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Abstract
Generalized Additive Models (GAMs) with age, period and cohort as possible covariates are used to

predict future mortality improvements for the Irish population. The GAMs considered are the 1-

dimensional age 1 period and age 1 cohort models and the 2-dimensional age-period and age-cohort

models. In each case thin plate regression splines are used as the smoothing functions. The generalized

additive models are compared with the P-Spline (Currie et al., 2004) and Lee-Carter (Lee & Carter,

1992) models included in version 1.0 of the Continuous Mortality Investigation (CMI) library of

mortality projections. Using the Root Mean Square Error to assess the accuracy of future predictions,

the GAMs outperform the P-Spline and Lee-Carter models over intervals of 25 and 35 years in the age

range 60 to 90. The GAMs allow intuitively simple models of mortality to be specified whilst also

providing the flexibility to model complex relationships between the covariates. The majority of

morality improvements derived from the projections of future Irish mortality yield annuity values

at ages 60, 65, 70 and 80 in 2007 in the range of annuity values calculated, assuming a 2 to 4 percent

annual compound improvement in mortality rates for both males and females.
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1. Introduction

The Actuarial Profession requires projections of future mortality for pricing and valuing benefits

dependent on death or survival. Gallop (2008) identifies the following main approaches for

projecting future mortality: extrapolative approaches based on identifying past trends and

extrapolating them into the future; targeting approaches where mortality rates are assumed to

approach a target level over time; explanatory approaches which use causal methods based on

economic and/or environmental variables to forecast future mortality, and process based methods

that use a bio-medical approach to model the factors that determine death. Much actuarial research

on mortality projections has focussed on extrapolative approaches. Early approaches included

extrapolating past mortality rates by mathematical formula and also extrapolating parameter values

from mathematical formulae fitted to mortality data. More recently Sithole et al. (2000)

investigated the use of parametric models in the framework of generalized linear and non-linear

models for projecting future mortality while the Continuous Mortality Investigation (CMI) interim

cohort projections (CMI, 2002) extrapolate mortality trends for the cohort of CMI assured lives
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born a few years either side of 1926. Wong-Fupuy & Haberman (2004) provide a detailed overview

of recent UK and US mortality projection methodologies that are extrapolative in nature.

In 2002, the CMI sponsored research into two extrapolation based methods to investigate their

suitability for projecting future improvements for CMI mortality data – namely the ‘‘2-Dimensional

Penalised Spline (P-Spline)’’ (Currie et al., 2004) and the ‘‘Lee-Carter’’ (Lee & Carter, 1992)

methods. This ultimately led to the CMI publishing version 1.0 of the ‘‘Library of Mortality

Projections’’ in July 2007. The library contains the results of (amongst others) the P-Spline and

Lee-Carter methods applied to CMI assured lives and the UK Office of National Statistics (ONS)

data for both males and females over a range of years. The user guide (CMI, 2007c) accompanying

the library includes illustrative values for annuities and expectation of life calculated using the

projected mortality improvement rates contained in the library. This paper considers the suitability

of generalized additive models (GAMs) for projecting future mortality rates by comparing them

with the CMI P-Spline and Lee-Carter models in version 1.0 of the CMI Library of Mortality

Projections. The generalized additive models are then applied to Irish population data to project

future Irish mortality improvements and annuity rates using these improvements.

The generalized additive models considered here use age, period (year of death) and cohort

(year of birth) as possible factors to project future mortality. The classical age 1 period 1 cohort

(APC) models (Holford, 1983) effectively describe past changes in mortality. However, given the

non-parametric nature of these models they are unsuitable for making projections outside the range

of fitted data. Various alterations have been proposed to the classical age-period-cohort model

to extrapolate results outside of the fitted region. Bray (2002) describes a Bayesian APC model with

an autoregressive prior on the age, period and cohort terms. A similar model was applied by Bashir

& Esteve (2001) for projecting cancer incidence and mortality in Finland, and by Cleries et al.

(2006) for projecting breast cancer mortality in Spain.

Generalized additive models are widely used in time-series studies of mortality and air pollution.

