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Abstract
Ship anomaly detection is a vital aspect for monitoring navigational safety in specific water areas. Considering the
effect of water channel boundaries, we propose the detection of an abnormal ship trajectory based on the complex
polygon (DATCP) method to detect ship anomalies in this study. With the automatic identification systems (AIS)
data from the Yangtze River estuary, a case study is created to verify the effectiveness of the proposed DATCP
method. The case study results reveal that the proposed DATCP method can provide higher detection accuracy than
the conventional A* algorithm. The feature analysis results indicate that ship anomalies are significantly influenced
by ship type, time period, weather conditions and ship traffic characteristics.

1. Introduction

As an important role in global commerce, maritime transportation accounts for approximately 90%
of the global trade volume (Maria et al., 2018). With the rapid increase in the number of ships,
frequent shipping activities can lead to more complex and higher-risk environments. In recent years,
many researchers have placed their focus on investigating a ship’s motion benefitting from the massive
amount of automatic identification systems (AIS) data, which is a vital aspect for improving navigational
safety. Ship trajectory prediction and abnormal trajectory detection are the two major perspectives for
investigating the motion patterns of ships. For ship motion prediction, different methodologies like the
Gaussian process model and the BP neural network algorithm have been proposed in previous studies
(Rhodes et al., 2007; Zhou and Shi, 2010; Perera et al., 2012; Xu et al., 2012; Zhang et al., 2018; Rong
et al., 2019). An accurate ship motion prediction can help maritime authorities to predict the possible
activities of target ships.

To figure out abnormal or risky ship trajectories, some other studies have mainly focused on proposing
effective anomaly detection methods to improve maritime safety and security systems (Tun et al., 2007;
Pallotta et al., 2013a, b; Shahir et al., 2014). Specifically, the capability of identifying abnormal ship
trajectories could help maritime authorities to comprehend the regularity of ship anomalies. However,
considering the limited resources of maritime traffic surveillance operators, one big challenge is that it is
difficult to fully monitor a large number of ship tracks at the same time (Zhen et al., 2017a). In reality, the
precise extraction of ship trajectories is a prerequisite to detect abnormal ship manoeuvers. According
to previous studies, the ship trajectory extraction techniques could be classified into three main groups
including parametric methods, nonparametric methods and clustering methods, respectively.
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Many statistical generative parametric models have been applied to extract trajectories of ships/cars
based on historical trajectories data. Gaussian mixture models (GMMs) are very popular for approx-
imating the (unknown) multivariate probability density function of ship traffic (Maria et al., 2018).
Actually, the GMMs are a combination of multivariate Gaussian distributions. These distributions aim
to summarise how the training data cluster and spread in the multi-dimensional spaces (Laxhammar
et al., 2009; Anneken et al., 2015). Specifically, Laxhammar (2008) applied GMMs to cluster ship sail-
ing vectors in each surveillance grid. Afterwards, anomaly detection in new data was performed by
calculating the occurrence likelihood of abnormal trajectories. The segment was considered anomalous
if the anomaly measure was below a certain alarm threshold. However, one disadvantage of GMMs is
that it might be difficult for non-experts to understand.

For nonparametric methods, kernel density estimation (KDE) is a popular method that derives
a nonparametric model of traffic normalcy. Laxhammar et al. (2009) used an adaptive KDE to
develop a normal traffic model. Particle filters were applied to predict the positions of ships based
on the derived density. Furthermore, an adaptive bandwidth selection method was also proposed by
Laxhammar et al. (2009) and applied by Pallotta et al. (2013b). However, density estimation methods
are computationally intensive so that they may not be practical in real-time systems. Furthermore,
methods based on kernel density are applicable only for specific smaller regions. Clustering methods
for trajectory extraction mainly consist of K-means clustering and density-based spatial clustering of
applications with noise (DBSCAN) (Pallotta et al., 2013a, b; Pan et al., 2014; Li et al., 2017; Zhen
et al., 2017b; Zhao and Shi, 2019). For instance, Zhen et al. (2017b) used the K-means algorithm to
cluster ship trajectories. The best number of clusters was determined based on combinations of differ-
ent distances. Zhao and Shi (2019) further determined the input parameter selection for the DBSCAN
algorithm.

