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CAN COHERENT PREDICTIONS BE CONTRADICTORY?
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Abstract

We prove the sharp bound for the probability that two experts who have access to
different information, represented by different σ -fields, will give radically different esti-
mates of the probability of an event. This is relevant when one combines predictions
from various experts in a common probability space to obtain an aggregated forecast.
The optimizer for the bound is explicitly described. This paper was originally titled
‘Contradictory predictions’.
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1. Introduction

Imagine two experts, with access to different information, but sharing the same worldview.
We model this by a probability space (�,F , P) together with two distinct sub-σ -fields G and
H of F . The sub-σ -fields represent the information accessible to the two experts, while the
common probability space represents their worldview, in the sense that, if one of the experts
knew exactly what the other knows, he/she would arrive at exactly the same conclusions. This
set-up is sometimes called the problem of combining experts’ opinions under partial infor-
mation, or more colloquially ‘the wisdom of crowds’, and is a popular topic in statistics and
decision theory. In general there are N experts with their individual sub-σ -fields who are all
trying to predict the probability of a common event A (such as the event that a particular candi-
date will win an election). The usual question is whether there is a coherent way (see Definition
1 below) to combine or aggregate their predictions to come up with a better forecast; see [6, 8,
9, 13]. This field has attracted renewed interest in the current age of social networks (see [12,
18]). In practice most aggregation techniques are simply weighted linear combination of the
individual forecasts. However, [21 and 14] show that linear aggregations are not coherent; they
recommend nonlinear combinations. Building on these earlier works, [22] develops a mathe-
matical framework to combine predictions when experts use ‘partially overlapping information
sources’, and [7] uses this framework for the case of N = 2 experts in prediction markets who
take turns in updating their beliefs. Also see [4, 15, 20] for applications to economics, [17] for
applications to banking and finance, [19] for applications to meteorology, [23] for applications

Received 23 December 2019; revision received 29 June 2020.
∗ Postal address: Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195.
∗∗ Email address: burdzy@uw.edu
∗∗∗ Email address: soumik@uw.edu

© The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust.

133

https://doi.org/10.1017/apr.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.51
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/apr.2020.51&domain=pdf
https://doi.org/10.1017/apr.2020.51


134 K. BURDZY AND S. PAL

to maintenance of wind turbines, and [1, 11] for philosophical implications. The problem is
also related to modeling insider trading in finance [16], where the insider has more informa-
tion than the rest of the traders, i.e., G ⊆H, although the general non-containment scenario
makes sense for two different insiders. For recent developments on the pure-mathematics side,
related to [3] and the present article, see [5].

We ask a different, complementary question, not about the aggregate of the various pre-
dictions, but about their spread. More specifically, we consider N = 2 experts predicting the
possibility of a common event A and derive sharp probabilistic bounds on the range of their
predictions. In particular, we are interested in when this spread is large, a phenomenon that
we call ‘contradictory predictions’. Two people make contradictory predictions if one of them
asserts that the probability of A is very small and the other one says that it is very large. We will
present a theorem formalizing the idea that the two experts are unlikely to make contradictory
predictions even if they have different information sources.

Let us formulate the problem in a quantitative and rigorous manner.

Definition 1. Let A be an event in some probability space (�,F , P), so A ∈F , and let
X = P(A | G) and Y = P(A |H) for two sub-σ -fields G and H of F . Random variables X and
Y satisfying these conditions are called coherent, and so is their joint distribution. Random
variables X and Y are coherent if and only if, for some A ∈F ,

0 ≤ X, Y ≤ 1 and X = P(A | X) and Y = P(A | Y)

(see [3, (1.2)]).

Let

λ(δ) = sup P(|X − Y| ≥ 1 − δ), (1.1)

where the supremum is taken over all probability spaces (�,F , P), all events A ∈F , and all
sub-σ -fields G and H of F . It was proved in Theorem 14.1 of [1] that λ(δ) ≤ 5δ for δ ≤ 1/10.
The following stronger result was proved by Jim Pitman and was published in [2, Thm. 18.1]
with his permission. For all δ ∈ (0, 1),

2δ

1 + δ
≤ λ(δ) ≤ 2δ. (1.2)

The purpose of this article is to remove the gap between the lower and upper bounds, even
though the gap is very small for small δ, i.e., in the most interesting case.

Theorem 1. For all δ ∈ (0, 1/2),

λ(δ) = 2δ

1 + δ
. (1.3)

It has been shown in [3] that λ(δ) is, curiously, discontinuous at δ = 1/2 (see Figure 1).
More precisely, λ(δ) = 1 for δ ≥ 1/2. To see this, construct X and Y so that P(X = 1/2) = 1
and P(Y = 0) = P(Y = 1) = 1/2 (see the discussion around (1.10) in [3]).

As mentioned above, one can interpret X and Y as the opinions of two experts about the
probability of A given different sources of information G and H, assuming the experts agree
on some initial assignment of probability P to events in F . The authors of [6, p. 284] pointed
out the following:

If X and Y are both produced by ‘experts’, then one should not expect them to be wildly
different. For example, it would seem paradoxical if, with X say uniform on [0, 1], one
always had Y = 1 − X.

https://doi.org/10.1017/apr.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.51


Can coherent predictions be contradictory? 135

FIGURE 1: The function λ(δ) is discontinuous at δ = 1/2.

This suggests that X and Y cannot be too negatively dependent. However, elementary
examples in [6, Section 4.1] show that for any prescribed value of EX =EY = P(A) ∈ (0, 1),
the correlation between X and Y can take any value in (− 1, 1]. Consider for instance, for
δ ∈ (0, 1), the distribution of (X, Y) concentrated on the three points (1 − δ, 1 − δ), (0, 1 − δ),
and (1 − δ, 0), with

P(X = Y) = P(1 − δ, 1 − δ) = 1 − δ

1 + δ
and P(0, 1 − δ) = P(1 − δ, 0) = δ

1 + δ
. (1.4)

This example from [10] gives coherent X and Y with correlation ρ(X, Y) = −δ which can be
any value in (− 1, 0).

We end this section with a proof of (1.2) borrowed from [2, Theorem 18.1], because it is
simple and it underscores the huge gap in complexity between the proof of the upper bound in
(1.2) and our proof of the upper bound in (1.3).

Proposition 1. (J. Pitman.) For all δ ∈ (0, 1),

2δ

1 + δ
≤ λ(δ) ≤ 2δ. (1.5)

Proof. We will use notation matching that in the proof of our main theorem.
The lower bound for λ(δ) is attained by the example in (1.4) with A = {X = Y}.
For the upper bound, it will suffice to consider the case 0 < δ < 1/2. Note that for any

0 < δ < 1/2 and any random variables X and Y with 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1,

{|X − Y| ≥ 1 − δ} ⊂ {X ≤ δ, Y ≥ 1 − δ} ∪ {Y ≤ δ, X ≥ 1 − δ}. (1.6)

Since X =E(1A | X),

P(X ≤ δ, Y ≥ 1 − δ, A) ≤ P(X ≤ δ, A) =E(1{X≤δ}X) ≤ δP(X ≤ δ).

We have 1 − Y =E(1Ac | Y), so

P(X ≤ δ, Y ≥ 1 − δ, Ac) ≤ P(Y ≥ 1 − δ, Ac) =E(1{1−Y≤δ}(1 − Y))

≤ δP(Y ≥ 1 − δ).
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It follows that

P(X ≤ δ, Y ≥ 1 − δ) ≤ δ(P(X ≤ δ) + P(Y ≥ 1 − δ)) (1.7)

and similarly

P(Y ≤ δ, X ≥ 1 − δ) ≤ δ(P(Y ≤ δ) + P(X ≥ 1 − δ)). (1.8)

For 0 < δ < 1/2 the events X ≤ δ and X ≥ 1 − δ are disjoint, so P(X ≤ δ) + P(X ≥
1 − δ) ≤ 1, and the same holds for Y. Add (1.7) and (1.8) and use (1.6) to obtain the upper
bound in (1.5). �

2. Proof of Theorem 1

The proof of Theorem 1, our main result, will consist of a sequence of lemmas.
The first of these, Lemma 1, is essentially the proof of Theorem 1 in the case when the

σ -fields G and H are very simple. The lemma is applied only once, at the very end of the proof
of Theorem 1 (at the end of the paper).

Lemma 2 contains an elementary argument showing that one can discretize the problem,
i.e., that it is enough to prove Theorem 1 in the case when G and H are finite.

The remaining lemmas form a reduction argument. Each lemma presents and analyzes a
transformation that either decreases the size of G or H (and does not increase the size of the
other σ -field), or moves the probability mass around the probability space to make it more
‘structured’. The latter aspect of the argument resembles a sliding puzzle with 15 squares, or
a Rubik’s Cube. A more detailed and rigorous description of this part of the proof is given
below, between the proof of Lemma 2 and the statement of Lemma 3.

We end our introductory remarks about the proof with the observation that our proof is
constructive in the following sense. If a probability space is given explicitly, i.e., all relevant
probabilities have known numerical values, then all steps of our argument can be implemented
in an algorithm that will generate a finite sequence of probability spaces such that, for a fixed
δ, the value of P(|X − Y| ≥ 1 − δ) will increase or stay the same with every transformation.
As a result, for any probability space one can effectively construct a much simpler probability
space with P(|X − Y| ≥ 1 − δ) greater than or equal to that for the original probability space.