Dominici et al. (2002) discuss the use of GAMs for modelling relative rates of mortality and morbidity

in such cases. Mortality projections using GAMs are described by Clements et al. (2005) who compare

a GAM age 1 period, age 1 cohort, age 1 period 1 cohort and a 2-dimensional age-period model with

a Bayesian APC model for predicting female cancer mortality rates in several countries.

The layout of the remainder of the paper is as follows: section 2 describes the data to which the

models are applied, section 3 introduces the GAM models, section 4 presents the results of applying

the GAMs to the data, section 5 compares the GAMs with the CMI ‘‘P-Spline’’ and ‘‘Lee-Carter’’

models, section 6 discusses the relative suitability of the GAM models for mortality projections, and

section 7 concludes by applying the GAMs to Irish population data for males and females.

2. Data Sources

The CMI Male Assured Lives data (1947 to 2005) is used for comparing the GAMs relative to the

CMI P-Spline and Lee-Carter models. This dataset provides a count of the number of deaths and

corresponding central exposed-to-risk for ages 42 to 90 for each year between 1947 and 2005.

For projecting Irish mortality rates, the number of deaths and census figures for the population

of males and females were obtained from the Central Statistics Office (CSO) for ages 40 to 90 in the
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following years: 1961, 1966, 1971, 1979, 1981, 1986, 1991, 1996, 2002 and 2006. The death

and census data use the age definition ‘‘age last birthday’’ and I have assumed that the census

figures for each age and year approximate the central exposed to risk at 30th June for that age

and year. The CSO data is much sparser and irregularly spaced, relative to the Assured

Lives data.

3. Generalized Additive Models

Generalized additive models extend Generalized Linear Models (GLMs) (Nelder & Wedderburn,

1972) which model a linear relationship between a response y and a set of predictors x1,y., xn

where the response y is non normally distributed. The basic form of a GLM is:

Z ¼ gðmÞ ¼ b0 þ b1x1 þ b2x2 þ . . . :þ bnxn

where m 5 E(y) and g is referred to as the link function. The Poisson distribution can be

used to model the number of deaths occurring over an interval, and the Poisson GLM has been

used extensively to describe the relationship between the expected number of deaths and

predictors such as age, period (year of death), cohort (year of birth) and lifestyle factors such

as smoking status, income, location, etc. However, the linearity assumption may not apply in

practice and for complex data structures with large numbers of covariates, the parametric nature

of GLMs heightens the risk of model mis-specification with consequent problems for inference

and prediction.

GAMs relax the linearity assumption of GLMs and allow the linear predictor to include smooth

functions of the covariates. By replacing detailed parametric relationships with smooth functions,

GAMs allow complex relationships to be implemented while still retaining a simple linear

relationship amongst the predictor variables. The basic form of a GAM is:

Z ¼ gðmÞ ¼ b0 þ b1x1 þ b2x2 þ . . . :þ bmxm þ f mþ1ðxmþ1Þ þ . . . :þ f mþnðxmþnÞ

where as before m 5 E(y) and fm 1 1, y., fm 1 n are smooth non-parametric functions.

In this paper Poisson GAMs using thin plate regression splines as the smooth functions are

used to model past mortality rates and to project future rates. Consider a set of observations

ðDx;t;Ec
x;tÞ where Dx,t is the number of deaths aged x in year t and Ec

x;t is the corresponding

central exposed-to-risk. The number of deaths is assumed to follow a Poisson distribution where

E½Dx;t� ¼ Ec
x;t � mx;t where mx,t is the force of mortality at age x in year t. The generalized additive

models take the form Dx;t � PoissonðEc
x;tmx;tÞ with linear predictor h 5 log mx,t and logðEc

x;tÞ is

treated as an offset. The GAMs discussed are the 1-dimensional age and period (A 1 P) and age

and cohort (A 1 C) models with respective linear predictors:

Z ¼ logðmAþPÞ ¼ logðEc
AþPÞ þ f AðageÞ þ f PðperiodÞ

Z ¼ logðmAþCÞ ¼ logðEc
AþCÞ þ f AðageÞ þ f CðcohortÞ

and the 2-dimensional age-period (AP) and age-cohort (AC) models with respective linear

predictors:

Z ¼ logðmAPÞ ¼ logðEc
APÞ þ f APðage; periodÞ

Z ¼ logðmACÞ ¼ logðEc
ACÞ þ f ACðage; cohortÞ:

Mortality Projections using Generalized Additive Models
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Model projections are based on extrapolating (Clements et al., 2005) the smooth functions and

evaluating at the required values of age, period and cohort. If the smooth functions are thought of as

modelling past trends of the impact of covariates on the response, then GAMs provide a simple

method of prediction based on extrapolating past trends for each of the covariates.

