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Abstract We discuss the solvability of the periodic Navier problem for the plate equation with forced
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1. Introduction

The aim of this paper is to look for solutions to the problem

xtt(t, y) + Δ2x(t, y) + l(t, y, x(t, y)) = 0,

x(t, y) = Δx(t, y) = 0,

x(t + T, y) = x(t, y),

t ∈ R, y ∈ (0, π)n,

t ∈ R, y ∈ ∂(0, π)n,

t ∈ R, y ∈ (0, π)n.

⎫⎪⎬
⎪⎭ (1.1)

This type of equation, on rectangular plates with partially Navier boundary conditions,
was derived in [18] as a nonlinear model for the dynamic suspension bridge to display
torsional oscillations. The nonlinearity in that paper is of the form l(t, y, x) = h(y, x) −
f(t, y), where h (superlinear) describes the behaviour of hangers and f is the forcing
term. The well-posedness of an initial–boundary-value problem was shown as well as the
qualitative behaviour of the solutions (see [35]). As was announced in [18], the next
step of the authors is to investigate the oscillating behaviour of equation (1.1). Our
aim in this paper is to study the periodic oscillation of (1.1). Initial papers studying
second order partial differential equations (PDEs) looking for time-periodic solutions
concern wave equations of linear and semilinear type, typically with T = 2π. In the
nonlinear case (nonlinear l), usually l = εf with |ε| sufficiently small and f(t, y, ·) being
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strongly monotone (see the survey [29] and also [5, 19]). Usually, to prove existence
results one uses a variant of the Lyapunov–Schmidt method together with the theory of
monotone operators. When f is only monotone, similar methods and Schauder’s fixed-
point theorem were used in [13]. In [31] Rabinowitz used his saddle point theorem in
critical-point theory together with a Galerkin argument to prove the existence of weak
solutions for a nonlinearity l being of class C1 and sublinear at infinity. This initiated a
number of papers in the literature devoted to the use of various techniques of modern
critical-point theory in the study of semilinear wave equations (see [12,33] and references
therein). The strongly monotone and weakly monotone nonlinearities were considered
in [14, 22, 28]. In all the cited papers the monotonicity assumption (strong or weak)
is the key property for overcoming the lack of compactness in the infinite-dimensional
kernel of the equation xtt(t, y) − xyy(t, y) = 0 (which has periodic Dirichlet solutions).
Willem [38], Hofer [22] and Coron [15] considered the class of wave equations in which
l(t, x, u) = g(u) + h(t, x) and g(u) satisfies suitable linear growth conditions. In [15],
for the autonomous case in which h ≡ 0, Coron established the existence of non-trivial
solutions for non-monotone nonlinearities. The case in which l is the difference of two
convex non-autonomous functions was investigated in [4]: in particular, the nonlinearity
l ∈ C([0, π] × R

2, R) has the form l(t, y, x) = λg(t, y, x) + μh(t, y, x) with λ, μ ∈ R, g

superlinear in x, h sublinear in x, and both g and h are 2π-periodic in t and non-decreasing
in x. The solutions to the considered problems are obtained using variational methods.
The special form of l allows them to control the levels of the weak limits of certain
Palais–Smale sequences since the functional corresponding to the wave equation does not
satisfy the Palais–Smale condition (see also the references in [4]). In [7] existence and
regularity of solutions (with l = εf) was proved for a large class of non-monotone forcing
terms f(t, y, x) including, for example, f(t, y, x) = ±x2k + x2k+1 + h(t, y), f(t, y, x) =
±x2k + f̃(t, y, x) with f̃x(t, y, x) � β > 0. The proof is based on a variational Lyapunov–
Schmidt reduction, minimization arguments and a priori estimate methods. A different
approach, using a combination of analysis and group-invariance arguments to problems
like (1.1) in R

2 and S2, is described in [21,23,24].
It is interesting that arithmetical properties of the ratio α = T/π play an important

role in the solvability of the periodic Navier problem (1.1) over [0, T ]× (0, π)n. The main
reason for this is that the nature of the spectrum of the corresponding linear problem

xtt(t, y) + Δ2x(t, y) + g(t, y) = 0 (1.2)

depends in an essential way on the arithmetical nature of α. It was pointed out by Borel
[10] (for the wave equation in one dimension) that there exist numbers α, satisfying some
arithmetical conditions, such that the linear problem need not have a solution in the class
of analytic functions if g is analytic. Later, Novak [30] proved even more (for the same
problem); that is, there exist irrationals α and functions g in L2 such that this equation
does not have any generalized periodic Dirichlet solutions. References on these questions
can be found in [34]. The papers that treat the nonlinear version of (1.1) consider in most
cases only the one-dimensional space variable, i.e. n = 1, autonomous nonlinearities
(l = l(x) or some cases of l = l(y, x)) and in all cases only the irrational numbers

https://doi.org/10.1017/S0013091516000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000092


