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ABSTRACT

In this paper, a Gaussian process regression (GPR)-based novel method is proposed for non-
linear aerodynamic modelling of the aircraft using flight data. This data-driven regression
approach uses the kernel-based probabilistic model to predict the non-linearity. The efficacy
of this method is examined and validated by estimating force and moment coefficients using
research aircraft flight data. Estimated coefficients of aerodynamic force and moment using
GPR method are compared with the estimated coefficients using maximum-likelihood
estimation (MLE) method. Estimated coefficients from the GPR method are statistically
analysed and found to be at par with estimated coefficients from MLE, which is popularly
used as a conventional method. GPR approach does not require to solve the complex
equations of motion. GPR further can be directed for the generalised applications in the area
of aeroelasticity, load estimation, and optimisation.
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NOMENCLATURE

o angle-of-attack, deg

8. elevator deflection, deg

c chord, m

Cp drag force coefficient

CL lift force coefficient

Cn pitching moment coefficient

Cx axial force coefficient

Cy normal force moment coefficient

e Oswald efficiency factor

Feng thrust force, N

Ix moment of inertia along X-axis, kg m?
Iy moment of inertia along Y-axis, kg m”
I moment of inertia along Z-axis, kg m>
Ixz moment of inertia along XZ-axis, kg m?

p roll rate, deg/s
q pitch rate, deg/s

q pitch acceleration, deg/s”
r yaw rate, deg/s

Vv relative total airspeed, m/s

o, thrust inclination angle, deg

0 vectors of unknown parameters

o breakpoint, deg

T1,T2 transient and hysteresis time constants, respectively, s
€ distributed noise

AR aspect ratio

GP Gaussian process

1.0 INTRODUCTION

High fidelity aerodynamic models are increasingly in demand for applications such as flight
control, simulation, aerodynamic database development, and fault detection and diagnosis.
These aerodynamic models are usually extracted from the wind tunnel test measured data‘").
Developing an aerodynamic model using wind tunnel data has some limitations. To get the
efficient model, it needs sizeable aerodynamic database using wide ranges of flight envelope
with high-resolution data acquisition especially, for non-linear aerodynamic modelling. It
demands enormous amounts of time, money, computational resources, and manpower. Fur-
ther, the acquired model needs to be corrected for boundary layer, Reynolds number, and
scaling effects. Various other sources of error can make the aerodynamic coefficient erro-
neous and discontinuous. This also leads to issues in computing gradients for optimisation,
control analysis, trimming, and generating linear models. Wind tunnel generated databases
also face challenges in gaining physical insights''~.

Aerodynamic modelling from the alternate method, using flight test data, is an efficient
way to model the aircraft behaviour which overcomes most of the challenges mentioned in
wind tunnel-based methods. Flight data generally, capture complete aircraft behaviour which
can be used in model postulation and also for aerodynamic parameter estimation.
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Aerodynamic parameter estimation is a process of identifying the parameter associated with
the model. These parameters are generally obtained by minimising the error between the
model and the plant. This is also known as an output error method for parameter estimation.
Maximum-likelihood estimation (MLE) is one such method under this category. A classical
method based on MLE has been extensively used to estimate the parameters from high angle-
of-attack flight data. Aerodynamic modelling at a high angle-of-attack makes aircraft to enter
in the non-linear regime, which is cumbersome to model using traditional parametric
methods®™®.

Non-linear aerodynamic modelling from high angle-of-attack flight data has been studied
from several decades by various research labs across the globe. Goman and Khrabrov'”
proposed a state space approach for unsteady aerodynamic forces and moments model.
Nelson and Pelletier® have reviewed preliminary information on the flow structure over delta
wings and complete aircraft configurations. Fischenberg and Jategaonkar have demon-
strated the quasi-steady stall modelling and also parameter estimation on C-160 transport
aircraft. Ghoreyshi and Cummings''®’ have presented a time-dependent surrogate approach to
capturing the unsteady aerodynamics for various manoeuvers. However, in current findings,
neural-based methods have been extensively used for this purpose. Neural Gauss—Newton
(NGN)-based methods were developed by Peyada and Ghosh'" for the low angle-of-attack
flight modelling, and by Kumar and Ghosh"'*'® further, it was attempted on non-linear
aerodynamic modelling. Faller and Schreck"* proposed a recurrent multilayer perceptron
neural network (MLP-NN) for the aerodynamic derivative identification. Marques and
Anderson'” applied a multi-layer-based temporal neural network to estimate unsteady
aerodynamics of transonic flow. Consequently, Voitcu and Wong"'® demonstrated the suit-
ability of a neural network for modelling and dynamic behaviour of an aeroelastic system.
Further, Zhang et al."'” and Winter and Breitsamter'® employed radial basis function neural
network (RBF-NN) for the accurate modelling of unsteady aerodynamic force coefficients in
transonic flow. Moreover, some combinations of the system identification methods with the
POD-based approaches have been published. Within an aeroelastic optimisation framework,
recently a successful combination of Zhang’s RBF-based non-linear system identification
approach with the POD-based non-linear system identification approach with the POD has
been proposed by Lindhorst et al."®. A surrogated modelling approach comparable to the
method of Lindhorst et al. is proposed by Winter and Breitsamter®”. Another technique used
for modelling the aerodynamics of non-linear regime is modelling using multivariate func-
tions®”. Neural network-based methods have been quite frequently used to develop aero-
dynamic modelling, which has provided decent results. However, due to the hidden layer of
the neural network sometimes, it leads to computational complexity and instability in
numerical solutions. There is a lack of detailed methodology on the selection of the number of
hidden units and its architecture. Another issue that users may face is a long training time,
which often causes an issue in the convergence®' ™%,