The generalized additive models are implemented using the R (R Development Core Team, 2009)

version 2.9.0 package mgcv (Wood, 2001), version 1.5–2, which provides functions for fitting

generalized additive models, generating confidence intervals and predicting future values. The

models are fitted using penalized maximum likelihood where the model likelihood is modified by

the addition of a penalty for each smooth function penalizing its ‘‘wiggliness’’. Each penalty is

multiplied by an associated smoothing parameter which controls the trade-off between goodness of

fit and smoothness. The smoothing parameters are estimated automatically using Unbiased Risk

Estimation (UBRE). The application of the penalties during fitting reduces the degrees of freedom to

yield the effective degrees of freedom for the smooth functions. The degrees of freedom in the model

specification place an upper limit on the flexibility of a smooth function while the smoothing

parameters determine the effective degrees of freedom within that limit.

Smooth functions vary from a completely smooth straight line to zero smoothness. When specifying

a GAM, care must be taken when choosing the degrees of freedom for each smooth function to

ensure a balance between a sufficiently high degree of freedom to correctly capture variations in the

data and a low degree of freedom to allow the overall trend in the data to be modelled. What is an

appropriate degree of freedom for modelling the underlying trend obviously depends on the data,

knowledge of the process being modelled and the purpose of the model. Fewster et al. (2000)

discussed the choice of model degrees of freedom when using generalized additive models to analyse

population trends for birds. They suggested using a low number of degrees of freedom for modelling

long term trends.

To illustrate the effect of choice of degrees of freedom, Figure 1 presents the smooth functions of age,

period and cohort as a result of fitting the generalized additive A 1 P and A 1 C models to the assured

lives dataset with different degrees of freedom for the smooth functions of age and period and

cohort. The degrees of freedom are set via the basis dimension parameter, k, of the gam function in

the mgcv library and are equal to k21. For ‘‘Model 1’’ the degrees of freedom for each predictor are

set equal to the maximum allowable. For ‘‘Model 2’’ the degrees of freedom are one-eighth those

of ‘‘Model 1’’. The y-axis label shows the effective degrees of freedom for each smooth term.

As can be seen with increasing degrees of freedom the smooth functions exhibit increasing

fluctuation. For models 1, with the maximum allowable degrees of freedom for the smooth

functions of age, period and cohort, the period and cohort effects fluctuate significantly and no

overall trend for extrapolation can be identified. In the case of model 2 however, with one-eighth of

the degrees of freedom for the smooth functions of age, period and cohort, the smooth functions of

period and cohort exhibit much lower volatility and decrease smoothly over time.

The smooth functions are implemented using thin plate regression splines – further details on this

approach can be found in Wood (2003) and Wood (2006). Predictions of future mortality are based

on extrapolating the spline fits and as a result the eventual predictions of future mortality will

depend on the degrees of freedom chosen for the covariates. When using GAMs to model past

trends for extrapolation purposes the degrees of freedom chosen should be the minimum necessary

to capture any trends in the data ignoring random fluctuations.
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4. Models and Results

4.1. 1-Dimensional GAMs

The 1-dimensional generalized additive A 1 P and A 1 C models were fitted to the full assured

lives dataset (ages 42–90 and years 1947–2005). The choice of basis dimension for each of the

covariates, age, period and cohort, was checked for appropriateness using the method described

by (Wood, 2006). In summary the models were repeatedly fitted to the data with increasing

degrees of freedom for each of the covariates. The deviance residuals for the fitted models were

extracted and smoothed with respect to each of the covariates in the model but using a significantly

increased basis dimension to see if there was a pattern in the residuals that could be explained

by increasing the basis dimension. The basis dimensions were chosen to be the minimum

necessary to ensure that the residuals did not exhibit any unexplained variation that could be

removed by increasing the basis dimension. Table 1 presents the resulting generalized additive

A 1 P and A 1 C models. Figure 2 plots the smooth functions of the covariates for the A 1 P and

A 1 C models in table 1.