Normally, the identification of theoretical ship trajectories is a prerequisite for anomaly detection.
Most previous studies used collected ship trajectory data to obtain the theoretical ship trajectory.
However, channel characteristics were rarely considered for anomaly detection. For example, Soleimani
et al. (2015) detected the ship trajectory only from a geometrical perspective. The actual ship trajectory
is compared with a near-optimal path generated by a graph search A* algorithm. One disadvantage
is that the reliability of the optimal path depends too much on the accuracy of the A* algorithm. In
addition, ship trajectories should be closely related to the channel boundaries. Therefore, this study
proposes the detection of abnormal ship trajectory based on complex polygons (DATCP) method by
taking into account the effects of the specific channel boundaries. Meanwhile, the proposed method is
proved to be more accurate than other algorithms (i.e., A* algorithm) by presenting a case study in the
Yangtze River estuary.

2. Objectives and contributions

This study aims to improve the accuracy of ship anomaly detection by proposing an abnormal ship
trajectory detection model based on complex polygons (i.e., the DATCP method). The proposed DATCP
method determines the theoretical trajectory by dividing the channel boundary into many polygons
according to the channel bend. In contrast, by dividing the water area into excessive grids, there is a
significant overfitting problem for the A* algorithm proposed by previous studies. From this point of
view, the A* algorithm may not be able to distinguish all the abnormal trajectories successfully. The
contributions of this study are two-fold. First, it takes the initiative to propose a new way to solve the
overfitting problem in the process of anomaly detection. Second, the proposed DATCP method could
identify more abnormal trajectories so that the detected results are more reliable and convincing. In
addition, this study also contributes to investigating ship anomaly features for a specific water area (i.e.,
the Yangtze River estuary), which is beneficial for maritime authorities to infer the safety level of the
target waters. Corresponding strategies can thus be proposed to reduce navigational risk.
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Figure 1. A flowchart for the DATCP method.

3. Anomaly detection

3.1. Definition of abnormal ship trajectory

The abnormal ship movement can be defined as an unreasonable movement deviation from the chan-
nel range, optimal path, normal speed or other corresponding parameters (Lane et al., 2011). From
the perspective of navigation data, ship movement anomalies can be regarded as observations that are
significantly inconsistent with the remainder of the dataset (Hodge and Austin, 2004). Specifically, the
abnormalities in navigation data can be reflected depending on the anomaly navigation speed (e.g., too
high, too low or wandering) and unusual changes in ship coordinates (e.g., deviating from the normal
course, illegally occupying the wrong waterway). Therefore, anomaly detection refers to the identifica-
tion of trajectory data that do not conform to expected behaviours (Varun et al., 2009). The anomaly
type mainly discussed in this study is that the ship trajectory extracted from the collected data deviates
from the normal route. This study is dedicated to proposing an anomaly detection method (i.e., DATCP
method) to identify the majority of abnormal trajectories that might occur in a specific water area. The
detailed procedure of our proposed DATCP method can be seen in Figure 1.
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(a)
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Figure 2. Transforming a one-way channel into simple polygons.

3.2. AIS data

Automatic identification systems (AIS) can provide critical information on ship trajectories. In this
study, AIS data were used to detect anomalous ship trajectories. AIS data include static information and
dynamic information. Generally, static information is sent every six minutes, which contains IMO num-
ber, maritime mobile service identity (MMSI), ship name, ship length and so on. Dynamic information
is sent every 2 s to 3 min depending on the shipping speed, which contains position, time (UTC), speed
over ground (SOG) and so on. High-precision AIS data with short transmission intervals can ensure the
accuracy of anomaly detection. In reality, it is also common for AIS data to be sent at long intervals.
In this situation, the existing AIS data can be used to fill the data gaps. The extrapolation and interpo-
lation methods are thus applied to supplement the data gaps at an interval of 1 min when the two AIS
records have a larger time interval. The trajectory of a ship can be drawn by connecting its consecutive
coordinates in the AIS data accordingly. Generally, a complete ship trajectory is defined as a ship trip
from the departure port to the destination port. However, the information about the actual departure and
destination of the ships is not available from the raw AIS data. Therefore, the ship trajectory in this
study refers to unidirectional trajectory segments.