Periodic Navier solutions for the plate equation 205

with bounded partial quotients (see, for example, [3,9,16,17] and references therein).
Kuksin [25] (see also [26]) and Wayne [36] (see also [37]) were able to find, extending
in a suitable way Kolmogorov–Arnold–Moser (KAM) techniques, periodic solutions to
some Hamiltonian PDEs in one spatial dimension. As usual in KAM-type results, the
periods of such persistent solutions satisfy a strong irrationality condition, the classical
Diophantine condition, so that these orbits exist only on energy levels belonging to some
Cantor set of positive measure. The main limitation of this method is the fact that
standard KAM techniques require the linear frequencies to be well separated (i.e. we
require non-resonance between the linear frequencies). To overcome such a difficulty, a
new method for proving the existence of small-amplitude periodic solutions, based on the
Lyapunov–Schmidt reduction, was developed in [17]. Rather than attempting to make a
series of canonical transformations that bring the Hamiltonian into some normal form, the
solution is constructed directly. Making the assumption that a periodic solution exists,
one writes this solution as a Fourier series and substitutes that series into the partial
differential equation. In this way one is reduced to solving two equations: the so-called (P)
equation, which is infinite dimensional, where small denominators appear, and the finite-
dimensional (Q) equation, which corresponds to resonances. Due to the presence of small
divisors, the (P) equation is solved by the Nash–Moser implicit function theorem. Later,
this method was improved by Bourgain to show the persistence of periodic solutions
in higher spatial dimensions [11]. The first results on the existence of small-amplitude
periodic solutions for some completely resonant PDEs were given in [27], for the specific
nonlinearity l(x) = x3, and in [1] when l(x) = x3 + higher-order terms. The approach
of [1] is still based on the Lyapunov–Schmidt reduction. The (P) equation is solved for
the strongly irrational frequencies ω ∈ Wγ , where Wγ = {ω ∈ R | |ωk−j| � γ/k, k �= j},
through the contraction mapping theorem. Next, the (Q) equation is solved by looking for
non-degenerate critical points of a suitable functional and continuing them, by means of
the implicit function theorem, into families of periodic solutions of the nonlinear equation.
The case of higher space dimensions was investigated in [3]. In [8] the authors prove,
assuming only that the nonlinearity l satisfies l(0) = l′(0) = · · · = l(p−1)(0) = 0, l(p)(0) =
ap! �= 0 for some p ∈ N, p � 2, the existence of a large number of small-amplitude
periodic solutions of (1.1) with fixed period. The case of a more general elliptic operator
was treated in [2,3].

The aim of this paper is to consider the n � 2 case with T being irrational numbers such
that α = T/π has not necessarily bounded partial quotients in its continued fraction and
non-autonomous nonlinearity l for the plate equation (1.1). To the best of our knowledge,
the above problem with α having unbounded partial quotients is also considered for the
first time (except in some special case in [17]).

We assume that

(T) T = πα, α > 0, is irrational and satisfies |α − p/|q|2| � c|q|−4 for all p ∈ N,
|q| =

√∑n
i=1 q2

i , qi ∈ N, i = 1, . . . , n, with some constant c > 0.

We note that condition (T) is still a non-resonance condition of Diophantine type,
which, in fact, is the classical-type non-resonance condition (|q|2 ∈ N). The same
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non-resonance condition is used by Bambusi [2] for the nonlinear plate equation in the
n-dimensional cube (the periodic Navier problem). Note that all irrational numbers sat-
isfying the classical non-resonance condition of Diophantine type satisfy (T) as well; for
several properties of such numbers see, for example, [32].