This paper is an attempt to get a non-parametric probabilistic model using Gaussian process
regression (GPR) approach. This is a machine learning-based data-driven approach which
deals with the measured flight dataset. GPR is a function approximation as a distribution over
functions. Any true function in the domain defines in the Gaussian distribution by modelling
their evaluated mean and covariance functions. GPs are used in various disciplines for which
underlying functions are unknown. A GP can be implemented as the regression of training
data with respect to a basis function. Data analytics and machine learning community have
applied GP to both controls and estimation processes. GP can be used to learn the unknown
dynamic and measurement model. In the implementation of GP, statistical mean infers the
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approximate of the state transition matrix and measurement model, while the statistical
covariance estimates the process and measurement white noise®” 2.

Machine learning algorithms offer a powerful tool to achieve a data-driven model. In this
paper, we use GPR, to model the aerodynamic force and moment coefficients: lift force
coefficient (Cy), drag force coefficient (Cp), and pitching moment coefficient (C,,) using the
measured flight data from DLR-ATTAS aircraft'®. Open accessible flight test data of ATTAS
research aircraft from DLR, Germany were used in the estimation and validation of the
aircraft lift, drag, and pitching moment coefficients. Flight test data were segregated as input
and output data set. Input data were sets of the angle-of-attack, elevator deflection, pitch rate,
and relative airspeed; output data were sets of measured force and moment coefficients. Non-
linear model estimation was carried out using a kernel-based probabilistic model known as
GPR. Further, an exponential squared function was chosen judiciously to use as a kernel
function. GPR model was trained and validated with real flight data. Seventy per cent of the
data were used in training, and the remaining 30% of the data were used for the validation of
the model. Statistical modelling technique was used in quantifying the uncertainty in the
model. GPR models were found to give mean errors of 2.7%, 0.8%, and 0.5% in the coef-
ficients of lift force, drag force, and pitching moment, respectively. GPR estimated non-linear
aerodynamic models were compared with MLE-predicted models. MLE methods have been a
popular classical method for several decades. Estimated results from both the methods GPR
and MLE were found to be in close agreement with each other. GPR estimated C; and Cp
were reasonably close to MLE-estimated results. The estimation of C,, using GPR was highly
efficient which is corroborated by the correlation analysis. Presented results proved to make
GPR as a promising alternative approach to this problem. GPR does not require to solve the
equation of motion, this advantage further motivates promising directions for future research
and can be readily generalised to other applications such as aeroelasticity, load estimation,
and optimisation.

This paper has the following contributions:

(1) Development of a probabilistic model for lift force, drag force, and pitching moment
coefficient with GPR.

(2) Statistical comparison with conventional method MLE using a quasi-stall modelling
approach.

The organisation of the paper is structured as follows: Section 2.0 presents the GPR
methodology and the formulation of the algorithm; Section 3.0 explains the non-linear
aerodynamic modelling using MLE-based parametric model approach; Section 4.0 presents
results and discussion of estimated models. Conclusions are summarised in Section 5.0.