3.3. Theoretical ship trajectory

This study introduces the concept of theoretical ship trajectory as a benchmark to detect abnormal
ship trajectories. Namely, a ship trajectory is considered abnormal if the difference between the actual
trajectory and the theoretical trajectory exceeds a certain range. Unlike with previous studies (e.g.,
Soleimani et al., 2015; Maria et al., 2018), the theoretical trajectory is not simply equal to the shortest
navigation path in this study. The theoretical trajectory could not only be affected by the shortest path but
also by the geometry of the channel boundary. In addition, the waterway hydrodynamic characteristics,
such as the depth of waterway, should be also taken into account in identifying the theoretical ship
trajectory. To identify the theoretical ship trajectory more easily, it is recommended to simplify the
geometric boundary of the channel as a complex polygon (Kaluđer et al., 2011), as shown in Figure 2(a).
Subsequently, the complex polygon can be divided into multiple simple polygons as shown in Figure 2(b).
Thus, the shortest distance between any two sides of each simple polygon can be calculated separately.
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(a) (b)

Figure 3. Theoretical ship trajectories in a one-way channel.

The theoretical trajectory of a ship can be considered as the optimal one when the ship trajectory in
each simple polygon is the shortest.

Figure 3 provides a diagram to show the process of determining the theoretical ship trajectory based
on complex polygons. We first treat the boundaries of the target one-way channel as a complex polygon
and then divide the complex polygon into multiple simple polygons. The key step to obtain the theoretical
ship trajectory is to determine the cross-section of departure and destination for each divided simple
polygon. It should be noted that a ship may be started at any position of the departure cross-section. For
a simple polygon, Figure 3(a) presents the detailed expression of the starting and the ending positions.
More specifically, the starting positions on the departure cross-section can be expressed as m1, m2,
m3, . . . m 𝑗 , and the ending positions on the destination cross-section can be expressed as o1, o2,
o3, . . . o 𝑗 . Each m 𝑗 corresponds to a unique n 𝑗 that meets the requirements of the shortest path. It is
assumed that there is a ship k starting from m𝑘 on the departure cross-section M. The minimum distance
from the departure cross-section M to the destination cross-section O can be obtained based on the
starting point m𝑘 . The corresponding ending point o𝑘 is thus determined. The above steps are then
repeated with o𝑘 as the new starting point until the entire shortest path from m𝑘 to r𝑘 is determined, as
shown in Figure 3(b).

3.4. Anomaly detection

With the obtained theoretical ship trajectory, abnormal ship trajectories can be detected by comparing the
theoretical trajectory with the actual ship trajectory extracted from the AIS data. Specifically, anomaly
detection is mainly achieved by introducing indicators such as trajectory length, area under the curve
and trajectory gradient. Abnormal ship trajectories can be identified with the anomaly evaluation index
(AEI) comprised of the three indicators mentioned above.

3.4.1. Trajectory length
Since both the theoretical ship trajectory and the actual ship trajectory are represented by a series of
consecutive position coordinates (i.e., latitude and longitude coordinates), the trajectory length can be
calculated by adding the distance between adjacent coordinates. In this study, the Haversine formula is
applied to calculate the spherical distance between adjacent trajectory points because the latitude and
longitude coordinates belong to spherical coordinates. The expressions of the Haversine formula are
shown as follows:

ℎ(𝑝1, 𝑝2) = sin2
(
Δ𝑥
2

)
+ cos 𝑥1 cos 𝑥2sin2

(
Δ𝑦
2

)
(1)
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Figure 4. Area under the curve.

𝑑 (𝑝1, 𝑝2) = 2𝑅 arctan

( √
ℎ(𝑝1, 𝑝2)√

1 − ℎ(𝑝1, 𝑝2)

)
(2)

𝐿 =
𝑁−1∑
𝑖=1

𝑑 (𝑝𝑖 , 𝑝𝑖+1) (3)

where R represents the radius of the earth in metres (R= 6,378,137); 𝑝1 : (𝑥1, 𝑦1) and 𝑝2 : (𝑥2, 𝑦2)

are the coordinates of two adjacent trajectory points; Δ𝑥 = 𝑥2 − 𝑥1 and Δ𝑦 = 𝑦2 − 𝑦1; d is the distance
between two adjacent points; L represents the total length of the trajectory; N is the number of points in
the trajectory.

