, the higher the reliability of the approximation
model will be. During the process, the initial number of sample points is 50; to get the best
approximation content, 100 more points are added. Error analysis of the approximation model
and other approximation models were also used. Figure 11 compares the R2 values of different
approximation models.

As is shown above, the RBF model has the highest reliability. To comprehensively evaluate
the approximation of the model, Root Mean Square Error (RMSE), Relative Average Absolute
Error (RAAE) and Relative Maximum Absolute Error (RMAE) are also introduced in this
study(10).

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2 · · · (8)

RAAE =

n∑
i=1

|yi − ỹi|
nt × STD · · · (9)
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Figure 10. Process of establishing surrogate models.

STD =
√√√√ 1

nt − 1

nt∑
i=1

yi − ỹi · · · (10)

RMAE = max(|y1 − ỹ1| , |y2 − ỹ2| , · · · , |yn − ỹn|)
STD · · · (11)

The above four equations evaluate the accuracy of the surrogate model from different per-
spectives, R2, RMSE, RAAE focus on describing the overall accuracy of the model, while
RMAE on the local. Table 4 shows the confidence criterion of the model, which are given by
the approximation module of the ISIGHT software(11).

The previous analysis indicates that the fitting relationship between sample optimisation
objectives and variables can be accurately described by using the RBF model to fit the
surrogate model.
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Table 4
Confidence criterion

Index R2 RMSE RAAE RMAE

Criterions >0.9 <0.2 <0.2 <0.3
Values 0.9125 0.056 0.045 0.138

Figure 11. R2 values of different approximation models.

3.3 Sensitivity analysis of drawbar parameters
Parameters affecting drawbar structure also have different influences on their static and
fatigue responses, their ranges matter as well. We usually call this process sensitivity analysis.
Performing sensitivity analysis can efficiently evaluate the influences of parameter varieties
on structure response.

After the calculation of each sample point, the regression model is established according to
the sample point. Through the Pareto chart, the relationship between each input variable and
the maximum stress is analysed, as well as the information of correlation degree between vari-
ables and response. The positive effect or negative effect of each parameter on the response is
also obtained. It is helpful to grasp the main parameters accurately in the design process.

Pareto chart, which is used to reflect the contribution of each input variable to each
response, represents the main effect of all input variables in a given response, where blue
represents the positive effect and red represents the negative effect. The value Nx′

i
is the

percentage form of the model coefficient Sx′
i

after normalising the input variable.

Nx′
i
= Sx′

i∑
j

∣∣∣Sx′
i

∣∣∣ × 100% · · · (12)

Figure 12 shows the Pareto chart of the analysis, and the values illustrate the posi-
tive/negative effects of each parameter. It can be illustrated from the Pareto chart that the
variables D4, R3 have more positive effects, while the variables D5, D6 have more negative
effects.
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Figure 12. Pareto chart of the 13 variables.

4.0 OPTIMUM DESIGN OF STRUCTURAL PARAMETERS
OF DRAWBAR

4.1 Design of experiments (DOE)
DOE is a branch of mathematical statistics and one of the most important statistical methods
in product development and process optimization. Including:

• Identifying key experimental factors
• Determining the best combination of parameters
• Analyzing the relationship between input and output parameters and the trend of them
• Constructing empirical formulas and surrogate models
• Improving the robustness of design

This study builds a DOE platform, Fig. 13 shows the platform of drawbar optimisation
simulation.DOE application includes a test plan, execution test and result analysis. There exist
many methods to extract sample points, such as a full factorial design, orthogonal design,
central composite design, uniform design, random design, Latin hypercube design and so on.

The Latin hypercube sampling (LHS) method is a widely used computer simulation design,
which was first proposed by Mckay et al.(12). It is a modified Monte Carlo method. The sample
points are uniformly covered, which are more suitable for the case of more design variables.
It can significantly reduce the scale of the experiment. Assuming the dimension of the design
space is d, the number of sample points is n, and the range of coordinate points on a certain
dimension is xi ∈ [li, ui](i = 1, 2 · · · , d), li represents the lower limit on this dimension, ui is
the upper limit:

(1) Determining the size of sampling n.
(2) Dividing the value range of each dimension variable xi into n intervals, then the design

space will be divided into nd sub-regions.
(3) Randomly producing a matrix of n × d, each column of which is a full random

permutation, matrix X is called Latin hypercube matrix.
(4) Each row of matrix X corresponds to a selected small hypercube. A sample point can be

obtained by randomly extracting a sample point in this region, n sample points can be
obtained.
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Figure 13. DOE platform of a drawbar joint simulation.