2.0 METHODOLOGY: GPR

GPR is a robust non-parametric tool for learning regression functions from the observed
input—output dataset. It is based on a Bayesian approach with a Gaussian probabilistic fra-
mework®®. A regression model is given as

y=g(x)+e ..

where y is the output/dependent variable which contains flight variable derived lift force
coefficient (Cr), drag force coefficient (Cp), and pitching moment coefficient (C,,). x is the
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input vector containing: angle-of-attack (), elevator deflection (8.), pitch rate (g), and relative
airspeed (V). g(x) is the regression function and € is the distributed process noise. For inputs
x following a joint Gaussian distribution, function g(x) is said to follow a Gaussian process‘*”:

g(x): GP(me(x), T(x,x")) ...(2)

where m,(x) is the mean function and 7(x, x') is the kernel function over two inputs x and x’,
which governs the covariance among function values. In this work, mean function is assumed to
be the zero function. Generally, noise is assumed to follow a Gaussian distribution,
e ~ N(O, 6,21), with mean 0 and noise variance 2. For the assumption of a zero mean function
for the GP governing the regression function and Gaussian noise, the dependent variable y also
follows a GP with a zero mean function and a ‘noisy’ kernel function Tuise(X1, Xn) OVver d-
dimensional input vectors x; and x;,:

y ~ GP(O; Tnoise(xhxm)) ...(3)

The noisy kernel function over the dependent variables Tyoise(1, Xim) relates to the kernel
function over the regression function values k(x, x,) as

Tnoise (x17-xm) = T(-xh xm) + 0§61m .. (4)

where 0 is the Kronecker delta.

GP can employ various kernel functions to affect the regression models which enables its
flexibility®. In this work, the squared exponential kernel function is used to train the
regression model.

2.1 Dot Product Squared Exponential (DPSE) kernel

This kernel function is used to model very smooth functions. It is given by

1< (i )
T(x1, Xm) =04 + X Zxim + 07 exp (— EZ (ni—mi)” p;cm’l) > ;
i=1

¥ = diag(c?, 03, ..., 03) ...(5)

In Eq. (5), x; and x,, are d-dimensional input column vectors, G% is the constant variance
parameter, 67,3, ..., 0 are the variance parameters corresponding d input dimensions, 7 is a
variance parameter which governs the exponential part of the kernel, p is the d-dimensional
vector of length scales, i refers to the ith vector component. Kernel parameters are generally

called as hyperparameters. Hyperparameters for the above GPR formulation can be written as
[65,6%,0%,...,63,,631,17]T ...(6)

The noisy kernel hyperparameter vector is characterised by the noise variance 05. The
vector which maximises the log posterior probability of the hyperparameter vector for given
of input vectors X and of dependent variable values y are known as the estimated vector

6: argmax log ¢(0 | X,y)
0

1 _ 1 n
= arggnax log{q(e)—inKY ly —510g|Ky|—510g(2n)} -..(7)

here, ¢(0) is the prior on the hyperparameter vector, » is the number of observations, X is the
n x d matrix of d-dimensional inputs, y is the n x 1 vector of the dependent variable Cy, Cp,
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or Cy, values, and Ky is the n x n covariance matrix derived from the noisy kernel function
over pairs of input variables.

In this paper, the GPR model aims to predict force and moment coefficients on new input
data sets. GPR methodology has many advantages: (a) it is a non-parametric method, which
makes user free from choosing basis function prior to training, (b) it maintains a probabilistic
framework based on the Gaussian distribution which makes the analysis tractable, and (c) it is
possible in GPR to determine the full predictive distribution which proves to be useful
product of the analysis® .

3.0 NON-LINEAR AERODYNAMIC MODELLING USING
PARAMETRIC MODEL APPROACH

This section describes the non-linear aerodynamic modelling of DLR-ATTAS aircraft based
on the MLE method. MLE is an output error-based parametric modelling approach. The
output error between model and plant is minimised by the Gauss—Newton optimisation
method. The model adopted in this method is quasi-steady stall model®'?.

3.1 Quasi-steady-stall modelling

Near stall flight data of DLR-ATTAS are selected for non-linear aerodynamic model esti-
mation. MLE uses the following Kirchhoff’s quasi-steady stall model® as shown in the
following equation:

2
1 X
CL((X, X) = CLO + CLQ{ +2\/—} o

1
CD = CDO + enAR Cﬁ(q,X, q, 6e)+ CDx(lix)
qc
Cm=Cm0+Cmaoc+Cmqﬁ+me(1—X) ...(8)

The flow separation point in the above equations is estimated using the following equation:

11%+X=%{1ftanh[a1((xf1'20cf(x*)]} ...(9)

where a, is aerofoil static stall characteristics, T, is the time constant and o is the breakpoint.
These three parameters are adequate to capture stall hysteresis”. Generally, aerodynamic
forces and moment coefficients (Cy, Cp, Cy,) are not directly measured during flight; these are
derived from the other measured flight variables such as flow angles, accelerations. These
coefficients have been reconstructed from the measured accelerations and flow angles and
mass inertia parameters. The following O, vector is a set of aerodynamic and stall para-
meters which are estimated by minimising the output error:

T
Ot = [CDO eCL,CL.Cry, CinyCrny Cn, Cme 010 T2C, cmx} ...(10)

These parameters are estimated using output error based MLE method.
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3.2 MLE Method

MLE is a powerful estimation tool for parameter estimation. It estimates the parameters by
minimising the output error between the measured and model response. This is an effective
method for aircraft parameter estimation. MLE uses the postulated quasi-steady stall model
described in the above section. This works well even in the case of measurement noise.
However, it faces a convergence issue for some of the application® ™.