For illustration Figure 3 displays the projected values of log(m) for the A 1 P and A 1 C models

for ages 65, 75 and 85 together with their 95% confidence intervals from 2005 to 2035.

From Figure 3. we can see that both models predict similar improvements in mortality over the

30 year period. The A 1 P model predicts slightly lower values of log(m) at ages 65 and 75 than the

A 1 C model and vice versa at age 85.

Model 1 A+P
 DF:Age=48,
Period=58

Age

s(
A

ge
,2

1.
2)

Period
s(

P
er

io
d,

51
.4

9)

Model 2 A+P
DF:Age = 6,

Period=7

Age

s(
A

ge
,4

.9
9)

Period

s(
P

er
io

d,
5.

68
)

Model 1 A+C
DF:Age=48,
Cohort=106 

Age

s(
A

ge
,2

1.
11

)

Cohort

s(
C

oh
or

t,8
4.

06
)

Model 2 A+C
DF:Age = 6,
Cohort=13

Age

s(
A

ge
,4

.9
8)

Cohort

s(
C

oh
or

t,1
1.

24
)

-2
-1
0
1
2

50 70 90

-0.6

-0.2

0.2

1950 1980

-2
-1
0
1
2

50 70 90

-0.6

-0.2

0.2

1950 1980

50 70 90

-1.0

-0.5

0.0

0.5

1860 1900 1940

-2

-1

0

1

2

50 70 90
-1.0

-0.5

0.0

0.5

1860 1900 1940

-2

-1

1

2

0

Figure 1. Plots of smooth functions of age, period and cohort from fitting the A 1 P and A 1 C
model using various degrees of freedom. The y-axes are labelled with the resulting effective degrees
of freedom of the smooth functions.
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4.2. 2-Dimensional GAMs

The 2-dimensional generalized additive AP and AC models were fitted to the full assured lives data

and the appropriate basis dimension was chosen in a similar manner to the 1-dimensional models

by repeatedly increasing the basis dimension in steps of 5 until the residuals exhibited no variation

that could be explained by increasing the basis dimension further. Table 2 presents the resulting

generalized additive AP and AC models.

Figure 4 displays perspective plots of the fitted values for the AP and AC models respectively. From

the plots it can be seen that in both cases the predictors increase smoothly with age and decrease

smoothly with period or cohort.

Table 1. 1-dimensional generalized additive A 1 P and A 1 C models fitted to Assured Lives Data.

Model Covariate Basis Dimension Effective Degrees of Freedom

A 1 P Age 12 10.74

Period 22 20.69

Total 32.43

A 1 C Age 14 12.76

Cohort 13 11.2

Total 24.98
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Figure 2. Plots of smooth functions for the 1-dimensional generalized additive A 1 P and A 1 C
models.
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model.
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For illustration Figure 5 displays the projected values of log(m) for the AP and AC models for ages

65, 75 and 85 together with their 95% confidence intervals from 2005 to 2035. From Figure 5 we

can see that both models predict similar improvements in mortality over the 30 year period at the

ages shown. Comparing with the projected values for the 1-dimensional models the 2-dimensional

models predict slightly faster improvements in mortality for the ages shown over the 30 year period

2005 to 2035.

5. Model Comparisons

As discussed in section 1 two models for modelling and projecting future mortality are the P-Spline

and Lee-Carter models. The P-Spline model (Currie et al., 2004) fits penalized 2-dimensional cubic

splines to mortality and exposure data and projects future mortality rates by extrapolating these

Table 2. 2-dimensional generalized additive AP and AC models fitted to Assured Lives Data.