Fix any δ ∈ (0, 1/2). Most elements of the model (sets, probabilities) will change within
this section, but the value of δ will remain fixed.

Lemma 1. Consider any two events G and H such that P(G) > 0 and P(H) > 0. If

|P(A | G) − P(A | H)| ≥ 1 − δ

then

P(G ∩ H) ≤ δ

1 + δ
(P(G) + P(H)). (2.1)

Proof. Assume without loss of generality that

P(A | G) − P(A | H) ≥ 1 − δ.

Suppose that we can prove that

P((G ∩ Hc) ∪ (H ∩ Gc) | G ∪ H) ≥ P(A | G) − P(A | H). (2.2)
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Then

P(G ∩ H)

P(G ∪ H)
= P(G ∩ H | G ∪ H) = 1 − P((G ∩ Hc) ∪ (H ∩ Gc) | G ∪ H)

≤ 1 − (P(A | G) − P(A | H)) ≤ δ,

and, therefore,

P(G ∩ H) ≤ δP(G ∪ H) = δ(P(G) + P(H)) − δP(G ∩ H),

(1 + δ)P(G ∩ H) ≤ δ(P(G) + P(H)).

This implies (2.1), so it will suffice to prove (2.2).
Let

p1 = P(A | G ∩ Hc), p2 = P(A | G ∩ H), p3 = P(A | Gc ∩ H),

q1 = P(G ∩ Hc), q2 = P(G ∩ H), q3 = P(Gc ∩ H).

Then

P(A | G) − P(A | H) = p1q1 + p2q2

q1 + q2
− p2q2 + p3q3

q2 + q3
≤ q1 + p2q2

q1 + q2
− p2q2

q2 + q3
. (2.3)

For p2 = 0 we obtain

q1 + p2q2

q1 + q2
− p2q2

q2 + q3
= q1

q1 + q2
≤ q1 + q3

q1 + q2 + q3
= P((G ∩ Hc) ∪ (H ∩ Gc) | G ∪ H). (2.4)

For p2 = 1,

q1 + p2q2

q1 + q2
− p2q2

q2 + q3
= q1 + q2

q1 + q2
− q2

q2 + q3
≤ q1 + q3

q1 + q2 + q3

= P((G ∩ Hc) ∪ (H ∩ Gc) | G ∪ H). (2.5)

The right-hand side of (2.3) is a linear function of p2, so (2.3)–(2.5) imply that for all p2 ∈
[0, 1],

P(A | G) − P(A | H) ≤ q1 + p2q2

q1 + q2
− p2q2

q2 + q3
≤ P((G ∩ Hc) ∪ (H ∩ Gc) | G ∪ H).

This completes the proof of (2.2). �
Lemma 2. Recall λ(δ) defined in (1.1), and let

λ′(δ) = sup P(|X − Y| ≥ 1 − δ),

where the supremum is taken over all probability spaces (�,F , P), all events A ∈F , and all
finitely generated sub-σ -fields G and H of F . If λ′(δ) = 2δ/(1 + δ) for all δ ∈ (0, 1/2), then
λ(δ) = 2δ/(1 + δ) for all δ ∈ (0, 1/2).

Proof. It is obvious that λ′(δ) ≤ λ(δ). It remains to prove the opposite inequality.
For n > 1, let Gn be the σ -field generated by the events {k/n ≤ X < (k + 1)/n}, 0 ≤ k ≤ n

(note that k = n is included). Let Xn = P(A | Gn). Since

P({Xn /∈ [k/n, (k + 1)/n)} ∩ {k/n ≤ X < (k + 1)/n}) = 0,
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we have

P(|Xn − X| ≤ 1/n) = 1.

Similarly, let Hn be the σ -field generated by the events {k/n ≤ Y < (k + 1)/n}, 0 ≤ k ≤ n, and
Yn = P(A |Hn). Then

P(|Yn − Y| ≤ 1/n) = 1.

It follows that

P(|X − Y| ≥ 1 − δ) ≤ P(|Xn − Yn| ≥ 1 − δ − 2/n). (2.6)

Since n can be arbitrarily large, (2.6) implies that if one can prove that λ′(δ) = 2δ/(1 + δ) for
all δ ∈ (0, 1/2), then λ(δ) = 2δ/(1 + δ) for all δ ∈ (0, 1/2). �
Notation 1. In view of Lemma 2 we can and will assume from now on that G and H are
finitely generated. Let {G1, G2, . . . , Gm(G)} be the partition of � generating G, and let the
family {H1, H2, . . . , Hm(H)} be defined in the analogous way relative to H.

We will assume without loss of generality that P(Gk) > 0 and P(Hk) > 0 for all k.
Let

pk = P(Gk), 1 ≤ k ≤ m(G), (2.7)

qk = P(Hk), 1 ≤ k ≤ m(H), (2.8)

Cj,k = Gj ∩ Hk, (2.9)

xk = X(ω) for ω ∈ Gk, 1 ≤ k ≤ m(G), (2.10)

yk = Y(ω) for ω ∈ Hk, 1 ≤ k ≤ m(H). (2.11)

Events Ck,j will be called cells. Assume without loss of generality that

x1 ≤ x2 ≤ · · · ≤ xm(G), y1 ≤ y2 ≤ · · · ≤ ym(H). (2.12)

In Figure 2, the values of xk grow from the left to the right, and the values of yk grow from the
bottom to the top.

Let
m−(G) = max{k : ∃j such that yj − xk ≥ 1 − δ}, (2.13)

m+(G) = min{k : ∃j such that xk − yj ≥ 1 − δ}, (2.14)

m−(H) = max{k : ∃j such that xj − yk ≥ 1 − δ}, (2.15)

m+(H) = min{k : ∃j such that yk − xj ≥ 1 − δ}. (2.16)

By convention, max(∅) = 0 and min(∅) = ∞. Let

B = {|X − Y| ≥ 1 − δ}. (2.17)
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FIGURE 2: White represents ‘empty’ cells, i.e., cells Ck,j such that P(Ck,j) = 0. Red designates ‘cells in
Ac’, i.e., cells Ck,j such that P(Ck,j) > P(Ck,j ∩ A) = 0. Blue designates ‘cells in A’, i.e., cells Ck,j such
that P(Ck,j) > P(Ck,j ∩ Ac) = 0. Rectangles colored both red and blue represent cells Ck,j that contain
both A and Ac, i.e., P(Ck,j ∩ A) > 0 and P(Ck,j ∩ Ac) > 0. The event B is contained within two thick
closed polygonal lines. In this illustration, m(G) = m(H) = 13, m−(G) = 6, m+(G) = 9, m−(H) = 5, and
m+(H) = 8. Cells have different areas to illustrate the point that their probabilities may be unequal, but
no conditions on probability values should be inferred from cell areas.

The definitions (2.13)–(2.16) are illustrated in Figure 2 as follows. The projection of the set B
(the cells within two closed thick polygonal lines) onto the horizontal axis consists of the two
disjoint intervals [1, m−(G)] and [m+(G), m(G)]. The projection of the set B onto the vertical
axis consists of the two disjoint intervals [1, m−(H)] and [m+(H), m(H)].

We will define a number of transformations of the probability space (�,F , P), event A, and
σ -fields G and H. We will denote the transformed objects by (�′,F ′, P), A’, G′, and H′. We
will also write in a similar manner X’, pk

′, xk
′, etc. Note that the only exception to this rule is

P. We will write P instead of P′ (except in Lemma 3) even though the transformed probability
measure is not necessarily equal to the original one. This should not cause any confusion. We
will denote our transformations by T1, T2, etc., and we will write

S = (�,F , P, A, G,H), S′ = (�′,F ′, P, A′, G′,H′), T (S) = S′.
All objects that are not listed in the definition of S (for example X, Y, and those in (2.7)–(2.11))
are uniquely defined given S.

Our definitions of transformations will contain some assumptions about S. If the assump-
tions are not satisfied, the transformation should be interpreted as the identity, i.e., T (S) = S.

Note that P(B) = ∑
1≤j≤m(G),1≤k≤m(H) P(Cj,k ∩ B). Most of our transformations will satisfy

the following three conditions:
P(B′) =

∑
1≤j≤m′(G′),1≤k≤m′(H′)

P(C′
j,k ∩ B′) ≥

∑
1≤j≤m(G),1≤k≤m(H)

P(Cj,k ∩ B) = P(B), (2.18)

m′(G′) ≤ m(G), m′(H′) ≤ m(H). (2.19)

If ∑
1≤j≤m−(G),1≤k≤m(H)

P(Cj,k ∩ B) > 0 and
∑

m+(G)≤j≤m(G),1≤k≤m(H)

P(Cj,k ∩ B) > 0, (2.20)
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140 K. BURDZY AND S. PAL

then ∑
1≤j≤m′−(G′),1≤k≤m′(H′)

P(C′
j,k ∩ B′) > 0 and (2.21)

∑
m′+(G′)≤j≤m′(G′),1≤k≤m′(H′)

P(C′
j,k ∩ B′) > 0.

