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Abstract

In the 1993 Western Number Theory Conference, Richard Guy proposed Problem 93:31, which asks for
integers n representable by (x + y + z)3/xyz, where x, y, z are integers, preferably with positive integer
solutions. We show that the representation n = (x + y + z)3/xyz is impossible in positive integers x, y, z if
n = 4k(a2 + b2), where k, a, b ∈ Z+ are such that k ≥ 3 and 2 � a + b.

2020 Mathematics subject classification: primary 11D25; secondary 11D88.
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1. Introduction

Letn be aninteger. The equation

n =
(x + y + z)3

xyz
(1.1)

has been studied by several authors. Guy [7] asked for integers n representable by (1.1),
where x, y, z ∈ Z, preferably with x, y, z ∈ Z+. Guy’s question is still open and only
partial results have been published. According to [7], Montgomery found 539 solutions
to (1.1) with 1 ≤ x ≤ y ≤ z ≤ 46300. Bremner and Guy [1] found several solutions to
(1.1) when n is in the range |n| ≤ 200. Brueggeman [3] found four families of solutions
to (1.1) involving only positive integers. In a short note [6], Garaev sketched a proof
that (1.1) does not have solutions in positive integers if n is of the form n = 8k − 1,
16k − 4, 32k − 16, 64k or 22m+1(2k − 11) + 27, where k, m ∈ Z+. Garaev’s proof was
based on his work [5] on the cubic Diophantine equation x3 + y3 + z3 = nxyz. In this
paper, we find another family of integers n for which (1.1) has no solutions in positive
integers.

THEOREM 1.1. Let k, a, b be positive with k ≥ 3 and 2 � a + b. Then the equation

(x + y + z)3 = 4k(a2 + b2)xyz

does not have positive integer solutions.
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Garaev’s method is classical and uses the quadratic reciprocity law. Our method is
based on an idea of Stoll [9] and uses Hilbert symbols and elliptic curves. We briefly
outline the main idea.

Assume that we want to show that a rational number X is positive. The key is to
find a rational number D < 0 such that (X, D)p = 1 for all prime numbers p, where
(X, D)p denotes the Hilbert symbol. Then the product formula for the Hilbert symbol
(see Serre [8, Theorem 3, page 23]) forces (X, D)∞ = 1. Since D < 0, we must have
X > 0. Our experience shows that when X is the x-coordinate of a rational point on an
elliptic curve of the form

y2 = f (x),

where f is a cubic polynomial with rational coefficients, D is usually a factor of
the discriminant of f (x). This idea can be applied to several problems. For the
representation of positive integers n in the form n = (x + y + z)(1/x + 1/y + 1/z) or
n = (x + y + z + w)(1/x + 1/y + 1/z + 1/w), where x, y, z, w ∈ Z+, see [2, 11]. For the
representation of positive integers n in the form n = x/y + dy/z + z/w + dw/x, where
x, y, z, w, d ∈ Z+, see [4, 10].

2. Preliminaries

Let p be a prime number. Let Qp denote the p-adic completion of Q with respect
to p and Zp the ring of p-adic integers in Qp. Let Q3

p = {(x, y, z) : x, y, z ∈ Qp} and
Z2

p = {x2 : x ∈ Zp}. For w ∈ Q∗p, denote by vp(w) the exponent of the highest power of
p dividing w. For λ and μ in Q∗p, the Hilbert symbol (λ, μ)p is defined by

(λ, μ)p =

{
1 if λx2 + μy2 = z2 has a solution (x, y, z) � (0, 0, 0) in Q3

p,
−1 otherwise.

For λ, μ ∈ R, the symbol (λ, μ)∞ is +1 if λ > 0 or μ > 0 and −1 otherwise. We
implicitly understand that Q is a subfield of both Qp and R.

We need some properties of Hilbert symbols (see [8, pages 19–26] for proofs). Let
λ, μ, σ ∈ Q∗p.

(i) We have
(λ, μ2)p = 1,

(λ, μσ)p = (λ, μ)p(λ, σ)p,

(λ, μ)∞
∏

p prime

(λ, μ)p = 1.

(ii) Let λ = pαu and μ = pβv, where α = vp(λ) and β = vp(μ). Then

(λ, μ)p = (−1)(1/2)αβ(p−1)
( u

p

)β( v
p

)α
if p � 2,

(λ, μ)p = (−1)(1/4)(u−1)(v−1)+(1/8)α(v2−1)+(1/8)β(u2−1) if p = 2,

where by ( u
p ) denotes the Legendre symbol.
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3. Proof of Theorem 1.1

Assume that there exist positive integers x, y, z such that

(x + y + z)3 = nxyz, n = 22k(a2 + b2).