Model Covariate Basis Dimension Effective Degrees of Freedom

AP Age, Period 70 63.28

Total 64.28

AC Age, Cohort 60 52.769

Total 53.769
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Figure 4. Plots of the fitted values for the 2-dimensional generalized additive AP and AC models.
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Figure 5. Projected values of log(m) 2005 to 2035 for the generalized additive AP and AC models.
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splines into the future. The dimensions of the splines can be age and year of death (age-period

model) or age and year of birth (age-cohort model). The level of smoothing depends on the choice

of penalty for the 2-dimensional splines. The Lee-Carter method (Lee & Carter, 1992) uses a time

series model to project future mortality rates. The general form of the Lee-Carter method is as follows:

logðmðx; tÞÞ ¼ aðxÞ þ bðxÞkðtÞ þ zðx; tÞ

where a(x) is the average level of the log(m(x,t)) surface over time for age x, k(t) is the overall change in

mortality over time, b(x) are the deviations from k(x) by age and z(x,t) are the random deviations.

The CMI published its assessment of the P-Spline method in Working Paper 20 (CMI, 2006a)

and the Lee-Carter method in Working Paper 25 (CMI, 2007a). The CMI also made software

available for applying the P-Spline and Lee-Carter models described in these papers to mortality and

exposure data. Version 3.0 of the CMI P-Spline and Lee-Carter software is used to generate the

results for the P-Spline and Lee-Carter models in this paper. The parameters of the P-Spline models

are those listed in Appendix B of the CMI user guide to version 1.0 of the CMI Library of Mortality

Projections (CMI, 2007c). The 1 and 2 dimensional generalized additive models are compared to

the P-Spline and Lee-Carter models by comparing past and future predictions for the CMI male

assured lives. To assess the accuracy of the models ‘‘back testing’’ is used where the models are fitted

to a subset of the assured lives data and the projected deaths in future years are compared with

the actual deaths observed. The accuracy of the projections are assessed using the Root Mean

Square Error. Future predictions are compared using annuity values based on each models’

predictions of future mortality.

5.1. Back Testing using the Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is used to assess the accuracy of the model predictions in the

age range 60 to 90. The RMSE quantifies the difference between the number of deaths predicted

by the model and the actual number of deaths observed and is defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼age

P
j¼year

ðdi;j�Di;jÞ
2

n

vuut
n ¼ i� j

where n 5 i 3 j, di,j is the expected number of deaths ðdi;j ¼ Ec
i;j � mi;jÞ and Di,j is the actual number

of deaths observed at age i in year j.

The accuracy of the predictions were assessed over various intervals. The models were fitted to the

subsets listed in table 3. using the method described in sections 4.1 and 4.2 and the RMSE was

calculated for ages 60–90 using the projected values of log(m) for the corresponding intervals

shown. All models were fitted to the age range 42 to 90.

Table 3. Root Mean Square Error intervals for assessing accuracy of model predictions.

Fitted Region RMSE Prediction Interval RMSE Interval Duration

1947–1970 1971–2005 35 Years

1947–1980 1981–2005 25 Years

1947–1990 1991–2005 15 Years

M. Hall and N. Friel
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The RMSE of each model’s predictions over various intervals are presented in table 4. and are

ranked according to their RMSE. In each case the RMSE was calculated from the end of the fitted

region to 2005. The 1-dimensional A 1 P and the 2-dimensional AP and AC GAMs perform well

relative to the CMI P-Spline and Lee-Carter models with the GAM AP model having the lowest

RMSE in the prediction intervals 1971 to 2005 and 1981 to 2005. The 2-dimensional GAMs

perform better than the P-Spline models over the longer prediction durations of 35 (1971 to 2005)

and 25 (1981 to 2005) years. Over the shortest prediction interval 1991 to 2005 (15 years) the

P-Spline models and 2-dimensional GAMs have similar RMSEs. The 1-dimensional generalized

additive A 1 P model performs better than the Lee-Carter model over each of the 3 prediction

intervals. The 1-dimensional generalized additive A 1 C model performs well over the longest

prediction interval 1971 to 2005 but performs poorly over the remaining two prediction intervals.

The Lee-Carter model performs poorly with the highest RMSE in the prediction intervals 1971 to

2005 and 1981 to 2005 and the second highest RMSE in the prediction interval 1991 to 2005.

5.2. Annuity Values using Projected Mortality Rates

Annuity values in 2007 for ages 60, 65, 70 and 80 are calculated using each models’ predictions.