The meaning of the condition in (2.20)–(2.21) is that if the part of B in the upper left corner
in Figure 2 is non-empty and has a strictly positive P-measure, and the same is true for the part
of B in the lower right corner, then the same holds for S′.

Lemma 3. Suppose that S is given and P(B) > 0. Then for every ε > 0 there exists S′ such that
P(B′) > P(B) − ε, m′(G′) ≤ m(G) + 1, m′(H′) ≤ m(H) + 1, and (2.21) holds.

Proof. Since P(B) > 0, we must have either m−(G) ≥ 1, m+(H) ≤ m(H), and∑
1≤j≤m−(G),1≤k≤m(H)

P(Cj,k ∩ B) > 0, (2.22)

or m−(H) ≥ 1, m+(G) ≤ m(G), and ∑
m+(G)≤j≤m(G),1≤k≤m(H)

P(Cj,k ∩ B) > 0. (2.23)

By symmetry, it will suffice to discuss only one of these cases.
Suppose that m−(G) ≥ 1, m+(H) ≤ m(H), and (2.22) holds. If m−(H) ≥ 1, m+(G) ≤ m(G),

and (2.23) is true, then we set S′ = S and we are done. Suppose otherwise. We will assume that
m−(H) = 0 and m+(G) = ∞. It is easy to see that the argument given below applies also in the
case when m−(H) ≥ 1, m+(G) ≤ m(G), and (2.23) does not hold.

Let

�′ = � ∪ {ω′
k,0:1 ≤ k ≤ m(G) + 1} ∪ {ω′

m(G)+1,j:1 ≤ j ≤ m(H)},
where the ω′

k,j are all distinct and do not belong to �. Let

C′
k,j = Ck,j, 1 ≤ k ≤ m(G), 1 ≤ j ≤ m(H),

C′
k,0 = {ω′

k,0}, 1 ≤ k ≤ m(G) + 1,

C′
m(G)+1,j = {ω′

m(G)+1,j}, 1 ≤ j ≤ m(H),

G′
k =

⋃
0≤j≤m(H)

C′
k,j, 1 ≤ k ≤ m(G) + 1,

H′
j =

⋃
1≤k≤m(G)+1

C′
k,j, 0 ≤ j ≤ m(H),

G′ = σ {G′
k, 1 ≤ k ≤ m(G) + 1},

H′ = σ {H′
j, 0 ≤ j ≤ m(H)},

A′ = A ∪ G′
m(G)+1.
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Fix any ε > 0. Let ε1 > 0 be so small that

P(B)(1 − ε1/2 − ε1/4) > P(B) − ε. (2.24)

It is elementary to see that we can define a probability measure P
′ on �′ with the following

properties:

P
′
(

H′
0 \ C′

m(G)+1,0

)
= ε1/2,

P
′
(

C′
m(G)+1,0

)
> 0,

P
′
(

G′
m(G)+1

)
= ε1δ/4,

P
′(F) = (1 − ε1/2 − ε1δ/4)P(F), F ⊂ �.

Note that xm(G)+1 = 1 and

y0 = P(A′ ∩ H′
0)

P(H′
0)

≤
P

(
C′

m(G)+1,0

)
P

(
H′

0 \ C′
m(G)+1,0

) ≤
P

(
G′

m(G)+1

)
P

(
H′

0 \ C′
m(G)+1,0

) = ε1δ/4

ε1/2
= δ/2.

Hence, C′
m(G)+1,0 ⊂ B′. Let us shift the index for the generators H′

j of H′ so that the generators
are H′

1, H′
2, . . . , H′

m(H)+1. We see that m′(G′) = m(G) + 1, m′(H′) = m(H) + 1, m′−(H′) ≥ 1,
m′+(G′) ≤ m′(G′), and (2.21) holds. It remains to note that, in view of (2.24),

P
′(B′) ≥ P

′(B) = P(B)(1 − ε1/2 − ε1δ/4) > P(B) − ε. �
Lemma 4. Suppose that for some S, j1, and k1, we have P(Cj1,k1 ∩ A) = p1 > 0, and consider
any p2 ∈ (0, p1). There exists S′ such that m′(G′) = m(G), m′(H′) = m(H),

P(C′
j,k ∩ A′) = P(Cj,k ∩ A), P(C′

j,k ∩ (A′)c) = P(Cj,k ∩ Ac),

for all 1 ≤ j ≤ m(G) and 1 ≤ k ≤ m(H), and there exists an event F ⊂ C′
j1,k1

∩ A′ with
P(F) = p2. Moreover, the conditions (2.18)–(2.21) are satisfied.

Proof. Let �′ be defined as follows:

�′ = {ω′
j,k,1}1≤j≤m(G),1≤k≤m(H) ∪ {ω′

j,k,2}1≤j≤m(G),1≤k≤m(H) ∪ {ω′
j1,k1,3},

where all listed elements are distinct. Let

C′
j,k ∩ A′ = {ω′

j,k,1}, C′
j,k ∩ (A′)c = {ω′

j,k,2},
for all 1 ≤ j ≤ m(G) and 1 ≤ k ≤ m(H), except that C′

j1,k2
∩ A′ = {ω′

j1,k1,1
, ω′

j1,k1,3
}. Let

F = {ω′
j1,k1,1

}.
Define the probability measure on �′ by

P(C′
j,k ∩ A′) = P(Cj,k ∩ A), P(C′

j,k ∩ (A′)c) = P(Cj,k ∩ Ac),

for all 1 ≤ j ≤ m(G) and 1 ≤ k ≤ m(H), and

P(F) = P({ω′
j1,k1,1}) = p2, P({ω′

j1,k1,3}) = p1 − p2.

It is elementary to check that S′ satisfies the lemma. �
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Lemma 5. Suppose that there exists k ∈ {1, . . . , m(G) − 1} such that for every j ∈
{1, . . . , m(H)} we have

Ck,j ∪ Ck+1,j ⊂ B or P((Ck,j ∪ Ck+1,j) ∩ B) = 0. (2.25)

Then there exists S′ such that (2.18) and (2.20)–(2.21) are satisfied, and

m′(G′) = m(G) − 1, m′(H′) ≤ m(H). (2.26)

In graphical terms, the condition (2.25) means that the thick polygonal line extends in a
straight fashion along the boundaries of at least two consecutive cells in the interior of the
rectangle in Figure 2. There are several such ‘long’ thick line segments in Figure 2.

Proof of Lemma 5. Let

G′
j = Gj, 1 ≤ j < k, (2.27)

G′
k = Gk ∪ Gk+1, (2.28)

G′
j = Gj+1, k + 1 ≤ j ≤ m(G) − 1. (2.29)

Let G′ be the σ -field generated by {G′
j}1≤j≤m(G)−1. All other objects in S remain unchanged;

for example, A′ = A, H′ =H, etc. It follows from (2.27)–(2.29) that for 1 ≤ j ≤ m(H),

C′
r,j = Cr,j, 1 ≤ r < k,

C′
k,j = Ck,j ∪ Ck+1,j,

C′
r,j = Cr+1,j, k + 1 ≤ r ≤ m(G) − 1.

Hence, to prove (2.18), it will suffice to show that for all j,

P(C′
k,j ∩ B) ≥ P(Ck,j ∩ B) + P(Ck+1,j ∩ B). (2.30)

It is elementary to check that (2.28) implies that xk ≤ x′
k ≤ xk+1. In view of (2.25), for every j,

we have either

|xk − yj| ≥ 1 − δ and |xk+1 − yj| ≥ 1 − δ (2.31)

or

|xk − yj| < 1 − δ and |xk+1 − yj| < 1 − δ. (2.32)

If (2.31) is true then |x′
k − yj| ≥ 1 − δ, so C′

k,j ⊂ B, and therefore (2.30) is satisfied. In the
case (2.32), the condition (2.30) holds because the right-hand side is 0. We have finished the
proof of (2.18).

It follows from (2.27)–(2.29) that (2.26) is satisfied.
Some cells that belong to B can coalesce in the upper left corner in Figure 2, if there are any

to start with, but they cannot disappear. The same remark applies to the lower right corner, so
the condition (2.20)–(2.21) holds. �
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Lemma 6. For any S there exists S′ such that (2.18)–(2.21) are satisfied and

m′−(G′) = m′(H′) − m′+(H′) + 1, (2.33)

m′−(H′) = m′(G′) − m′+(G′) + 1, (2.34)

y′
m′(H′)−k+1

− x′
k ≥ 1 − δ, 1 ≤ k ≤ m′−(G′), (2.35)

y′
m′(H′)−k+1

− x′
k+1 < 1 − δ, 1 ≤ k ≤ m′−(G′), (2.36)

y′
m′(H′)−k

− x′
k < 1 − δ, 1 ≤ k ≤ m′−(G′), (2.37)

x′
m′(G′)−k+1

− y′
k ≥ 1 − δ, 1 ≤ k ≤ m′−(H′), (2.38)

x′
m′(G′)−k+1

− y′
k+1 < 1 − δ, 1 ≤ k ≤ m′−(H′), (2.39)

x′
m′(G′)−k

− y′
k < 1 − δ, 1 ≤ k ≤ m′−(H′), (2.40)

x′
1 < x′

2 < · · · < x′
m(G′), and y′

1 < y′
2 < · · · < y′

m(H′). (2.41)

Moreover,

S′ = S or m′(G′) < m(G) or m′(H′) < m(H). (2.42)

Proof. We apply the transformation defined in Lemma 5 repeatedly, as long as there is some
k satisfying (2.25). In view of (2.26), these transformations strictly decrease m(G), so they have
to stop at some point, either when m(G) = 1 or when (2.25) is not satisfied any more. Then we
exchange the roles of G and H and we collapse pairs of ‘rows’ Hk and Hk+1 into H′

k in a similar
manner until the condition analogous to (2.25) fails.