3.4.2. Area under the curve
The area enclosed by the actual ship trajectory and the theoretical ship trajectory in Figure 4 can be
used as an important parameter to detect abnormal trajectories. The area could indicate the extent of
the actual trajectory deviating from the theoretical trajectory. In other words, a larger the area signifies
a longer distance that the actual trajectory deviates from the theoretical trajectory. The area under the
curve can be calculated by dividing the area into multiple trapezoids, as follows:

𝐴 =
𝑁−1∑
𝑖=1

|𝑦𝑖+1 − 𝑦𝑖 |
|𝑥𝑖 + 𝑥𝑖+1 |

2
(4)

where A represents the area under the curve. Note that the final equation has transformed the coordinate
system through the angle between the horizon and the straight line connecting the start and end points.
Detailed mathematical derivation could be found in Soleimani et al. (2015).

3.4.3. Trajectory gradient
Gradient could be regarded as another critical indicator for the detection of abnormal trajectories, which
could be defined as the partial derivative of distances at longitude and latitude dimensions. Note that
the partial derivative only takes into account the position change. Here, G𝑥 and G𝑦 are the gradients of
longitude and latitude dimensions, respectively. The calculation formula of trajectory gradient is shown
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as follows:

𝐺 𝑥 =
𝑁−1∑
𝑖=1

|𝑥𝑖+1 − 𝑥𝑖 |

𝐺𝑦 =
𝑁−1∑
𝑖=1

|𝑦𝑖+1 − 𝑦𝑖 |

(5)

3.4.4. Anomaly evaluation index
The characteristics of the theoretical trajectory are compared with those of the actual ship trajectory
using an AEI, which could be expressed by

AEI =
𝐿𝑡ℎ − 𝐿𝑎𝑐

𝐿𝑡ℎ
+ 𝜂

(
𝐴𝑡ℎ − 𝐴𝑎𝑐

𝐿𝑡ℎ
+
𝐺 𝑥

𝑡ℎ − 𝐺 𝑥
𝑎𝑐

𝐿𝑡ℎ
+
𝐺𝑦

𝑡ℎ − 𝐺𝑦
𝑎𝑐

𝐿𝑡ℎ

)
(6)

where 𝜂 is the length of one degree of latitude (𝜂 ≈ 111,319). In addition, th represents the theoretical
trajectory and ac represents the actual trajectory.

Generally, if the value of the AEI is greater than or equal to 0, it means that the actual trajectory
is equivalent to or better than the theoretical trajectory. On the contrary, the actual trajectory is longer
than the theoretical path if the AEI is less than 0. Considering the fact that the actual situation exhibits a
reasonable fault tolerance interval caused by a variety of complex reasons, a threshold value of the AEI
should be given if there is a need to identify the abnormal ship trajectories. Specifically, the trajectory
will be considered to be abnormal if the score is less than the threshold and vice versa. Furthermore,
the threshold of abnormal detection might be different for different types of ships since the role of ships
(e.g., cargo/passenger transport, dredge, rescue) could affect the patterns of ship activities.

4. Case study

A case study is established to explore the advantages of our proposed DATCP method for detecting ship
abnormal trajectories in the Yangtze River estuary. Meanwhile, the distributions of the abnormal ship
trajectories are also explored among different ship types, time periods, weather conditions (i.e., sunny,
rainy/snowy, cloudy), and ship traffic conditions (i.e., ship traffic flow, ship traffic density). The ship
types include cargo ships, tankers, tug ships, carriers, container ships, dredger ships, passenger ships,
fishing ships, supply ships and other ships.

4.1. Water area

The Yangtze River is the longest river in China and the third-longest river in the world, and also has
the highest freight volume among the inland rivers globally. As the throat of the Yangtze River, the
Yangtze River estuary is one of the most important gateways in China. All ships from the Yangtze River
inner port have to pass through this channel. Shanghai Port, located in the Yangtze River estuary, is
the largest container throughput port in the world. In 2014, the container throughput reached 35·285
million twenty-foot equivalent units (TEU) and the cargo throughput was 538·624 million tons. However,
the hydrological environment of the Yangtze River estuary is complex and uncertain, which means it
provides a great challenge to ensure safe navigation. Therefore, AIS data from the Yangtze River estuary
in the year 2014 were extracted to detect abnormal ship trajectories.

4.2. Anomaly detection

According to our proposed DATCP method, an example of the anomaly detection process is shown based
on an abnormal trajectory identified in the Yangtze River estuary. The detailed steps are as follows.
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(a)

(b)

Figure 5. An example of detected abnormal ship trajectory in the Yangtze River estuary.

Step 1: Define the polygons
The characteristics of the north channel in the Yangtze River estuary are suitable for
displaying the process of anomaly detection, as shown in Figure 5(a). Figure 5(b) presents that
the complex polygon of the channel boundary is divided into simple polygons.