The annuity values are calculated using the method described in Working Paper 20, section 6 (CMI,

2006a). Firstly, projected mortality rates for each age, x, in year t are calculated from the projected

values of log(m) as follows:

qðx; tÞ ¼ 1� expð�ðmðx; tÞ þ mðxþ 1; tÞÞ=2Þ 20 � xo90

qð90; tÞ ¼ 1� expð�mð90; tÞÞ x ¼ 90

Table 4. Root Mean Square Error of model predictions over various intervals.

Fitted Region

RMSE Prediction

Interval

Prediction

Duration Model

Basis

Dimension(s) RMSE

1947–1970 1971–2005 35 years GAM AP 40 83.744

GAM A 1 C 10,9 85.915

GAM AC 25 97.888

P-Spline AP 124.952

P-Spline AC 131.040

GAM A 1 P 10,12 133.972

Lee-Carter 141.557

1947–1980 1981–2005 25 years GAM AP 45 31.372

GAM AC 30 36.430

P-Spline AP 37.759

P-Spline AC 53.394

GAM A 1 P 13,16 56.284

GAM A 1 C 13,10 71.216

Lee-Carter 80.815

1947–1990 1991–2005 15 years P-Spline AP 20.418

P-Spline AC 21.165

GAM AC 45 22.453

GAM AP 60 23.223

GAM A 1 P 13,17 35.336

Lee-Carter 41.285

GAM A 1 C 13,11 42.747
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Annual mortality improvements are then calculated and applied to 100% of the base mortality

table PCMA00 in 2007. There is no explicit allowance for mortality improvements between

2000 and 2007. Mortality improvements after age 90 are assumed to be equal to those at

age 90. The annuity rates are calculated assuming an interest rate of 5% p.a. and no escalation.

The generalized additive and CMI models were fitted to the age range 42 to 90 for years 1947

to 2005. Table 5 presents the annuity values calculated using the generalized additive model

projections and the P-Spline and Lee-Carter projections applied to the base table PCMA00

in 2007. Annuity values assuming a 1%, 2% and 3% per annum compound improvement in

mortality are also shown. Based on the results in table 5. the 2-dimensional generalized additive

and P-Spline models result in similar annuity values at the ages shown. The GAM AP model

predicts slightly higher annuity values than the P-Spline AP models and the P-Spline AC model

predicts slightly higher annuity values at the earlier ages (60 and 65) than the GAM AC model

and vice versa at the later ages (70 and 80). The Lee-Carter and the generalized additive

A 1 C models predict the lowest annuity values at the ages shown. The annuity values

shown for the generalized additive models lie in the range of a 2% to 3% per annum

compound improvement in mortality with the exception of the A 1 C model which yields

lower annuity values in the range of a 0% to 1% per annum compound improvement in

mortality at the ages shown.

6. Discussion

Generalized additive models provide an intuitively simple method of modelling past mortality

and projecting future mortality. By modelling smooth function(s) of covariates we can develop

flexible mortality models without the need to specify detailed parametric relationships between

the covariates. Thin plate regression splines are used as the smoothing function in this paper

but alternative smoothing functions can be chosen. Unlike other spline based smoothing

functions thin plate regression splines avoid the need to choose ‘‘knot locations’’ although

as shown care is needed when specifying the model degrees of freedom in order to provide

sufficient flexibility to model actual changes in trends whilst ignoring any random fluctuations

in the underlying trend. However, the ability to choose the degrees of freedom for the

model does allow a user to apply their own judgment or expertise when choosing an appropriate

Table 5. Comparison of annuity values at ages 60, 65, 70 and 80 using each models’ predictions of future

mortality.

Projection Name €a60 €a65 €a70 €a80

GAM A 1 P 14.655 13.059 11.201 7.311

GAM A 1 C 13.765 12.246 10.525 6.911

GAM AP 14.474 12.932 11.114 7.249

GAM AC 14.558 12.977 11.123 7.178

P-Spline AP 14.440 12.846 10.993 7.134

P-Spline AC 14.613 12.983 11.085 7.158

Lee-Carter 13.971 12.410 10.627 6.962

1% p.a. improvement 13.842 12.311 10.560 6.946

2% p.a. improvement 14.285 12.719 10.912 7.151

3% p.a. improvement 14.778 13.177 11.307 7.380
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model for a particular situation. The final model should always be checked for reasonableness

prior to use.