Let x + y + z = nγz, where γ ∈ Q. Then xy = n2γ3z2. Therefore,
(x − y

z

)2
= (nγ − 1)2 − 4n2γ3.

Let X = −γ and Y = (x − y)/z. Then

Y2 = 4n2X3 + (nX + 1)2. (3.1)

Since nX + 1 = −(x + y)/z < 0,

nX + 1 < 0. (3.2)

We show that (3.2) is impossible via the following lemmas.

LEMMA 3.1. In (3.2), (−n, nX + 1)2 = 1.

PROOF. Write n = 22kn1, where 2 � n1. We consider five cases according to the value
of v2(nX).

Case 1: v2(nX) ≥ 3. Then nX + 1 ≡ 1 (mod 8), so that nX + 1 ∈ Z2
2. Therefore,

(−n, nX + 1)2 = 1.

Case 2: v2(nX) = 2. Then nX + 1 ≡ 1 (mod 4), so that

(−n, nX + 1)2 = (−22kn1, nX + 1)2 = (−n1, nX + 1)2 = (−1)(1/4)(−n1−1)nX = 1.

Case 3: v2(nX) = 1. Then v2(X) = 1 − 2k. Let X = 21−2kX1, where 2 � X1. From (3.1),

Y2 =
n2

1X3
1

22k−5 + (2n1X1 + 1)2.

Therefore,

22k−5Y2 = n2
1X3

1 + 22k−5(2n1X1 + 1)2. (3.3)

Since 2k − 5 > 0 and 2 � n1X3
1 , it follows from (3.3) that 2k − 5 + 2v2(Y) = 0. But this

is impossible since 2 � 2k − 5.

Case 4: v2(nX) = 0. Then v2(X) = −2k. Let X = 2−2kX1, where 2 � X1. From (3.1),

Y2 =
n2

1X3
1

22k−2 + (n1X1 + 1)2.

Hence,

22k−2Y2 = n2
1X3

1 + 22k−2(n1X1 + 1)2. (3.4)
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Since 2k − 2 > 0 and 2 � n2
1X3

1 , it follows from (3.4) that 2k − 2 + 2v2(Y) = 0. Taking
(3.4) modulo 8 gives X1 ≡ 1 (mod 8). Hence, X1 ∈ Z2

2. Let X1 = δ
2, where δ ∈ Z2. Since

−n1U2 + (n1X1 + 1)V2 = 1 has a solution (U, V) = (δ, 1),

(−n1, n1X1 + 1)2 = 1.

Therefore,

(−n, 1 + nX)2 = (−22kn1, n1X1 + 1)2 = (−n1, n1X1 + 1)2 = 1.

Case 5: v2(nX) < 0. Then v2(X) < −2k. Let X = 2−tX1, where 2 � X1, t ∈ Z and t > 2k.
From (3.1),

Y2 =
n2

1X3
1

23t−4k−2 + (22k−tn1X1 + 1)2.

Hence,

23t−4k−2Y2 = n2
1X3

1 + 2t−2(n1X1 + 2t−2k)2. (3.5)

Since t > 2k > 2 and 2 � n2
1X3

1 , it follows from (3.5) that 3t − 4k − 2 + 2v2(Y) = 0.
Therefore, 2 | t. Since t > 2k ≥ 6, we also have t − 2 > 4. Taking (3.5) modulo 8 gives
X1 ≡ 1 (mod 8). Since 2 | 2k − t,

(−n, nX + 1)2 = (−22kn1, 22k−t(n1X1 + 2t−2k))2

= (−n1, n1X1 + 2t−2k)2 = (−1)(1/4)(−n1−1)(n1X1+2t−2k−1). (3.6)

Here, 4 | 2t−2k, because 2 | t, and t > 2k and X1 ≡ 1 (mod 8). Therefore,

(−n1 − 1)(n1X1 + 2t−2k − 1) ≡ −(n1 + 1)(n1 + 2t−2k − 1) (mod 8)

≡ −(n1 + 1)(n1 − 1) ≡ 0 (mod 8).

Therefore,

(−1)(1/4)(−n1−1)(n1X1+2t−2k−1) = 1. (3.7)

So, from (3.6) and (3.7) again, (−n, nX + 1)2 = 1. �

LEMMA 3.2. Let p be an odd prime. In (3.1), (−n, nX + 1)p = 1.

PROOF. We consider three cases according to the value of vp(nX).

Case 1: vp(nX) ≥ 1. Then nX + 1 ≡ 1 (mod p), so that nX + 1 ∈ Z2
p. Hence,

(−n, nX + 1)p = 1.