If S′ is the final result of the transformations described above then S′ may be represented
graphically as follows. The thick polygonal line must turn at every cell corner in the interior
of the rectangle (see Figure 4), so that the condition (2.25) is not satisfied, and neither is its
analogue with the roles of G and H exchanged. In other words, the boundary of B in the interior
of the rectangle is a zigzag line that turns at every opportunity. It is elementary to check that
the conditions (2.33)–(2.40) are a rigorous version of this graphical description.

To see that (2.41) holds, recall that we have weak inequalities in view of (2.12). If any
weak inequality in the first set is an equality, say x′

k = x′
k+1, then (2.25) is satisfied and we

can reduce the number of generators m′(G′) using the transformation defined in Lemma 5. A
similar argument applies to the second set of inequalities in (2.41). However, by the argument
given in the first part of this proof, m′(G′) and m′(H′) cannot be decreased any more by the
transformation defined in Lemma 5, so (2.41) must be true.

The conditions (2.18)–(2.21) are satisfied because this is the case for the transformation
defined in Lemma 5. The alternative stated in (2.42) follows from (2.26). �
Notation 2. If (k, j) = (k, m(H) − k + 1) and the conditions (2.35)–(2.37), without primes, are
satisfied, then we will write (k, j) ∈D−. If (j, k) = (m(G) − k + 1, k) and the conditions (2.38)–
(2.40), without primes, are satisfied, then we will write (j, k) ∈D+. In Figure 4, the cells
belonging to D− and D+ are crossed. The set D− ∪D+ is the ‘internal border’ of B. Note
that if (k, j) ∈D− then xk ≤ δ and yj ≥ 1 − δ. If (k, j) ∈D+ then xk ≥ 1 − δ and yj ≤ δ.

Lemma 7. Suppose that S satisfies (2.33)–(2.41) and there exist k ∈ {1, . . . , m(G) − 1} and
i ∈ {1, . . . , m(H)} such that

Ck,i ⊂ B, Ck+1,i ⊂ Bc, P(Ck,i) = 0. (2.43)
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FIGURE 3: This configuration S′ has been obtained by transforming the S of Figure 2 according to (2.46).
For the meanings of the colors and thick lines, see Figure 2. Columns G4 and G5 in Figure 2 have been
combined to form column G′

4 in the present figure. This is because in row H9 in Figure 2, the rightmost
cell in B (within the thick polygonal line) is white, i.e., its probability is 0.

Then there exists S′ such that (2.18) and (2.20)–(2.21) are satisfied, and

m′(G′) = m(G) − 1, m′(H′) ≤ m(H). (2.44)

The condition (2.43) is illustrated in Figure 2 as follows: in row H9, the rightmost cell in B
(within the thick polygonal line) is white; i.e., its probability is 0. The transformation defined
in Lemma 7 is illustrated in Figures 2 and 3 (see the caption of Figure 3).

Proof of Lemma 7. Let
G′

j = Gj, 1 ≤ j < k, (2.45)

G′
k = Gk ∪ Gk+1, (2.46)

G′
j = Gj+1, k + 1 ≤ j ≤ m(G) − 1. (2.47)

Let G′ be the σ -field generated by {G′
j}1≤j≤m(G)−1. All other objects in S remain unchanged;

for example, A′ = A, H′ =H, etc. It follows from (2.45)–(2.47) that for 1 ≤ j ≤ m(H),

C′
r,j = Cr,j, 1 ≤ r < k, (2.48)

C′
k,j = Ck,j ∪ Ck+1,j, (2.49)

C′
r,j = Cr+1,j, k + 1 ≤ r ≤ m(G) − 1. (2.50)

Hence, to prove (2.18), it will suffice to show that for all j,

P(C′
k,j ∩ B′) ≥ P(Ck,j ∩ B) + P(Ck+1,j ∩ B). (2.51)

It is elementary to check that (2.46) implies that xk ≤ x′
k ≤ xk+1.

Consider j �= i. It follows from the conditions (2.33)–(2.40) (see the remark about the zigzag
line in the proof of Lemma 6) that

Ck,j ∪ Ck+1,j ⊂ B or P((Ck,j ∪ Ck+1,j) ∩ B) = 0.
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In the first case,

|xk − yj| ≥ 1 − δ and |xk+1 − yj| ≥ 1 − δ.

This implies that |x′
k − y′

j| = |x′
k − yj| ≥ 1 − δ, so C′

k,j ⊂ B′, and therefore

P(C′
k,j ∩ B′) = P(C′

k,j) = P(Ck,j) + P(Ck+1,j) ≥ P(Ck,j ∩ B) + P(Ck+1,j ∩ B).

Hence (2.51) is satisfied.
If P((Ck,j ∪ Ck+1,j) ∩ B) = 0, then (2.51) holds because its right-hand side is 0.
In the case when j = i, our assumptions (2.43) imply that P(Ck,i ∩ B) = P(Ck+1,i ∩ B) = 0,

so we conclude that (2.51) is true. This completes the proof of (2.18).
It follows from (2.45)–(2.47) that (2.44) is satisfied.
The condition (2.20)–(2.21) follows from (2.48)–(2.51). �

Lemma 8. For any S there exists S′ such that (2.18)–(2.21) and (2.33)–(2.41) are satisfied,
and P(C′

i,j) > 0 for all (i, j) ∈D′− ∪D′+.

Proof. Let T1 denote the transformation defined in Lemma 6.
Lemma 7 can be obviously generalized to any situation when Ck,i ⊂ B, P(Ck,i) = 0, and Ck,i

is adjacent to a cell in Bc. Fix any order, denoted ≺, for the set of pairs of cells. Let T2 denote
the transformation defined in Lemma 7, applied to the first pair of cells (according to the
order ≺) satisfying the generalized conditions described at the beginning of this paragraph.
Recall that, by convention, if there is no such pair of cells then T2(S) = S.

Let S0 = S and Sk = T1(T2(Sk−1)) for k ≥ 1. The transformations T1 and T2 decrease m(G)
or m(H), unless they act as the identity transformation, by (2.42) and (2.44). Hence, for some
k1 and all k ≥ k1, Sk = Sk1 . We let S′ = Sk1 and note that T1(S′) = T2(S′) = S′. This implies that
S′ must satisfy the properties listed in Lemmas 6 and 7, i.e., (2.33)–(2.41), and the property
that there is no cell Ck,i ⊂ B that is adjacent to a cell in Bc and such that P(Ck,i) = 0. A different
way of saying this is that P(C′

i,j) > 0 for all (i, j) ∈D′− ∪D′+.
The conditions (2.18)–(2.21) hold for the transformation defined in this proof because they

hold for T1 and T2. �
Lemma 9. Suppose that S satisfies the conditions (2.33)–(2.41). There exists S′′ such that
(2.18)–(2.21) and (2.33)–(2.41) hold, and

P(C′′
k,j) > P(C′′

k,j ∩ (A′′)c) = 0 or P(C′′
k,j) > P(C′′

k,j ∩ A′′) = 0, (2.52)

for all (k, j) ∈D′′− ∪D′′+.

We have used double primes in the statement of the lemma so that S′′ will not be confused
with the S′ constructed in the first step of the proof.

Proof of Lemma 9. The main idea of the proof is to fix (k, j) ∈D− ∪D+ and move as much
as possible of Ac inside Ck,j to A without destroying those properties of S that need to be
preserved. If this is not possible, a similar transformation is applied to A in place of Ac. Then
the transformation is repeatedly applied to all (k, j) ∈D− ∪D+.

First we apply the transformation defined in Lemma 8, if necessary, so that we can assume
that (2.20) and (2.33)–(2.41) are satisfied for S, and P(Ci,j) > 0 for all (i, j) ∈D− ∪D+.

Step 1. Consider any (k, j) ∈D− ∪D+. If

P(Ck,j ∩ (A)c) = 0 or P(Ck,j ∩ A) = 0, (2.53)
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then we let S′ = S and we let T3(k, j) act as the identity transformation, i.e., T3(k, j)(S) = S. In
this case at least one of the conditions in (2.65) (see below) holds.

Otherwise we proceed as follows. Assume that (k, j) ∈D− and

pk ≥ qj. (2.54)

Let α ≥ 0 be the largest real number such that the following three conditions are satisfied:

α

pk
+ xk ≤ xk+1 ∧ δ, (2.55)

α

qj
+ yj ≤ yj+1 ∧ 1, (2.56)

α ≤ P(Ck,j ∩ Ac). (2.57)

Here, if k = m(G) then, by convention, xk+1 = ∞, and similarly, if j = m(H) then yj+1 = ∞. At
least one of the inequalities (2.55)–(2.57) is an equality.