Relative to the CMI P-Spline and Lee-Carter mortality models the predictive accuracy (measured

using the RMSE) of the 1-dimensional A 1 P and 2-dimensional AP and AC GAMs are comparable

over intervals of 15, 25 and 35 years with the 2-dimensional generalized additive AP model

performing best over 35 years and over 25 years. Extrapolating the period and cohort effects into

the future these GAMs yield consistent annuity values in 2007 at ages 60, 65, 70 and 80.

Generalized additive models can easily be fitted using the R (R Development Core Team, 2008)

package, mgcv. The mgcv package provides a choice of smoothing functions in both one and

multiple dimensions as well as useful diagnostic tools and graphing facilities for visualizing the

output of models. However, it should be noted that there were problems fitting the 2-dimensional

GAMs to very large datasets and as a result the age range used was restricted to ages 42 to 90. The

mgcv software allows for quick and easy implementation of a range of generalized additive models

and hopefully will result in more widespread use of such models for analyzing mortality data. In

conclusion, the 1 and 2-dimensional generalized additive models discussed in this paper provide a

simple but flexible method of projecting future mortality which compare well with the CMI P-Spline

and Lee-Carter methods in terms of prediction accuracy.

7. Mortality Projections for the Irish Population

The Central Statistics Office in Ireland generates projections of future Irish mortality using a

targeting approach where mortality rates in future years are based on a combination of observed

short term trends and an estimate of long term mortality improvements – see Whelan (2008) for full

details. In contrast the generalized additive models discussed in this paper project future mortality

by identifying past trends and extrapolating these trends into the future. The 1 and 2-dimensional

generalized additive models were applied to the Irish CSO data described in section 2. An additional

term allowing for the interaction between age and sex was added to the models to allow for the joint

modelling of male and female mortality. The interaction term was also implemented as a smooth

function. The models were chosen using the approach outlined in section 4.1.

Figure 6 illustrates the predicted values of log(m) at age 65 over the thirty year period from 2005 to

2035 together with their 95% confidence limits for both males and females using each of the

generalized additive models. From the diagrams it can be seen that the A 1 P model predicts the

A+P

Year

Lo
g 

M
or

ta
lit

y 
R

at
e

Male
Female

A+C

Year

Lo
g 

M
or

ta
lit

y 
R

at
e

Male
Female

AP

Year

Lo
g 

M
or

ta
lit

y 
R

at
e

Male
Female

AC

Year

Lo
g 

M
or

ta
lit

y 
R

at
e

Male
Female-6.0

-5.0

-4.0

-3.0

1960 2000

-6.0

-5.0

-4.0

-3.0

1960 2000

-6.0

-5.0

-4.0

-3.0

-6.0

-5.0

-4.0

-3.0

1960 2000 1960 2000

Figure 6. Generalized additive model projections of log(m) at age 65 for Irish population data for
males and females.
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fastest improvements in mortality for both males and females while the A 1 C model predicts the

slowest improvements. The 2-dimensional AP and AC models predict similar improvements in

mortality over the 30 year period.

7.1. Comparison with CMI Library of Mortality Projections

The ‘‘00’’ series tables published by the CMIB in 2006 (CMI, 2006b) do not include any explicit

mortality projections. Instead actuaries should now consider a range of scenarios when projecting

future mortality and the CMIB has made available sample projections in v1.0 of the ‘‘CMI Library

of Mortality Projections’’ for this purpose. The user guide accompanying the library contains

illustrative annuity values at ages 60, 65, 70 and 80 in 2007 using the sample projections contained

in the library applied to the base table PCMA00 for males or PCFA00 for females as appropriate.

Tables 6 and 7 present for males and females respectively, annuity values calculated using Irish

mortality improvements and improvements calculated using the following sample projections from

v1.0 of the CMI Library of Mortality Projections: the CMI interim long cohort projections, the UK

Office of National Statistics (ONS) 2006-based National Population Projections and the P-Spline

Table 6. Male annuity values using projected mortality improvements from the GAMs applied to the Irish

CSO data and from the CMI P-Spline and Lee-Carter models applied to UK ONS data.