In order to give the reader an insight into what condition (T) means, let us recall some
fundamental facts from number theory. Let α = [a0, a1, a2, . . . ] (a0, a1, a2, . . . integers) be
the continued fraction decomposition of the real number α [32]. The integers a0, a1, a2, . . .

are the partial quotients of α and the rationals pn/qn = [a0, a1, a2, . . . , an] with pn, qn

relatively prime integers, called the convergence of α, are such that pn/qn → α as n → ∞.
An irrational number α is badly approximated if there is a constant c(α) such that

|α − p/q| > c(α)/q2 (1.3)

for every rational p/q; such a constant c(α) must satisfy 0 < c(α) < 1/
√

5. α is badly
approximated if and only if the partial quotients in its continued fraction expansion
are bounded, i.e. |an| � K(α), n = 0, 1, 2, . . . . There is a continuum of many badly
approximated numbers, and there exists a continuum of many numbers that are not badly
approximated. The set of irrational numbers with bounded partial quotients coincides
with the set of numbers of constant type, which are the numbers α such that q‖qα‖ � 1/r

for some real number r � 1 and all integers q > 0, where ‖b‖ denotes the distance between
the irrational number b and the closest integer. By a classical theorem of Lagrange, all real
quadratic irrationals have bounded partial quotients. It follows from results of Borel [10]
and Bernstein [6] that the set of all irrational numbers having bounded partial quotients is
a dense uncountable and null subset of the real line. Examples of transcendental numbers
having bounded partial quotients are given by

∞∑
i=0

1
n2i

for n � 2 an integer. An example of a transcendental number with unbounded partial
quotient is given by

∞∑
n=1

n−2 = π2/6.

For π2 we have ∣∣∣∣π2 − p

q

∣∣∣∣ >
1

qθ+ε
, θ = 11.85078 · · ·

for all ε > 0 and q sufficiently large.
From the above we infer that the set of α satisfying (T) is non-empty!
We shall study (1.1) by variational method but using only tools from convex analysis,

as we shall assume that our nonlinearity l is of the special type

l = j1F
1
x + j2F

2
x + · · · + jn−1F

n−1
x − Fn

x − G, (1.4)

where F i(t, y, x) (F i
x are derivatives), i = 1, . . . , n, are convex functions with respect to

the third variable and j1, . . . , jn−1 are numbers having values either −1 or +1. The main
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tools we apply are the following standard results in convex analysis for a convex lower
semi-continuous function h : X → R in a reflexive Banach space, namely,

h(w) + h∗(w∗) = 〈w, w∗〉X,X∗ ⇐⇒ w∗ ∈ ∂h(w), w ∈ X, w∗ ∈ X∗ (1.5)

(∂h means subdifferential in the sense of convex analysis and it is equal to hw if h is
differentiable and h∗ is the Fenchel conjugate of h) and the Fenchel–Young inequality

h(w) + h∗(w∗) � 〈w, w∗〉 for all w ∈ X, w∗ ∈ X∗. (1.6)

The functional we study is

J(x) =
∫ T

0

∫
Ω

(− 1
2 |Δx(t, y)|2 + 1

2 |xt(t, y)|2 − L(t, y, x(t, y))) dy dt, (1.7)

where Lx = l, Ω = (0, π)n, defined on U1 = H1
per((0, T ); 0H2(Ω)), where 0H2(Ω) is

defined in the next section. Our approach is quite different from the papers mentioned
above. First we consider L(t, y, ·) convex, then we consider L(t, y, ·) as the difference of
convex functions (but a more general case than in [4]), and finally we consider L(t, y, ·)
as a general finite combination of convex functions (see (1.4)). Moreover, we use a new
variational approach. Our aim is to investigate (1.1) by studying critical points of the
functional (1.7) using in an essential way the form of l and the tools from convex analysis
only. To this effect we apply an approach that is based on ideas developed in [20] (n = 1).
Our aim is to find a nonlinear subset X̂ of U1 and study modifications of (1.7) only on
X̂. Moreover, we give clear relations between the constant c, the type of α and the type
of nonlinearity l. Examples illustrating the theory will be given.

2. Main results

We put Q = (0, T ) × Ω with Ω = (0, π)n and A = Δγ , γ = 1 or γ = 2 for the
elliptic operator with the domain D(A) = 0H2γ(Ω), where 0H2γ(Ω) is a Sobolev space
of functions
{

x ∈ H2γ(Ω) :
∂x

∂y2l
i

(y1, . . . , yi−1, 0, yi+1, . . . , yn)