The accuracy in MLE estimates is quantified by Cramer—Rao bounds (CRB). The cost
function used in this method is shown in the following equation:

e ~
J(0)= E/; { (Z4) — Ze,t(k)]T(UUT) : (Zy)—Zo, v | } ..(11)

where N is the number of time data points, UUT is the measurement noise covariance matrix,
Zyx) 1s the measure response at kth instant, and Zg ) = estimated response for given 0 vector
at kth instant.

Further, the MLE detail description can be understood by Refs 2—4. The implementation of
MLE has been discussed in the results and discussion section.

4.0 RESULTS AND DISCUSSION

Open accessible flight test data of the research aircraft DLR-ATTAS has been in the esti-
mation of the aircraft lift, drag, and pitching moment coefficients” and demonstrated the
efficacy GPR algorithm for the non-linear aerodynamic modelling from the flight data.

4.1 Non-linear modelling using GPR

In this paper, GPR-based method has been employed for the non-linear aerodynamic mod-
elling. The efficacy of this novel approach is demonstrated on the DLR-ATTAS quasi-steady
stall data for the force and moment coefficient modelling. Seventy per cent of the flight test
data has been used for the training, and the remaining 30 percent of the data has been used for
the validation. A kernel-based probabilistic function is used as a covariance function in
designing the GPR model*!.

Data used in GPR are presented in Fig. 1 with time history. Data have been acquired at
25 Hz. Elevator deflection affects other aircraft variables which are observed in the figure.
Elevator was deflected by around 8° in both the directions. Change in a, and a, are sig-
nificant. An angle-of-attack varies between + 18 and —18°. Change in theta is around 15°.
Change in g is between —4 dps and +4 dps.

In the presented work, coefficients of the lift force, drag force, and pitching moment were
estimated using GPR and compared with the MLE estimated results. Dataset chosen for the
implementation of GPR and MLE were segregated as input and output dataset. Input data
were categorised with the angle-of-attack, elevator control surface deflection, pitch rate, and
relation airspeed. Output data were categorised with force and moment coefficients.

Figure 2 shows the GPR-predicted model for the coefficient of the lift force, the coefficient
of the drag force and the coefficient of the pitching moment. GPR-predicted coefficients are
matching well with the measured coefficients. The correlation of GPR predicted coefficient of
the lift force, the coefficient of the drag force, and coefficient of the pitching moment
coefficient with the measured data were found to be 0.95, 0.99, and 0.91, respectively. The
statistical result shows the confidence in the GPR predicted model.
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Figure 1. (Colour online) Time history plot for ATTAS quasi-stall data.

4.2 Non-linear modelling using MLE

Force and moment coefficients were also estimated with MLE using a parametric approach
based on the quasi-steady model described in Eq. (9). MLE-estimated parameters were used
in deriving aerodynamic forces and moments.

Estimated parameters using MLE are Cp,=0.0435 [1.00]*, e=0.839 [0.82],
C,=0.158 [2.08], Ci,=3.298 [1.14], Cr,,.=9.07 [2.20], Cy,=0.05 [3.50],
Cm,==-0.1763 [4.47], Cn,=-6.146 [4.47], Cpn,=-0.391 [4.08], a;=23.716 [3.41],
a*=0.309 [0.35], 1,=24.025 §; [1.46], Cp, =0.0792 [3.82], Cp, = —0.1261 [3.98] with
acceptable Cramer—Rao bounds. Number inside []" represent the relative standard deviation.

GPR Estimated Cy Cp, and C,, was compared with MLE estimated force and moment
coefficients. Results are shown in Figs 3-9.

Figure 3 shows the validation of the lift force coefficient (Cy) using GPR and MLE.
Estimated models were compared with a measured coefficient. All the curve are fitting on
each other well. Estimated model using GPR are able to follow the MLE predicted and
measured coefficient closely.

Figure 4 shows a prediction correlation study of GPR estimated and MLE estimated lift
force coefficient (Cy). GPR estimated lift force coefficient is following measured lift force
coefficient.