We make F finer, if necessary (see Lemma 4), and find an event A∗ ⊂ Ck,j ∩ Ac such that
P(A∗) = α. Then we let A′ = A ∪ A∗. The other elements of S remain unchanged. We have
assumed that (2.53) does not hold, so

P(C′
k,j) ≥ P(C′

k,j ∩ A′) ≥ P(Ck,j ∩ A) > 0. (2.58)

We have

xk
′ = α

pk
+ xk, (2.59)

x′
i = xi, for i �= k, (2.60)

y′
j =

α

qj
+ yj, (2.61)

y′
i = yi, for i �= j. (2.62)

Clearly, the condition (2.19) is satisfied. To prove (2.18) and (2.20)–(2.21), it will suffice to
show that for all i and n,

if |xn − yi| ≥ 1 − δ then |x′
n − y′

i| ≥ 1 − δ. (2.63)

In view of (2.59)–(2.62), (2.63) holds if n �= k and i �= j.
The conditions (2.41) and (2.35)–(2.37) and the assumption that (k, j) ∈D− imply that |xk −

yi| ≥ 1 − δ if and only if i ≥ j. It follows from (2.54), (2.59), and (2.61)–(2.62) that if i ≥ j, then

y′
i − x′

k ≥ y′
j − x′

k = α

qj
+ yj − α

pk
− xk ≥ yj − xk ≥ 1 − δ.

This proves (2.63) for n = k and all i.

https://doi.org/10.1017/apr.2020.51 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.51


Can coherent predictions be contradictory? 147

The conditions (2.41) and (2.35)–(2.37) and the assumption that (k, j) ∈D− imply that |xn −
yj| ≥ 1 − δ if and only if n ≤ k. It follows from (2.54), (2.55), (2.59)–(2.60), and (2.61) that if
n ≤ k, then

y′
j − x′

n ≥ y′
j − x′

k = α

qj
+ yj − α

pk
− xk ≥ yj − xk ≥ 1 − δ.

This completes the proof of (2.63) for i = j and all n. Hence, (2.18) and (2.20)–(2.21) hold true.
Recall that at least one of the inequalities (2.55)–(2.57) is an equality. We list all possible

cases below:

• If x′
k = α/pk + xk = δ then we must have y′

j = 1 in view of (2.63). This implies that
P(C′

k,j ∩ (A′)c) = 0.

• If x′
k = α/pk + xk = xk+1 < δ then x′

k = x′
k+1.

• If y′
j = α/qj + yj = 1 then P(C′

k,j ∩ (A′)c) = 0.

• If y′
j = α/qj + yj = yj+1 < 1 then y′

j = y′
j+1.

• If α = P(Ck,j ∩ Ac) then P(C′
k,j ∩ (A′)c) = 0.

These observations and (2.58) allow us to conclude that x′
k = x′

k+1 or y′
j = y′

j+1 or P(C′
k,j) >

P(C′
k,j ∩ (A′)c) = 0.

A completely analogous argument shows that if (2.54) does not hold then we can transform
S into S′ such that (2.18)–(2.21) are true, and we have the alternatives x′

k = x′
k−1 or y′

j = y′
j−1

or P(C′
k,j) > P(C′

k,j ∩ A′) = 0.
We next replace the assumption that (k, j) ∈D− with (k, j) ∈D+. Once again, we can apply

the analogous argument to conclude that we can construct S′ satisfying (2.18)–(2.21) and
such that x′

k = x′
k+1 or y′

j = y′
j+1 or P(C′

k,j) > P(C′
k,j ∩ (A′)c) = 0 or x′

k = x′
k−1 or y′

j = y′
j−1 or

P(C′
k,j) > P(C′

k,j ∩ A′) = 0.
We see that if (k, j) ∈D− ∪D+, then

x′
k = x′

k+1 or y′
j = y′

j+1 or x′
k = x′

k−1 or y′
j = y′

j−1, (2.64)

or

P(C′
k,j) > P(C′

k,j ∩ (A′)c) = 0 or P(C′
k,j) > P(C′

k,j ∩ A′) = 0. (2.65)

Let T3(k, j) be the transformation defined in this step.
Step 2. Let ≺ denote an arbitrary order for the set of pairs (k, j). Let T3 be defined as T3(k, j)

applied to the first pair (k, j) (in the sense of the order ≺) such that (2.53) does not hold.
Let T4 denote the transformation defined in Lemma 6.
Let S0 = S and Sk = T3(T4(Sk−1)) for k ≥ 1. The transformation T4 strictly decreases

m(G) or m(H), unless it acts as the identity transformation. Hence, for some n1 and all k ≥ n1,
Sk = T3(Sk−1). This implies that for k ≥ n1, Sk satisfies (2.41), and this in turn implies that
(2.64) cannot be true for Sk.

Since none of the conditions in (2.64) can hold, one of the conditions in (2.65) must be true
for Sk, k ≥ n1. Note that T3(k, j) does not change Cn,i ∩ A or Cn,i ∩ Ac unless (n, i) = (k, j).
Hence, for some n2 ≥ n1 and all k ≥ n2, Sk = T3(Sn2 ). We let S′′ = Sn2 .

The conditions (2.18)–(2.21) hold for the transformation defined in this proof because they
hold for T3 and T4. �
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Consider four cells that lie at the corners of a rectangle, i.e., the cells Ck1,j1 , Ck2,j2 , Ck1,j2 ,
and Ck2,j1 for some j1, j2, k1, and k2. The transformation defined in the next lemma moves as
much as possible of A from the upper left corner to the lower left corner, and compensates by
moving the same amount of A from the lower right corner to the upper right corner. The result
of the transformation is that one of the four cells will not hold any A.

Lemma 10. Suppose that for some S, 1 ≤ k1 < k2 ≤ m(G), and 1 ≤ j2 < j1 ≤ m(H), we have

p := min (P(A ∩ Ck1,j1 ), P(A ∩ Ck2,j2 )) > 0. (2.66)

Assume that

Ck1,j1 ∪ Ck2,j2 ∪ Ck1,j2 ∪ Ck2,j1 ⊂ B, or (2.67)

Ck1,j1 ∪ Ck1,j2 ⊂ B and Ck2,j1 ∪ Ck2,j2 ⊂ Bc, or (2.68)

Ck1,j1 ∪ Ck1,j2 ⊂ Bc and Ck2,j1 ∪ Ck2,j2 ⊂ B, or (2.69)

Ck1,j1 ∪ Ck2,j1 ⊂ B and Ck1,j2 ∪ Ck2,j2 ⊂ Bc, or (2.70)

Ck1,j1 ∪ Ck2,j1 ⊂ Bc and Ck1,j2 ∪ Ck2,j2 ⊂ B. (2.71)

Then there exists S′ such that m′(G′) = m(G), m′(H′) = m(H),

P(C′
k1,j1 ) = P(Ck1,j1 ) − p, (2.72)

P(C′
k2,j2

) = P(Ck2,j2 ) − p, (2.73)

P(C′
k1,j2

) = P(Ck1,j2 ) + p, (2.74)

P(C′
k2,j1 ) = P(Ck2,j1 ) + p, (2.75)

and P(C′
k,j) = P(Ck,j) for all other values of (k, j).

Moreover, (2.20)–(2.21) hold. The condition (2.18) holds with equality.

Proof. We can make F finer, if necessary (see Lemma 4), so that there exist sets
A1 ⊂ A ∩ Ck1,j1 and A2 ⊂ A ∩ Ck2,j2 such that P(A1) = P(A2) = p. Let

C′
k1,j1

= Ck1,j1 \ A1, C′
k2,j2

= Ck2,j2 \ A2,

C′
k1,j2

= Ck1,j2 ∪ A1, C′
k2,j1

= Ck2,j1 ∪ A2.

For all other values of (k, j), we let C′
k,j = Ck,j. These transformations redefine the Gk, the

Hj, G, and H. The other elements of S are unaffected.
It is clear that (2.72)–(2.75) are satisfied and P(C′

k,j) = P(Ck,j) for all other values of (k, j).
It is easy to check that p′

k = pk, q′
k = qk, x′

k = xk, and y′
k = yk for all k. Therefore, C′

k,j ⊂ B′
if and only if Ck,j ⊂ B, for every (k, j).
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Suppose that (2.68) is true. Then

P(C′
k1,j1

∩ B′) + P(C′
k1,j2

∩ B′)

= P(C′
k1,j1

) + P(C′
k1,j2

) = P(Ck1,j1 ) − p + P(Ck1,j2 ) + p

= P(Ck1,j1 ) + P(Ck1,j2 ) = P(Ck1,j1 ∩ B) + P(Ck1,j2 ∩ B), (2.76)

and

P(C′
k2,j1

∩ B′) + P(C′
k2,j2

∩ B′) = 0 = P(Ck2,j1 ∩ B) + P(Ck2,j2 ∩ B).