Step 2: Determine the theoretical trajectory
The two-way north channel can be divided by the central line. Therefore, two theoretical
trajectories in opposite directions can be determined. The channel width is approximately 170
metres in each direction and the average ship width is 19 metres in the Yangtze River estuary.
Therefore, ten initial starting points are set for the departure cross-section according to the
channel width and the average ship width, suggesting that ten shortest paths can be obtained for
each simple polygon. Subsequently, ten complete shortest paths (i.e., theoretical trajectories)
can be obtained by connecting the corresponding shortest paths from each simple polygon.

Step 3: Anomaly detection
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Table 1. Basic information for the target ship.

Variable Information

MMSI 412375290
Ship type Dredger ship
Ship length 161 metres
Ship width 27 metres
Navigating time 14:06–17:52 May 3, 2014
Weather condition Rainy/snowy
Average speed 14·55 knots

The actual trajectories in the north channel are compared with the corresponding theoretical
trajectories with the closest starting points. We select an available general threshold of the AEI
for all the ship types (i.e., −1, Soleimani et al., 2015) to detect the abnormal ship trajectories
for the convenience of assessing the performance of our developed anomaly detection method.
An example of a dredger ship is proposed to demonstrate the remaining process of ship
anomaly detection. The detailed information for the target dredger ship is shown in Table 1.

The actual trajectories and the theoretical trajectories of the dredger ship are displayed in Figure 5(b).
It should be pointed out that the actual trajectory of the dredger ship is discussed separately according
to the different channel directions. The two-way channel in Figure 5(b) is named channel 1 and channel
2 separately. Moreover, for theoretical trajectories, 𝑆𝑡ℎ1 , 𝐷𝑡ℎ

1 , 𝑆𝑡ℎ2 and 𝐷𝑡ℎ
2 represent the starting point of

channel 1, the destination point of channel 1, the starting point of channel 2 and the destination point of
channel 2, respectively. Here, S1D1 and S2D2 represent actual trajectories of the dredger ship in channel
1 and channel 2, respectively. Accordingly, Table 2 shows the calculation results of the trajectory length,
the area under the curve and the trajectory gradient. With the calculation results in Table 2, the AEI
of the dredger ship is −1·303 in channel 1 and is −1·222 in channel 2. It can be seen that both AEIs in
the two directions are lower than −1, indicating that the trajectory of the dredger ship is abnormal. The
detection result is consistent with the visualised actual trajectory shown in Figure 5(b).

4.3. Feature analysis of abnormal trajectories

A large amount of computation time is required for the feature analysis of the abnormal trajectories in
the whole Yangtze River estuary water area because of the large number of AIS records. Therefore, a
target water area for feature analysis is chosen from a smaller part of the Yangtze River estuary, with a
range of longitudes from 121·49°E to 121·59°E and latitudes from 31·38°N to 31·43°N.

4.3.1. Overall abnormal ship trajectories
According to the extracted AIS data, a total of 169,589 effective actual trajectories in the target water
area were obtained during 2014. For comparison, our proposed DATCP method and the A* algorithm
were both applied to detect abnormal ship trajectories. Specifically, the number of abnormal trajectories
identified by the DATCP method was 4249 while the number of abnormal trajectories detected by the A*
algorithm was only 2981. The proportion of detected abnormal trajectories was 2·50% for the DATCP
and 1·76% for the A* algorithm. With different anomaly detection methods, some invalid AEI values
might come out (e.g., highly negative values) occasionally. After filtering the calculated AEI results, the
DATCP method produced only 37 outliers, while the A* algorithm outputted as many as 461 outliers
based on the same input data. This phenomenon indicates that our proposed method presents a higher
accuracy with fewer outliers.
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Table 2. Calculated anomaly detection indicators for the target dredger ship.

Channel 𝐿𝑎𝑐 𝐿𝑎𝑐 𝐴𝑡ℎ 𝐴𝑎𝑐 𝐺 𝑥
𝑡ℎ 𝐺 𝑥

𝑎𝑐 𝐺𝑦
𝑡ℎ 𝐺𝑦

𝑎𝑐

1 734,723 759,884 3·20E−07 0·213 0·115 3·215 0·019 5·018
2 728,965 742,685 3·24E−07 0·206 0·114 2·962 0·020 4·850

Figure 6. An abnormal ship trajectory detected by the DATCP method.