Figure 14. Distribution of sample points using LHS.

The following figure shows the distribution of sample points selected by LHS.
Compared with the original Latin hypercube method given in Fig. 14, the uniformity of

the 20 sample points of Beta versus D1 in two-dimensional space obtained by the improved
hypercube sample design(13) method is obviously improved as Fig. 15 presents.

3.2 Optimum design of the drawbar based on MIGA
The optimisation problems in aircraft design and manufacturing engineering are often
complex. The objective functions are multimodal, non-linear, discontinuous and non-
differentiable. The design variables and constraint functions may also be linear, non-linear,
continuous or discrete sets of variables. Traditional gradient optimization and direct search
often fail to find the global optimal solution. On the basis of this cognition, global optimisation
is used in this study.
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Table 5
MIGA parameters

Parameter Value

Sub-population size 10
Number of islands 20
Number of generations 20
Rate of crossover 0.8
Rate of mutation 0.01
Rate of migration 0.3
Interval of migration 5
Relative tournament size 1
Elite size 0.5

Table 6
Optimised drawbar parameters

Parameter Value

Beta β + 9.7
Theta θ + 0.5

R1 r1+1.6
R2 r2+5.8
R3 r3+1
D1 d1+4.4
D2 d2+5.6
D3 d3+4
D4 d4+1
D5 d5+3
D6 d6+4.5
D7 d7+21
D8 d8+8

Global optimisation algorithms(14) include multi-island genetic algorithm, pointer auto-
matic optimiser, evolutionary optimisation, adaptive simulated annealing and particle swarm
optimisation.

In this paper, a multi-island genetic algorithm is used to optimise the drawbar. The
parameters concerned in MIGA is listed in Table 5.

Range of the geometry is the same as those defined in DOE, and the numerical expression
of the optimisation process is defined as the following:

{
max L(Xi)

s.t. Xil ≤ Xi ≤ Xiu
· · · (13)

The parameters above are optimised and the global search is carried out to reduce the
maximum stress. The final results are shown in Table 6:
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Figure 15. Distribution of sample points using improved LHS.

Figure 16. Stress contour plot of the optimised drawbar.

The optimised results are modeled and analysed by FEM. The stress and strain contour
plots are shown in Fig. 16.

The maximum stress value is 2,010MPa in the same position as before. Compared with
2,379MPa before optimisation, the stress level decreases by 373MPa, 15.7%. Compared with
the results optimised by the multi-island genetic algorithm, the stress error is 0.74%.

Importing the stress calculation results into a fatigue analysis module for life simulation
calculation, the final results are shown in Fig. 17.

The final fatigue life calculation results are 8,420 takeoffs and landings at node No.
653410, also with an error of 0.93% between optimisation results. Compared with that before
optimisation, life repeats increase by 4,629,122%.
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Figure 17. Life contour plot after optimization.

5.0 CONCLUSIONS
In this study, a new design strategy for carrier-based UAV drawbar is put forward and validated
by a practical engineering application. The finite element simulation of the drawbar structure
is carried out including life assessment. On the basis of the simulation, the parametric joint
optimisation platform is established, and the following conclusions are obtained:

The fatigue life assessment method of the drawbar structure established in this paper is
relatively reliable compared with the laboratory life test.

The surrogate model fitted by the sample points generated by the Latin hypercube method
is of high reliability, which is up to 91%.

Thirteen parameters are optimised by a multi-island genetic algorithm, and the optimal
solution is sought for 500 times of iteration. The maximum stress error between the fitted
optimal solution and the modified finite element model is 0.74%, and the life repeats error is
0.93%.

After optimisation, in simulation results, the maximum stress of the drawbar has been
decreased by 15.7% while the life calculation increased by 122%.
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