These formulas and the fact that P(C′
k,j) = P(Ck,j) for all other values of (k, j) imply that (2.18)

holds with equality.
It follows from (2.68) that either j1, j2 ≤ m−(H) or j1, j2 ≥ m+(H). This and (2.76) imply

that (2.20)–(2.21) hold.
One can prove that (2.20)–(2.21) hold and (2.18) holds with equality under any of the

assumptions (2.67)–(2.71) in a similar manner.
The condition (2.19) obviously holds. �

Notation 3. We will use T � ((k1, j1), (k2, j2)) to denote the transformation defined in Lemma

10. We define a transformation T c� ((k1, j1), (k2, j2)) by replacing A with Ac in the assumption

(2.66) and the construction of T� ((k1, j1), (k2, j2)).

If the assumptions of Lemma 10 do not hold then T� ((k1, j1), (k2, j2)) will denote the

identity transformation, and similarly for T c� ((k1, j1), (k2, j2)).

The transformation defined in the next lemma converts the top right family of cells in
Figure 4 into subsets of A. It also converts the bottom left family of cells in Figure 4 into
subsets of Ac.

Lemma 11. Given S, let

A′ =
⎛
⎝A ∪

⋃
m−(G)<k≤m(G),m−(H)<j≤m(H)

Ck,j

⎞
⎠

∖ ⎛
⎝ ⋃

1≤k<m+(G),1≤j<m+(H)

Ck,j

⎞
⎠ . (2.77)

Let all other elements of S′ be the same as those of S. Then the conditions (2.18)–(2.21) hold.

Proof. The condition (2.19) clearly holds.
Note that

x′
k ≤ xk, for 1 ≤ k ≤ m−(G),

y′
k ≤ yk, for 1 ≤ k ≤ m−(H),

x′
k ≥ xk, for m+(G) ≤ k ≤ m(G),

y′
k ≥ yk, for m+(H) ≤ k ≤ m(H).

These observations and (2.13)–(2.16) imply that B ⊂ B′, and therefore (2.18) and
(2.20)–(2.21) hold. �

The transformation defined in the next lemma empties all cells in the ‘bottom right corner
of the upper left corner’ (marked in green in Figure 4), and similarly on the other side of the
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1

8

FIGURE 4: (Color coded) For the meanings of the white, red, and blue colors and the thick lines, see the
caption of Figure 2. Green has the same meaning as white: it represents ‘empty’ cells, i.e., cells Ck,j such
that P(Ck,j) = 0. The green cells are the cells that were ‘emptied’ in Step 1 of the proof of Lemma 12.
Every crossed cell belongs either to D− or to D+ and must satisfy P(Ck,j) > 0 and either P(Ck,j ∩ A) = 0
or P(Ck,j ∩ Ac) = 0. All cells below D− are in Ac or empty. All cells above D+ are in A or empty. All
cells to the right of D− are in A or empty. All cells to the left of D+ are in Ac or empty. If a cell is below
a cell in D− and to the right of a (different) cell in D−, then it is empty. If a cell is above a cell in D+
and to the left of a (different) cell in D+, then it is empty.

diagonal. The result of the transformations described in Lemmas 11–12 is that large regions in
Figure 4 do not have cells that would hold both A and Ac.

Lemma 12. Consider an S such that (2.20) holds. Then there exists S′ such that the conditions
(2.18)–(2.21), (2.33)–(2.41), and (2.52) hold, and

P((G′
k \ B′) ∩ A′) = 0 for 1 ≤ k ≤ m−(G′), (2.78)

P((H′
k \ B′) ∩ A′) = 0 for 1 ≤ k ≤ m−(H′), (2.79)

P((G′
k \ B′) ∩ (A′)c) = 0 for m+(G) ≤ k ≤ m(G), (2.80)

P((H′
k \ B′) ∩ (A′)c) = 0 for m+(H) ≤ k ≤ m(H). (2.81)

Proof. Step 1. It follows from (2.20) that m−(G) ≥ 1, m+(H) ≤ m(H), m−(H) ≥ 1, and
m+(G) ≤ m(G). Consider k and j such that k ≤ m−(G), j ≥ m+(H), and Ck,j ⊂ Bc. Let C′

k,j = ∅.
If P(A | Ck,j) < 1 − δ then let A′ = A \ Ck,j and C′

k,1 = Ck,1 ∪ Ck,j.
If P(A | Ck,j) ≥ 1 − δ then let A′ = A ∪ Ck,j and C′

m(G),j = Cm(G),j ∪ Ck,j.
These changes will affect G and H. Other elements of S will be unchanged.
It is easy to check that x′

k ≤ xk, x′
m(G) ≥ xm(G), y′

1 ≤ y1, and y′
j ≥ yj. All other xi and yi will

be unaffected. For all i and n such that Ci,n ⊂ B, P(C′
i,n) = P(Ci,n). Hence, in view of (2.13)–

(2.16), we see that (2.18)–(2.21) hold. We also have

A ∩
⋃

m−(G)<k≤m(G),m−(H)<j≤m(H)

Ck,j ⊂ A′ ∩
⋃

m′−(G′)<k≤m′(G′),m′−(H′)<j≤m′(H′)
C′

k,j, (2.82)
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A′ ∩
⋃

1≤k<m′+(G′),1≤j<m′+(H′)
C′

k,j ⊂ A ∩
⋃

1≤k<m+(G),1≤j<m+(H)

Ck,j. (2.83)

We repeat the transformation for all k and j such that k ≤ m−(G), j ≥ m+(H), and Ck,j ⊂ Bc.
The result is that C′

k,j = ∅ for all such pairs (k, j). Moreover, (2.18)–(2.21) and (2.82)–(2.83)
hold.

We apply an analogous sequence of transformations corresponding to all pairs (k, j) such
that k ≥ m+(G), j ≤ m−(H), and Ck,j ⊂ Bc. The result is, once again, that C′

k,j = ∅ for all such
pairs (k, j). The conditions (2.18)–(2.21) and (2.82)–(2.83) still hold. Note that A and A′ do not
exchange roles in (2.82)–(2.83); i.e., these conditions hold as stated.

We will denote the composition of all transformations defined in this step by T5.
For later reference, we record the following properties of S′ = T5(S):

C′
k,j = ∅ if k ≤ m−(G), j ≥ m+(H), and C′

k,j ⊂ Bc; (2.84)

C′
k,j = ∅ if k ≥ m+(G), j ≤ m−(H), and C′

k,j ⊂ Bc. (2.85)

Step 2. Let T6, T7, and T8 denote the transformations defined in Lemmas 11, 9, and 6. Let
S0 = S and Sk = T5(T6(T7(T8(Sk−1)))) for k ≥ 1. In view of (2.42) and the fact that T5, T6, and
T7 have the property (2.19), T8 must act as the identity eventually; i.e., there must exist n1 such
that Sk = T5(T6(T7(Sk−1))) for k ≥ n1.

The transformations T5 and T6 do not change m(G) and m(H). They also do not change
the values of P(Ck,j) and P(Cj,k ∩ A) for (k, j) ∈D− ∩D+. It follows that T7 must act as the
identity eventually; i.e., there must exist n2 ≥ n1 such that Sk = T5(T6(Sk−1)) for k ≥ n2.

It follows from (2.77) and (2.82)–(2.83) that there must exist n3 ≥ n2 such that Sk = Sk−1 for
k ≥ n3. Let S′ = Sn3 . Since Ti(S′) = S′ for i = 5, 6, 7, 8, the conditions (2.18)–(2.21), (2.33)–
(2.41), (2.52), and (2.78)–(2.81) are satisfied. �
Lemma 13. If P(B) > 0 and ε > 0, then there exists S′ satisfying

(i) P(B′) > P(B) − ε,

(ii) m−(G) = 1, or m−(G) = 2 and P(C1,m(H)) = 0, and

(iii) m−(H) = 1, or m−(H) = 2 and P(Cm(G),1) = 0.

Proof. Suppose that P(B) > 0 and ε > 0. We apply the transformation defined in Lemma 3
and obtain S′ satisfying P(B′) > P(B) − ε, m′(G′) ≤ m(G) + 1, m′(H′) ≤ m(H) + 1, and (2.21).

Next we apply the transformation defined in Lemma 12 and obtain S′′ satisfying (2.18),
(2.21), (2.33)–(2.41), (2.52), (2.78)–(2.81), m′′(G′′) ≤ m(G) + 1, and m′′(H′′) ≤ m(H) + 1.
These properties of S′′ are illustrated in Figure 4.

The logical scheme of the remaining part of the proof is represented by the flowchart in
Figure 5.

The leaves of our branching argument will be denoted by X . These are places where
logical contradictions are reached so another branch of the proof must be considered.

We will now give names to the transformations that we will apply in this proof.
Let T9 be the transformation defined in Lemma 12.
Recall that T� ((k1, j1), (k2, j2)) denotes the transformation defined in Lemma 10. The

transformation T c� ((k1, j1), (k2, j2)) was defined in an analogous way, by replacing A with

Ac in the assumption (2.66) and the construction of T� ((k1, j1), (k2, j2)).
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FIGURE 5: The logical structure of the proof of Lemma 13.

Recall that T3(k, j) is the transformation defined in Step 1 of the proof of Lemma 9. If
S′ = T3(k, j)(S) then at least one of the conditions (2.64)–(2.65) holds.