In addition, abnormal trajectories detected by the two methods were compared by matching the
MMSI of the ships, time and location of the trajectories. The comparison results show that the abnormal
trajectories identified by the A* algorithm were all included in the anomaly identified by DATCP. For
the other 1268 abnormal trajectories identified by DATCP, we also verified the accuracy of anomaly
detection by visualising these trajectories. The visualisation results indicate that 1048 of the trajectories
were abnormal trajectories while 208 of the trajectories were gathered points with ship speeds of less
than 3 knots. Only 12 normal trajectories were wrongly regarded as abnormal trajectories by the DATCP
method. In other words, 80% of the additional detected abnormal trajectories were precisely detected
by the DATCP method, suggesting that the DATCP proposed in this study is more accurate than the
A* algorithm. Figure 6 displays an example of detected abnormal trajectory in the target water area
based on the DATCP method, which was not identified by the A* algorithm. The rectangular area is
the channel boundary of the target water area. The trajectory is from a bulk carrier sailing at 23:00 on
January 25, 2014. As can be seen from the figure, the ship had a significant directional shift and sailed
out of the channel boundary. The reason for this abnormal trajectory may have been that the helmsman
changed its heading privately owing to uncertain causes.

4.3.2. Trajectory anomaly distribution among different ship types
Ship type is an important factor that could affect the behaviour of ships (Weng et al., 2020). Due to the
significant characteristic difference among different ship types, the situations of trajectory anomalies
may also vary among different ship types. Figure 7 presents a comparison of the anomaly detection
results among different ship types using the DATCP and the A* algorithm. As seen in Figure 7,
dredger ships, other ships and tankers have large differences of anomaly proportions between the two
methods, namely,1·78%, 1·4% and 1·17%. However, for carriers, container ships and passenger ships,
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Figure 7. Anomaly detection results for different ship types.

there is no significant difference between the proportions of abnormal trajectories detected by the two
methods. For ship types with irregular navigation behaviour like dredger ships, the A* algorithm can
omit many expected abnormal trajectories based on only one theoretical trajectory (i.e., optimal path).
Nevertheless, the proposed DATCP method can identify more abnormal trajectories because different
theoretical trajectories are considered according to different starting points.

Figure 8 shows the number of abnormal ships and the proportion of abnormal trajectories for
different ship types. It can be seen from Figure 8(a) that the abnormal cargo ships account for the largest
proportion (73·12%), followed by tankers (10·76%), tug ships (8·28%), other ships (4·38%), container
ships (1·67%), dredger ships (0·71%), carriers (0·38%), fishing ships (0·31%), supply ships (0·31%)
and passenger ships (0·09%). In reality, the proportion of abnormal ships depends on the situation of
whether the ships frequently sail in the target water area or not. The larger proportion of abnormal cargo
ships may be explained by the fact that the cargo ship is the most active ship type in the Yangtze River
estuary. It is also found that the proportion of abnormal trajectories varies with different ship types.
Figure 8(b) shows that the two ship types associated with the highest proportion of abnormal trajectories
are dredger ships (15·00%) and cargo ships (14·98%), followed by supply ships (13·58%), tug ships
(13·19%), tankers (9·41%), container ships (8·64%), fishing ships (7·49%) and passenger ships (2·15%)
in the Yangtze River estuary water area.

Note that the engineering ships (e.g., dredger ships, supply ships and tug ships) usually do not have
specific sailing paths. Similarly, fishing ships are a little more likely to produce abnormal trajectories
when sailing in fishing areas. From this point of view, ships sailing through the Yangtze River estuary
should place more attention on maintaining a safe distance from engineering ships or fishing ships as
they are associated with the high trajectory anomaly rates.

4.3.3. Trajectory anomaly distribution at different time periods
Figure 9 graphically depicts the temporal variation of detected trajectory anomalies in the Yangtze River
estuary water area. As can be seen from the deviation lines, there are more abnormal trajectories detected
by the DATCP method than the A* algorithm throughout the year. Specifically, the highest proportion of
abnormal trajectories appears in May (3·27%), as shown in Figure 9(a). One possible reason may be that
the ship traffic density is the largest in this month, as evidenced by Table 3. Obviously, a large number
of ships may increase the occurrence frequency of abnormal trajectories. Similarly, the proportion of
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Figure 8. Abnormal trajectory distributions for different ship types.

abnormal trajectories is the lowest in March (1·38%) due to fewer total trajectories in this month. It is
worth noting that anomaly rates are relatively higher in February and July. However, there are a relatively
lower number of ship activities in these two months. Figure 9(b) shows that the occurrence probability
of abnormal trajectories is the largest (1·58%) for the time period from 6:00 to 12:00, followed by the
time period of 18:00–24:00 (1·24%). Note that ships have the lowest probability (0·80%) of producing
abnormal trajectories during the time period from 0:00 to 6:00.