Projection Name €a60 €a65 €a70 €a80

Male Annuity Values 2007

A 1 P (Ireland) 16.107 14.469 12.452 8.037

A 1 C (Ireland) 14.418 12.938 11.141 7.194

AP (Ireland) 14.886 13.373 11.559 7.571

AC (Ireland) 14.845 13.342 11.499 7.417

Long Cohort 14.248 12.805 11.169 7.414

ONS_2006_Male_S_Principal 14.401 12.976 11.283 7.237

PSAP_Male_ONS_EW_2005_50 15.368 13.792 11.933 7.799

PSAC_Male_ONS_EW_2005_50 15.416 13.749 11.803 7.534

LC_Male_ONS_EW_2005_Central 13.960 12.389 10.596 6.925

Table 7. Female annuity values using projected mortality improvements from the GAMs applied to the Irish

CSO data and from the CMI P-Spline and Lee-Carter models applied to UK ONS data.

Projection Name €a60 €a65 €a70 €a80

Female Annuity Values 2007

A 1 P (Ireland) 16.975 15.474 13.585 9.209

A 1 C (Ireland) 15.349 13.931 12.195 8.228

AP (Ireland) 15.801 14.368 12.631 8.650

AC (Ireland) 15.772 14.341 12.571 8.484

Long Cohort 15.139 13.758 12.173 8.415

ONS_2006_Female_UK_Principal 15.256 13.871 12.231 8.124

PSAP_Female_ONS_EW_2005_50 15.351 13.876 12.140 8.282

PSAC_Female_ONS_EW_2005_50 15.924 14.420 12.611 8.449

LC_Female_ONS_EW_2005_Central 14.876 13.384 11.655 7.944
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and Lee-Carter projections for England and Wales ONS data for 2005. The UK annuity values are

those quoted in section 7, Illustrative Values, of the user guide accompanying the library. Irish

annuity values are calculated using the mortality improvements derived from the generalized

additive models mortality projections for the CSO data. The projected values of log(m) are

converted to mortality rates using the formula q(x,t) 5 12exp(2(m(x,t))) for ages x 5 40 to 90 and

for each future year t. As described in section 5.2, mortality improvements are subsequently derived

from these rates and applied to the base tables PCMA00 and PCFA00 for males and females

respectively. In all cases the annuities are calculated assuming an interest rate of 5% per annum, no

escalation and 100% of the appropriate base mortality table in 2007.

Based on the results in tables 6 and 7 the generalized additive models, with the exception of the

A 1 P model result in Irish annuity values at the ages shown in the range of annuity values

calculated assuming a 2% to 4% annual compound improvement in mortality for males and

females respectively. For both males and females the generalized additive A 1 P and AP models

result in higher annuity values than the A 1 C and AC models. From the results in table 6 the

generalized additive A 1 C, AP and AC models predict higher future Irish mortality for Irish males

than the P-Spline models do for UK males. Similarly, based on the results in table 7 the P-Spline AC

model predicts lower future mortality for UK females than the generalized additive A 1 C, AP

and AC models predict for Irish females at ages 60 and 65. Comparing the average of the annuity

values calculated using the 2-dimensional GAMs and the P-Spline models the difference between

the annuity values for Irish and UK females is smaller than the difference between the annuity

values for Irish and UK males at the ages shown.

7.2. Conclusion

The 1 and 2-dimensional generalized additive models predict further declines in Irish mortality for

both males and females. Based on past mortality experience we would not expect UK mortality to

exceed Irish mortality and on this basis the projections from the 1-dimensional A 1 P model appear

over-optimistic. Whilst projections based on past data are always liable to error, the dramatic changes

which occurred in the Irish population between 1961 and 2005 mean that any future projections

based on extrapolations of trends during this period must be treated with even more caution than

usual. In particular Ireland experienced unprecedented levels of inward migration during the ‘‘Celtic

Tiger’’ years of the 1990’s and the first half of the 21st century. The impact of such levels of inward

migration on the population will only become evident with time and this should be borne in mind

whenever projections of future Irish mortality are discussed. Nevertheless the generalized additive

models described here provide a useful starting point for Irish mortality analysis.
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