The root of the flowchart in Figure 5 is A . Our argument will require that we jump to A

repeatedly. We will argue in the main body of the proof that every jump to A is associated
with the decrease of m(G) or m(H). Therefore, there can be only a finite number of jumps to

A from later parts of the proof.
We will repeatedly apply the transformations named above, but instead of using the notation

with primes, e.g. C′
k,j, for the resulting objects, we will always write Ck,j, etc., without primes,

to simplify the notation. We hope that this convention will not be confusing in this proof.
Suppose that S is given. In view of the initial part of the proof, we can assume that it has all

the properties of S′′, i.e., it satisfies (2.18), (2.21), (2.33)–(2.41), (2.52), and (2.78)–(2.81).

A Apply T9 to S.

If m−(G) ≤ 1 then we jump to B .
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C Suppose that m−(G) > 1. We apply the transformations T c� ((k, m(H)), (m−(G), j))

repeatedly for all k < m−(G) and j < m+(H). The resulting S satisfies (2.18) because the
following case of (2.68)–(2.71) is satisfied for k < m−(G) and j < m+(H):

Ck,m(H) ∪ Cm−(G),m(H) ⊂ B and Ck,j ∪ Cm−(G),j ⊂ Bc.

In later applications of T� or T c� , we will leave it to the reader to check that one of the

conditions (2.67)–(2.71) is satisfied.
In view of (2.84)–(2.85), the result of these transformations has the property that

P

⎛
⎝Ac ∩

⋃
k<m−(G)

Ck,m(H)

⎞
⎠ = 0 or (2.86)

P

⎛
⎝Ac ∩

⋃
j<m(H)

Cm−(G),j

⎞
⎠ = 0. (2.87)

We apply the transformation T3(m−(G), m(H)). Note that it changes the ‘A-contents’ of
only Cm−(G),m(H). The resulting S satisfies (2.64) or (2.65) with (k, j) = (m−(G), m(H)).

If S satisfies (2.64) then we jump to A . Then an application of T9 will result in the
decrease of m(G) or m(H), in view of (2.41) and (2.42).

D Assume that (2.65) holds, i.e., that we have either P(Cm−(G),m(H) ∩ A) = 0 or
P(Cm−(G),m(H) ∩ Ac) = 0.

E Assume that (2.87) holds and recall (2.78)–(2.81). These formulas imply that

P
(⋃

j<m(H) Cm−(G),j
) = 0. Since P(Cm−(G),m(H)) > 0 and either P(Cm−(G),m(H) ∩ A) = 0 or

P(Cm−(G),m(H) ∩ Ac) = 0, we must have xm−(G) = 0 or xm−(G) = 1. If xm−(G) = 0 then this con-
tradicts the facts that m−(G) > 1 and xm−(G) > x1 ≥ 0. We cannot have xm−(G) = 1 because that

would contradict (2.13). We conclude that (2.87) cannot hold. X

F Assume that (2.86) is true. The transformations which generated (2.86)–(2.87) did
not change the xi and yi, and they also did not change the fact that P(Cm−(G),i ∩ A) = 0 for

all i < m(H). We are in the current branch of the proof because we have not jumped to A
after applying T3(m−(G), m(H)). Hence, xm−(G) > xm−(G)−1. If P(Cm−(G),m(H) ∩ A) = 0 then
xm−(G) = 0, but this contradicts the facts that m−(G) > 1 and xm−(G) > x1 ≥ 0. Hence, we must
have P(Cm−(G),m(H) ∩ Ac) = 0. This, (2.78)–(2.81), and (2.86) imply that

P(Ac ∩ Hm(H)) = P

⎛
⎝Ac ∩

⋃
1≤k≤m(G)

Ck,m(H)

⎞
⎠ = 0. (2.88)

At this point our argument branches as follows. We will consider the case m−(G) = 2 in

G and I , the case m−(G) = 3 in G and J , and the case m−(G) ≥ 4 in H .

G If m−(G) = 2 or m−(G) = 3, then we interchange the roles of A and Ac and those of G
and H, and argue as follows. We apply the transformations T� ((k, m+(H)), (1, j)) repeatedly

for all k > m−(G) and j > m+(H). Then we apply the transformation T3(1, m+(H)).
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FIGURE 6: See the body of the article for the description.

If S satisfies (2.64) then we jump to A . Then an application of T9 will result in the
decrease of m(G) or m(H), in view of (2.41) and (2.42).

Otherwise we will reach the conclusion analogous to (2.88), namely that

P(A ∩ G1) = 0. (2.89)

We will now argue that the transformations described between (2.88) and (2.89) do not

affect the validity of (2.88), assuming that there was no jump to A . The transforma-
tions T� ((k, m+(H)), (1, j)) do not change any of the xi, yi, pi, or qi. The transformation

T3(1, m+(H)) does not affect any cells in Hm(H) because m+(H) < m(H). Hence, (2.88)
remains true.

I Suppose that m−(G) = 2 and use (2.88)–(2.89) to conclude that P(C1,m(H)) = 0. We

now jump to B .

J Next assume that m−(G) = 3. This case is rather complicated, so it is the only part of
the proof whose steps are illustrated one by one in Figures 6–12. We will now explain how
different events are represented in these figures. The three columns represent G1, G2, and G3.
The three rows represent Hm+(H) = Hm(H)−2, Hm(H)−1, and Hm(H). The colors have the same
meaning as in Figure 4. Cells containing both white and some other color may be empty or
contain either A or Ac, depending on the color. The colored areas at the bottom represent the
family of cells Ck,j (not individual cells) with 1 ≤ k ≤ 3 and j < m+(H), and the colored areas
on the right represent the family of cells Ck,j with k > m−(G) and Hm+(H) ≤ j ≤ Hm(H).

The starting point is illustrated in Figure 6. This S satisfies (2.88)–(2.89). We have either

P(C2,m(H)−1 ∩ A) = 0 (2.90)

or P(C2,m(H)−1 ∩ Ac) = 0. We will discuss only the case in (2.90), depicted in Figure 6. The
other case can be dealt with in an analogous way.
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FIGURE 7: See the body of the article for the description.

We apply the transformations T� ((2, m(H)), (k, m(H) − 1)) repeatedly for all k > m−(G).

The result of these transformations has the property that

P

⎛
⎝A ∩

⋃
k>m−(G)

Ck,m(H)−1)

⎞
⎠ = 0 or (2.91)

P
(
A ∩ C2,m(H)

) = 0. (2.92)

J1 If (2.91) holds then P(Hm(H)−1 ∩ A) = 0 because of (2.78)–(2.81), (2.89), and (2.90).

But then ym(H)−1 = 0. This is impossible because m(H) − 1 > m+(H). X

J2 Assume that (2.92) is true. We apply T3(2, m(H) − 1). The resulting S satisfies (2.64)
or (2.65) with (k, j) = (2, m(H) − 1).

J3 If S satisfies (2.64) then we jump to A . Then an application of T9 will result in the
decrease of m(G) or m(H), in view of (2.41) and (2.42).

J4 Assume that (2.65) holds, i.e., either P(C2,m(H)−1 ∩ A) = 0 or P(C2,m(H)−1 ∩ Ac) = 0

(see Figures 7–8).

J5 Assume that P(C2,m(H)−1 ∩ A) = 0 (see Figure 7). This assumption, combined with
(2.78)–(2.81) and (2.92), implies that x2 = P(G2 ∩ A) = 0. This is impossible because x2 >

x1 ≥ 0. X

J6 Hence, we must have P(C2,m(H)−1 ∩ Ac) = 0 (see Figure 8). We apply the trans-
formations T c� ((1, m+(H) + 1), (2, j)) repeatedly for all j < m+(H). The result of these

transformations has the property that

P
(
Ac ∩ C1,m+(H)+1

) = 0 or (2.93)

P

⎛
⎝Ac ∩

⋃
j<m+(H)

C2,j

⎞
⎠ = 0. (2.94)
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FIGURE 8: See the body of the article for the description.

FIGURE 9: See the body of the article for the description.

We apply the transformation T3(2, m(H) − 1). The resulting S satisfies (2.64) or (2.65) with
(k, j) = (2, m(H) − 1).

J7 If S satisfies (2.64) then we jump to A . Then an application of T9 will result in the
decrease of m(G) or m(H), in view of (2.41) and (2.42).

J8 Assume that (2.65) holds (see Figures 9–10); that is,

P(C2,m(H)−1 ∩ A) = 0 or P(C2,m(H)−1 ∩ Ac) = 0. (2.95)

J9 Suppose (2.93) holds.
If P(C2,m(H)−1 ∩ Ac) = 0, then P(Hm(H)−1 ∩ Ac) = 0, because of (2.78)–(2.81) (see

Figure 9). Then ym(H)−1 = 1 = ym(H) and we jump to A . An application of T9 will result
in the decrease of m(G) or m(H), in view of (2.41) and (2.42).

If (2.93) holds and P(C2,m(H)−1 ∩ A) = 0, then P(G2 ∩ A) = 0, because of (2.78)–(2.81) and

(2.92) (see Figure 10). Then x2 = 0 = x1 and we jump to A . An application of T9 will result
in the decrease of m(G) or m(H), in view of (2.41) and (2.42).
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FIGURE 10: See the body of the article for the description.

FIGURE 11: See the body of the article for the description.