Figure 10 presents the monthly variation of anomaly rates for each ship type. As shown in Figure 10(a),
the proportion of abnormal trajectories from dredger ships is the highest in July (12·5%), which is the
flood season of the Yangtze River estuary. As mentioned above, the irregular paths of dredger ships are
highly associated with their particular activity patterns. A large amount of sediment might accumulate
in the Yangtze River estuary during the flood season, which could affect the navigability of the channel
directly. Dredger ships are thus necessary to maintain the navigational safety of the Yangtze River
estuary. Similar to dredger ships, the anomaly rate of supply ships shows an overall upward trend and
reaches the peak in July (8·5%).

Because of the more frequent ship activities in May and June, three ship types including cargo ships,
container ships and tug ships are found to produce higher anomaly rates in these two months, as shown
in Figure 10(b). For instance, Table 3 shows that there are 10,119 cargo ship trajectories extracted from
May, which is the highest among the whole year. Another critical finding is that tankers produce the
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(a)

(b)

Figure 9. Temporal effects on detected anomaly rates.

(a) (b) (c)

Figure 10. Monthly anomaly rates for different ship types.
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Table 3. Statistics of actual trajectories in the target water area.

Ship type January February March April May June July August September October November December

Carrier 1358 995 1353 1254 1194 1025 919 1111 1038 957 975 1137
Cargo ship 8892 5803 8115 8575 10,119 8760 7635 9649 9261 9273 9078 9444
Container ship 373 249 385 340 383 317 298 346 366 375 368 342
Dredger ship 154 17 43 22 9 109 98 134 45 92 181 95
Fishing ship 71 42 70 82 103 73 64 85 73 60 69 80
Supply ship 58 45 42 44 55 55 24 47 39 33 24 17
Other ship 246 291 379 462 1098 427 402 439 986 391 404 746
Passenger ship 47 40 80 97 83 93 79 94 89 75 81 78
Tanker 2586 1596 1780 1818 2093 2041 1800 2109 2075 2204 2130 2275
Tug ship 1205 980 1123 1067 1170 1133 923 1161 1033 1101 1189 1374
Total 14,990 10,058 13,370 13,761 16,307 14,033 12,242 15,175 15,005 14,561 14,499 15,588
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Table 4. Distribution of abnormal ship trajectory under different weather conditions.

Rainy/snowy Cloudy Sunny

40·58% 30·70% 28·72%

Figure 11. Ship anomaly distributions under different weather conditions.

highest proportion of anomalies in December. Since tankers are one of the highly hazardous ship types,
special attention shall be paid to the anomaly navigation of tankers. Furthermore, Figure 10(c) reveals
that the anomaly rates of passenger ships are always close to zero, suggesting that passenger ships could
strictly comply with their fixed routes.

4·3.4. Trajectory anomaly distribution under different weather conditions
Weather conditions at sea have always been a critical factor in maritime safety-related works. According
to previous studies, adverse weather conditions can increase the risk of collisions (Vettor and Soares,
2017; Weng et al., 2020). Similarly, there may be a high likelihood of a ship anomaly under adverse
weather conditions. In this study, we collected the weather information of the Yangtze River estuary
from the National Maritime Data and Information Service (NMDIS). The collected weather conditions
mainly consist of three weather categories, including sunny, rainy/snowy and cloudy.

Table 4 tabulates trajectory anomaly distributions under different weather conditions. It can be seen
from Table 4 that the anomaly proportion under rain/snow weather conditions is the highest (40·58%),
followed by cloudy days (30·7%) and sunny days (28·72%). Note that adverse weather conditions are
usually associated with poor visibility and a short visible range for ships, which might cause the ships
to deviate from their normal routes. Therefore, more attention should be paid to the ships navigating
under severe weather conditions. Moreover, anomaly distributions under different weather conditions
are also presented for each ship type, as shown in Figure 11. In general, it is found that approximately
40% of abnormal trajectories have occurred under rainy/snowy weather conditions.