=
∂x

∂y2l
i

(y1, . . . , yi−1, π, yi+1, . . . , yn) = 0,

(y1, . . . , yi−1, yi+1, . . . , yn) ∈ Ωi, l = 0, 1, i = 1, . . . , n

}
,

where Ωi = {(y1, . . . , yi−1, yi+1, . . . , yn) : (y1, . . . , yi−1, yi, yi+1, . . . , yn) ∈ Ω, yi ∈ (0, π)}
(see [34]). By a solution of problem (1.1) we mean a function x ∈ U = H2,0

per(R × Ω)
that satisfies (1.1) in a strong sense, where H2,0

per is the usual Sobolev space of periodic
functions with respect to the first variable with period T and such that for each t ∈ R,
x(t, ·) ∈ 0H4(Ω).
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Let L ⊂ Z
n be the lattice of the integer vectors k = (k1, . . . , kn) such that ki � 1 for

i = 1, . . . , n. Put |k| =
√∑n

i=1 k2
i , |k|2 = k2

1 + · · · + k2
n and

∑
j,k =

∑+∞
j=−∞

∑
k∈L. Let

H2 = H0
per(R; H4(Ω)) be the usual Sobolev space. The norm ‖ · ‖H2 of g ∈ H2 we define

as the square root of
∑

j,k |k|8|gj,k|2, i.e.

‖g‖H2 =
( ∑

j,k

|k|8|gj,k|2
)1/2

,

where

gj,k =
(

2n+1

πnT

)1/2 ∫ T

0

∫
Ω

g(t, y)e−ij(2π/T )t sin k1y1 · · · sin knyn dy dt. (2.1)

To formulate our main results we need a modification of [34, Theorem 6.3.1] for the case
of the higher-dimension periodic Navier boundary conditions (1.1).

Proposition 2.1. Let g ∈ H2. Then there exists an x̄ ∈ U that is a unique solution
to

xtt(t, y) + Δ2x(t, y) = g(t, y),

x(t, y) = Δx(t, y) = 0, t ∈ R, y ∈ ∂Ω,

x(t + T, y) = x(t, y), t ∈ R, y ∈ Ω,

⎫⎪⎬
⎪⎭ (2.2)

with

x̄(t, y) =
(

2n+1

πnT

)1/2 ∑
j,k

(−j24α−2 + |k|4)−1gj,keij(2π/T )t sin k1y1 · · · sin knyn, (2.3)

where gj,k is as in (2.1) and such that

‖x̄‖U � B‖g‖H2 (2.4)

with B2 = ((2α)4 + 1)α2c−2 independent of g and α and c are defined as in (T).

Corollary 2.2. Let g ∈ H2 and let x̄ ∈ U be a periodic Navier solution to (2.2). Then
there exists an x̂ ∈ U that is a unique solution to

xtt(t, y) = −Δ2x̄(t, y) + g(t, y),

x(t, y) = 0, t ∈ R, y ∈ ∂Ω,

x(t + T, y) = x(t, y), t ∈ R, y ∈ Ω,

with

x̂(t, y) =
(

2n+1

πnT

)1/2 ∑
j,k

(−j24α−2 + |k|4)−1gj,keij(2π/T )t sin k1y1 · · · sin knyn

and such that
‖x̂‖U � B‖g‖H2

with the same B as in Proposition 2.1.
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Remark 2.3. Note that the constant B is determined by α and c. We note that below
the constant B will always denote that occurring in (2.4).

Assumption M. Let F 1, F 2, . . . , Fn be functions of the variables (t, y, x) and let a
function G of the variable (t, y) be given. F 1, F 2, . . . , Fn are measurable with respect to
(t, y) in [0, T ] × Ω for all x in R, are continuously differentiable and convex with respect
to x in R, and (t, y) → F i(t, y, 0) are integrable on (0, T ) × Ω and satisfy

F i(t, y, x) � ai(t, y)x + bi(t, y) (2.5)

for some ai, bi ∈ L2([0, T ]×Ω), i = 1, . . . , n, for all (t, y) ∈ [0, T ]×Ω, x ∈ R, G(·, ·) ∈ H2.
Let j1, . . . , jn−1 be a sequence of numbers having values either −1 or +1. Assume that
our original nonlinearity (see (1.1)) has the form

l = −j1F
1
x − j2F

2
x − · · · − jn−1F

n−1
x − Fn

x − G. (2.6)

There exist constants En−1, F such that ln−1(x), Fn
x (x) ∈ H2 (Hx(h) = Hx(·, ·, h(·, ·)))

for x from
Xln = {x ∈ U : ‖x‖U � B(En−1 + F)} (2.7)

and ‖ln−1(x)‖H2 , ‖Fn
x (x)‖H2 + ‖G(·, ·)‖H2 are bounded in Xln by En−1, F , respectively,

where
ln−1 = −j1F

1
x − j2F

2
x − · · · − jn−1F

n−1
x .