Figure 5 shows the stall hysteresis modelling using Cp and angle-of-attack data. GPR
shows better prediction than MLE.

Figure 6 shows a validation of drag force coefficient (Cp) using GPR and MLE. Estimated
models were compared with a measured coefficient. All the curve are fitting on each other
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—4— Measured O GPR Model

Cop

Time (S)

Figure 2. (Colour online) GPR model for lift force coefficient (C,), drag force coefficient (Cp), and pitching
moment coefficient (Cy,).

well. Estimated model using GPR are able to follow the MLE predicted and measured
coefficient closely.

Figure 7 shows a prediction correlation study of GPR estimated and MLE estimated drag
force coefficient (Cp). GPR estimated lift force coefficient is following measured lift force
coefficient.

Figure 8 shows the validation of pitching moment coefficient (C,,) using GPR and MLE.
Estimated models were compared with a measured coefficient. All the curve are fitting on
each other well. Estimated model using GPR are able to follow the MLE predicted and
measured coefficient closely.

Figure 9 shows a prediction correlation study of GPR estimated and MLE estimated
pitching moment coefficient (C,,). GPR estimated pitching moment coefficient are following
measured pitching moment coefficient.

Table 1 presents the statistical comparison of estimated results. It shows prediction cor-
relation for GPR and MLE. Prediction correlation for Cp using GPR is found to be 0.9914
while 0.9898 is in MLE. Prediction correlation for Cp using GPR is found to be 0.9545 while
0.9486 is in MLE. Prediction correlation for C,, using GPR is found to be 0.9027 while
0.4669 is in MLE. There is a significant improvement in C,,, modelling using GPR approach.
Statistical results show GPR can prove to be a compatible alternative for the application of
non-linear force and moment coefficient modelling.

https://doi.org/10.1017/aer.2018.114 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2018.114

88 THE AERONAUTICAL JOURNAL JaNuary 2019

1.8 T T T T
—%— Measured
O GPR predicted
16k ¢ MLE predicted |

70
Time (S)

Figure 3. (Colour online) Validation of the lift force coefficient (C.).
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Figure 4. (Colour online) Prediction correlation of GPR estimated, and MLE estimated for lift force
coefficient (C).

5.0 CONCLUSIONS

In this paper, the GPR-based novel method was proposed to estimate a non-linear aero-
dynamic model. The efficacy of the algorithm was examined on the DLR-ATTAS aircraft
data. Non-linear model estimation was carried out using the Kernel-based probabilistic model
in GPR. Further, the exponential squared function was chosen judiciously to use as a kernel
function. GPR model was trained and validated with real flight data. Seventy per cent of the
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Figure 6. (Colour online) Validation of the drag force coefficient (Cp).
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Figure 5. (Colour online) Stall hysteresis modelling.
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data were used in training, and the remaining 30% of the data were used for validation of

the model.

Aerodynamic force and moment coefficients: Lift force coefficient (Cy), drag force coef-
ficient (Cp), and pitching moment coefficient (C,,) were estimated for ATTAS aircraft.
Statistical modelling technique was used in quantifying the uncertainty in the model. GPR
models were found to give mean errors of 2.7%, 0.8%, and 0.5% in coefficient of lift force,
the coefficient of drag force, and coefficient of pitching moment, respectively. GPR estimated
non-linear aerodynamic models were compared with MLE predicted models. MLE methods
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Figure 7. (Colour online) Measured and predicted drag force coefficient (Cp).
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Figure 8. (Colour online) Validation of the pitching moment coefficient (Cy,).

have been a popular classical method for several decades. Estimated results from both
the methods were in close agreement with each other. GPR estimated model for C; and Cp
were reasonably close to MLE-estimated results. GPR-estimated C,,, were highly efficient in
terms of correlation analysis. Presented results proved to make GPR as a promising alter-
native approach to this problem. GPR does not require to solve the equation of motion, this
advantage further motivates promising directions for future research and can be readily
generalised to other applications such as aeroelasticity, load estimation, and optimisation.
Also, an extension of the GPR technique can be employed to boost the presented results.
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Figure 9. (Colour online) Measured and predicted pitching moment coefficient (Cy,).

Table 1
Prediction correlation and RMSE calculation for MLE and GPR method
Force/moment Prediction RMSE Prediction RMSE
coefficient correlation (MLE) (MLE) correlation (GPR) (GPR)
CL 0.989818 0.029438 0.991374 0.02712
Cp 0.948576 0.009290 0.954557 0.00875
Cn 0.466906 0.011350 0.902741 0.00552
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