4.3.5. Trajectory anomaly distribution under different ship traffic conditions
Theoretically, ship traffic flow and density might influence the likelihood of abnormal trajectories.
Figure 12 shows the effects of ship traffic conditions characterised by ship traffic flow and density on the
abnormal trajectory distributions. Figure 12(a) demonstrates that the number of abnormal trajectories
generally increases with the ship traffic flow. The median quartile of the abnormal trajectories reaches a
peak (i.e., approximately 6 times/day) when the ship traffic flow comes to 500–600 ships/day. However,
the number of abnormal trajectories is less than 2·5 times/day when the ship traffic flow is below
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(a)

(b)

Figure 12. Ship anomaly distribution under different ship traffic flow and ship traffic density.

100 ships/day. Similarly, the number of abnormal trajectories also increases with ship traffic density, as
shown in Figure 12(b). The upper limit of ship anomalies reaches 10 times/day when the shipping density
remains between 2·5 and 3·5 ships/nm2/day. An interesting finding is that the number of abnormal ship
trajectories decreases slightly when the traffic flow is greater than 600 ships/day or the shipping density
is greater than 3·5 ships/nm2/day. This suggests that the majority of ships would like to keep on their
normal routes under congested traffic conditions.

5. Conclusions

The ship anomaly detection in maritime surveillance is a key step towards the application of navigation
safety enhancement strategies for maritime authorities. However, the effect of channel boundaries has
rarely been considered in the past, which might lead to biased results for anomaly detection. Therefore,
this study endeavours to fill in the gaps by proposing the DATCP method to detect abnormal behaviours
of ships. The abnormal trajectories could be identified by comparing the actual trajectories against the
calculated theoretical trajectories through the AEI score. Complex polygons simplified by the channel
boundaries are applied to calculate theoretical trajectories. Based on the AIS data from the Yangtze
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River estuary in 2014, this study finally creates one case study to validate the capability of the proposed
DATCP method in detecting abnormal ship trajectories.

Case study results reveal that the proposed DACTP method performs better than the traditional A*
algorithm because the former could detect more abnormal ship trajectories that were missed by the
A* algorithm. A total of 4249 abnormal trajectories are detected by the DACTP method from the
169,589 actual trajectories in the target waters. Dredger ships are found to generate a higher proportion
of abnormal trajectories, as compared with other ship types. Especially, the highest anomaly rate of
dredger ships occurs in the Yangtze River estuary during the flood season. Since engineering ships
(e.g., dredger ships, supply ships and tug ships) or fishing ships usually do not have specific sailing
paths, ships sailing through the Yangtze River estuary should place more attention on maintaining a
safe distance from these ships that are associated with the high trajectory anomaly rates. The temporal
analysis results reveal that the high proportion of abnormal trajectories is closely associated with the
flood season, the typhoon season and the Chinese Spring Festival. Moreover, the anomaly rate is the
highest during the time period from 6:00 to 12:00 in this water area. A large number of abnormal
trajectories are detected on rainy/snowy days. This implies that special concern should be paid to avoid
the occurrence of abnormal behaviour under adverse weather conditions. In addition, the results also
show that ships are most likely to generate abnormal trajectories when the ship traffic flow reaches 500
ships/day or the ship traffic density is higher than 2·5 ships/nm2/day in this water area.

Case study results demonstrate that the proposed DACTP method could accurately detect the
abnormal trajectories, which is beneficial for maritime authorities to put forward more effective coun-
termeasures to reduce the anomaly rate. However, due to data limits, the AEI thresholds of abnormal
trajectory for different ship types have not been investigated in this study. We are now working on col-
lecting real case data of abnormal ship trajectories for different types of ships. Our future work will focus
on determining the AEI thresholds for different ship types based on our developed abnormal detection
methods and the obtained real ship anomaly cases. In addition, the detection performance of our pro-
posed DATCP method may be highly affected by the polygon segmentation scheme (e.g., polygons or
grids). Theoretically, the optimal polygon segmentation scheme could be determined by minimising the
difference between the number of detected abnormal trajectories against the observed data. Therefore,
we will further investigate the detection accuracy under different polygon segmentation schemes for a
specific waterway after collecting the observed abnormal ship trajectories in the future.
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