Case 2: vp(nX) = 0. Then vp(X) = −vp(n). Let n = psn1 and X = p−sX1, where s ≥ 0,
p � n1 and p � X1.

Case 2.1: s = 0. First suppose that p � (n1X1 + 1). Since both −n1 and n1X1 + 1 are
units in Zp, we have (−n1, n1X1 + 1)p = 1. Therefore,

(−n, nX + 1)p = (−n1, n1X1 + 1)p = 1.
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On the other hand, if p | (n1X1 + 1), then, from (3.1),

Y2 = 4n2
1X3

1 + (n1X1 + 1)2.

Therefore, X1 is a square modulo p and so X1 ∈ Z2
p. Let X1 = ω

2, where ω ∈ Zp and
p � ω. Then

−n1 ≡
1

X1
≡ ω−2 (mod p),

so that −n1 ∈ Z2
p and

(−n, nX + 1)p = (−n1, n1X1 + 1)p = 1.

Case 2.2: s > 0. From (3.1),

Y2 =
4n2

1X3
1

ps + (n1X1 + 1)2,

so that

psY2 = 4n2
1X3

1 + ps(n1X1 + 1)2. (3.8)

Since p � 4n2
1X3

1 and s > 0, it follows from (3.8) that s + 2vp(Y) = 0. Therefore, 2 | s.
First suppose that p � n1X1 + 1. Since both −n1 and n1X1 + 1 are units in Zp, we

have (−n1, n1X1 + 1)p = 1. Therefore,

(−n, nX + 1)p = (−psn1, n1X1 + 1)p = (−n1, n1X1 + 1)p = 1.

On the other hand, if p | n1X1 + 1, then, from (3.8), X1 is a square modulo p.
Therefore, X1 ∈ Z2

p. Let X1 = ζ
2, where ζ ∈ Zp and p � ζ. Then

−n1 ≡
1

X1
≡ ζ−2 (mod p),

so that −n1 ∈ Z2
p. Therefore,

(−n, nX + 1)p = (−psn1, n1X1 + 1)p = (−n1, n1X1 + 1)p = 1.

Case 3: vp(nX) < 0. Let n = psn1 and X = p−tX1, where t > s ≥ 0, p � n1 and p � X1.
From (3.1),

Y2 =
4n2

1X3
1

p3t−2s +

(n1X1

pt−s + 1
)2

.

Therefore,

p3t−2sY2 = 4n2
1X3

1 + pt(n1X1 + pt−s)2. (3.9)

Since p � 4n2
1X3

1 and t > 0, it follows from (3.9) that 3t − 2s + 2v2(Y) = 0. Thus, 2 | t.

Case 3.1: 2 | s. Since −n1 and n1X1 + pt−s are units in Zp,

(−n1, n1X1 + pt−s)p = 1.
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Therefore,

(−n, nX + 1)p = (−psn1, ps−t(n1X1 + pt−s))p = (−n1, n1X1 + pt−s)p = 1.

Case 3.2: 2 � s. Then ps || n = 4k(a2 + b2). We first show that p ≡ 1 (mod 4). Indeed,
if p ≡ 3 (mod 4), then a2 + b2 can only be divisible by an even power of p, contrary to
the assumption that s is odd. Therefore, p ≡ 1 (mod 4).

Taking (3.9) modulo p shows that X1 is a square modulo p. Therefore, X1 ∈ Z2
p.

Since 2 � s, 2 � s − t, t − s > 0 and (−n1, n1X1 + pt−s)p = 1,

(−n, nX + 1)p = (−psn1, ps−t(n1X1 + pt−s))p = (−pn1, p(n1X1 + pt−s))p

= (p, p)p · (p, n1X1 + pt−s)p · (−n1, p)p · (−n1, n1X1 + pt−s)p

= (−1)(p−1)/2 ·
(n1X1 + pt−s

p

)
·
(−n1

p

)

=

(n1X1

p

)(−n1

p

)
=

(n1

p

)(−n1

p

)
=

(−1
p

)(n1

p

)2
= 1,

because p ≡ 1 (mod 4) and X1 is a square modulo p. �

LEMMA 3.3. We have (−n, nX + 1)∞ = 1.

PROOF. By Lemmas 3.1 and 3.2, (−n, nX + 1)p = 1 for all prime numbers p. Since

(−n, nX + 1)∞ ·
∏

p prime

(−n, nX + 1)p = 1,

it follows that (−n, nX + 1)∞ = 1. �

The consequence of Lemma 3.3 is that the equation −nα2 + (nX + 1)β2 = 1 has real
solutions. Hence, nX + 1 > 0, contradicting nX + 1 < 0 from (3.2).
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