J10 Next suppose that (2.94) holds; see Figures 11–12. In view of (2.84)–(2.85), (2.92),

and (2.95), either x2 = 1 or x2 = 0. The first case is impossible because 2 < m−(G). X

In the second case we have x2 = 0 = x1 and we jump to A . Then an application of T9 will
result in the decrease of m(G) or m(H), in view of (2.41) and (2.42).

H We now assume that m−(G) ≥ 4. Recall (2.88). We will analyze Hm(H)−1 ∩ B. We apply
the transformations T c� ((k, m(H) − 1), (m−(G) − 1, j)) repeatedly for all k < m−(G) − 1 and

j < m+(H). The resulting S has the property that

P

(
Ac ∩

⋃
j<m+(H)

Cm−(G)−1,j

)
= 0 or (2.96)

P

(
Ac ∩

⋃
k<m−(G)−1

Ck,m(H)−1

)
= 0. (2.97)
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FIGURE 12: See the body of the article for the description.

We apply the transformation T3(m−(G) − 1, m(H) − 1). The resulting S satisfies (2.64) or
(2.65) with (k, j) = (m−(G) − 1, m(H) − 1).

H1 If S satisfies (2.64) then we jump to A . Then an application of T9 will result in the
decrease of m(G) or m(H), in view of (2.41) and (2.42).

H2 Assume that (2.65) holds, i.e., either P(Cm−(G)−1,m(H)−1 ∩ A) = 0 or
P(Cm−(G)−1,m(H)−1 ∩ Ac) = 0.

H3 Suppose that

P(Cm−(G)−1,m(H)−1 ∩ Ac) = 0. (2.98)

H5 Assume that (2.96) holds. The transformations which generated (2.97)–(2.96)
did not affect the conditions (2.78)–(2.81). This, (2.84)–(2.85), and (2.96) imply that
P
(⋃

j<m(H)−1 Cm−(G)−1,j
) = 0. We have P(Cm−(G)−1,m(H) ∩ Ac) = 0 because of (2.88). These

observations and (2.98) imply that xm−(G)−1 = 1. But this contradicts the definition of m−(G).

Hence, (2.96) cannot be true. X

H6 Next suppose that (2.97) is true and recall (2.84)–(2.81). We conclude that P(Ac ∩
Hm(H)−1) = 0. Hence, ym(H)−1 = 1. We have shown earlier that ym(H) = 1, so ym(H)−1 = ym(H).

We jump to A . Then an application of T9 will result in the decrease of m(G) or m(H), in view
of (2.41) and (2.42).

H4 Suppose that P(Cm−(G)−1,m(H)−1 ∩ A) = 0. Then, in view of (2.88),

P(Cm−(G),m(H) ∩ Ac) = 0 and P(Cm−(G)−1,m(H)−1 ∩ A) = 0. (2.99)

Recall that we are assuming here that m−(G) ≥ 4. The argument given between H and H6
can be applied with the roles of G and H, and those of A and Ac, interchanged. Just as in the

case of the original argument, some branches will end with X and some will lead to A .
The only branch that will not end this way will generate the following analogue of (2.99):

P(C1,m+(H) ∩ A) = 0 and P(C2,m(H)+1 ∩ Ac) = 0. (2.100)

The argument which led to (2.99) did not affect the cells in (2.100), so, by analogy, the
argument used to prove (2.100) does not affect the cells in (2.99). Hence, both (2.99)
and (2.100) hold.
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For all (k, j) ∈D− we have P(Ck,j) > 0 and either P(Ck,j ∩ Ac) = 0 or P(Ck,j ∩ A) = 0.
It follows from (2.99) and (2.100) that there exists (k, j) ∈D− with P(Ck,j ∩ Ac) = 0 and
P(Ck+1,j+1 ∩ A) = 0. Fix (k, j) with these properties.

We apply the transformations T c� ((k + 1, j + 1), (k, j1)) repeatedly, for all ((k + 1, j +
1), (k, j1)) such that j1 �= j, j + 1. The resulting S has the property that

P
(
Ac ∩ Ck+1,j+1

) = 0 or (2.101)

P

⎛
⎝Ac ∩

⋃
j1 �=j,j+1

Ck,j1

⎞
⎠ = 0. (2.102)

H7 If (2.101) holds, then P(Ck+1,j+1) = 0, because we have assumed that P(Ck+1,j+1 ∩
A) = 0. We now apply the transformation defined in Lemma 7 (or one of its variants described
at the beginning of the proof of Lemma 8). This transformation decreases m(G) or m(H). Then

we jump to A .

H8 If (2.102) holds then we combine it with the assumption that P(Ck,j ∩ Ac) = 0
to obtain

P(Gk ∩ Ac) = P(Ck,j+1 ∩ Ac). (2.103)

Reversing the roles of G and H, (k, j) and (k + 1, j + 1), and A and Ac, we obtain the
following formula analogous to (2.103):

P(Hj+1 ∩ A) = P(Ck,j+1 ∩ A). (2.104)

It follows from (2.103), (2.104), k ≤ m−(G), and j + 1 ≥ m+(H) that

P(Ac | Ck,j+1) = P(Ac ∩ Ck,j+1)

P(Ac ∩ Ck,j+1) + P(A ∩ Ck,j+1)

≥ P(Ac ∩ Ck,j+1)

P(Ac ∩ Ck,j+1) + P(A ∩ Ck,j+1) + P(Gk \ Ck,j+1)

= P(Ac ∩ Gk)

P(Ac ∩ Ck,j+1) + P(A ∩ Ck,j+1) + P(Gk \ Ck,j+1)

= P(Ac ∩ Gk)

P(Gk)
= 1 − xk ≥ 1 − δ,

and

P(A | Ck,j+1) = P(A ∩ Ck,j+1)

P(Ac ∩ Ck,j+1) + P(A ∩ Ck,j+1)

≥ P(A ∩ Ck,j+1)

P(Ac ∩ Ck,j+1) + P(A ∩ Ck,j+1) + P(Hj+1 \ Ck,j+1)

= P(A ∩ Hj+1)

P(Ac ∩ Ck,j+1) + P(A ∩ Ck,j+1) + P(Hj+1 \ Ck,j+1)

= P(A ∩ Hj+1)

P(Hj+1)
= yj+1 ≥ 1 − δ.

The two inequalities contradict each other since δ < 1/2. X
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B We jump here from two points in the proof. We can jump here from A in the case

when m−(G) ≤ 1. We can also jump here from I ; in this case we have m−(G) = 2 and

P(C1,m(H)) = 0. All branches of the proof corresponding to m−(G) > 2 (sub-branches of J

and H ) ended with X or returned to A .

We have pointed out within the proof that every jump to A was associated with the
decrease of m(G) or m(H), in most cases because of the application of T9. Hence, after a

finite number of jumps to A , S must have been transformed so that m−(G) ≤ 2.
We can now exchange the roles of G and H and apply the same argument to cells Ck,j

with k ≥ m+(G) and j ≤ m−(H). In this way, we will eliminate the case m−(H) > 2 and will
be left with the case m−(H) ≤ 2. Moreover, if m−(H) = 2, we will have P(Cm(G),1) = 0. Some
transformations in the new part of the proof are of the type T� or T c� ; these transformations

do not change any of the xk, yj, pk, or qj. Transformations of the type T3( · , · ) in the new part of
the proof do not affect cells Ck,j with k ≤ m−(G) and j ≥ m+(H). Hence, we have constructed
S satisfying m−(G) ≤ 1, or m−(G) = 2 and P(C1,m(H)) = 0, and also satisfying m−(H) ≤ 1, or
m−(H) = 2 and P(Cm(G),1) = 0.

Part (i) of the lemma is satisfied because after the initial application of Lemma 3, at the very
beginning of the proof, all other transformations satisfied (2.18). �

Proof of Theorem 1. Recall that δ ∈ (0, 1/2) is fixed.
For the proof of the lower bound in (1.3), see Proposition 1.
We turn our attention to the upper bound. In view of Lemma 2, we can assume that G and

H are finitely generated.
Consider any S. If P(B) = 0 then we are done. Assume that P(B) > 0 and consider any ε > 0.

Let S′ be the result of the transformation defined in Lemma 13. Then P(B′) ≥ P(B) − ε.
Parts (ii) and (iii) of Lemma 13 imply that for each 1 ≤ k ≤ m′(G′) there is at most one j

such that C′
k,j ⊂ B′ and P(C′

k,j) > 0, and, similarly, for each 1 ≤ j ≤ m′(H′) there is at most one
k such that C′

k,j ⊂ B′ and P(C′
k,j) > 0. Let B′ be the family of all 1 ≤ k ≤ m′(G′) such that there

is a (unique) j(k) such that C′
k,j(k) ⊂ B′. Note that j(k1) �= j(k2) if k1 �= k2. We apply Lemma 1

as follows:

P(B) − ε ≤ P(B′) =
∑
k∈B′

P(C′
k,j(k)) =

∑
k∈B′

P(G′
k ∩ H′

j(k))

≤
∑
k∈B′

δ

1 + δ
(P(G′

k) + P(H′
j(k))) = δ

1 + δ

⎛
⎝∑

k∈B′
P(G′

k) +
∑
k∈B′

P(H′
j(k))

⎞
⎠

≤ 2δ

1 + δ
.

Since ε > 0 is arbitrarily small, P(B) ≤ 2δ/(1 + δ). �
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