Moreover, assume that Fn
x (x) ∈ L2 for all x ∈ U , that

∫ T

0

∫
Ω

Fn
x (t, y, x(t, y)) dy dt → ±∞ when

∫ T

0

∫
Ω

x(t, y) dy dt → ±∞,

and an argument minimum of

min
x∈H(Xln )

∫ T

0

∫
Ω

Fn(t, y, x(t, y)) dy dt (2.8)

is the same as that of

min
x∈H(Xln )

( ∫ T

0

∫
Ω

(− 1
2 |Δx(t, y)|2 + 1

2 |xt(t, y)|2) dy dt

+
∫ T

0

∫
Ω

n−1∑
i=1

jiF
i(t, y, x(t, y)) dy dt

)
, (2.9)

where H(Xln) is defined below.

Put F̄n
x = Fn

x +G, F̄n = Fn +xG. Define in Xln the map Xln � x → H(x) = v, where
v is a solution of the periodic Navier problem for

vtt(t, y) + Δ2v(t, y) = −ln−1(t, y, x(t, y)) + F̄n
x (t, y, x(t, y))

almost everywhere on (0, T ) × Ω.
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Comments on Assumption M. Assumption (2.5) is standard in convex analysis
when one wants to apply its tools. Most continuous convex functions that appear in
practice satisfy it. The aim is to consider a nonlinearity of type (2.6) and to use tools
from convex analysis to treat nonlinearities of equations that are not derivatives of convex
functions, for example, x4. Consider, for example, x4 = (x7 +x5 +x4)− (x7 +x5): it is a
difference of the derivatives of two convex functions (1

8x8 + 1
6x6 + 1

5x5) and (1
8x8 + 1

6x6).
The strongest assumption is the boundedness of ‖ln−1(x)‖H2 , ‖Fn

x (x)‖H2 + ‖G(·, ·)‖H2

in Xln by En−1, F . The form of (2.7) suggests that l is linear, at least for large x. Thus,
if l is superlinear, we have to consider it in a small neighbourhood of zero and for a small
α (small period T ). The last assumption concerning the argument of the minimum is
a technical assumption and it relates to the use of tools of convex analysis. In order to
check it we define the nonlinearity of the equation with the help of n − 2 terms of the
type F j

x and calculate the minimum of (2.9) but with n−2 terms with x0 as an argument
minimum of (2.9), and then add the term −δ(x(t, y) − x0(t, y))2 as the (n − 1)th term in
(2.9) and put Fn

x (x) = δ(x(t, y) − x0(t, y))2 with sufficiently small δ > 0. Examples are
given in the following sections.

We now formulate the main theorem of the paper.

Theorem 2.4 (main theorem). Under Assumption M there exists an x̄ ∈ H(Xln)
such that J(x̄) = infx∈H(Xln ) J(x) and x̄ is a solution to (1.1).

We now formulate a theorem that gives us additional information on solutions to (1.1),
which is important in classical mechanics. This theorem is new for problem (1.1).

Theorem 2.5. Let x̄ be such that J ln(x̄) = infx∈H(Xln ) J ln(x). Then there exists
(p̄, q̄) ∈ H1((0, T )×Ω)×H2((0, T )×Ω) such that for almost every (a.e.) (t, y) ∈ (0, T )×Ω,

p̄(t, y) = x̄t(t, y),

q̄(t, y) = Δx̄(t, y),

p̄t(t, y) + Δq̄(t, y) + l(t, y, x̄(t, y)) = 0

⎫⎪⎬
⎪⎭ (2.10)

and

J ln(x̄) = J ln
D (p̄, q̄, z̄1, . . . , z̄n−2, z̄n),

where

z̄i = jiF
i
x(t, y, x̄(t, y)), i = 1, . . . , n − 1, (2.11)

J ln(x̄) =
∫ T

0

∫
Ω

(− 1
2Δx̄(t, y)|2 + 1

2 |x̄t(t, y)|2) dy dt

+
∫ T

0

∫
Ω

(j1F 1(t, y, x̄(t, y))+ j2F
2(t, y, x̄(t, y))+ · · · + F̄n(t, y, x̄(t, y))) dy dt,
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J ln
D (p̄, q̄, z̄1, . . . , z̄n−2, z̄n)

= 1
2

∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p̄(t, y)|2 dy dt

− j1

∫ T

0

∫
Ω

F 1∗(t, y, z̄1(t, y)) dy dt

...

− jn−2

∫ T

0

∫
Ω

Fn−2∗(t, y, z̄n−2(t, y)) dy dt

−
∫ T

0

∫
Ω

Fn−1∗(t, y, −(p̄t(t, y) + Δq̄(t, y) − z̄1(t, y)

− · · · − z̄n−2(t, y) − z̄n(t, y))) dy dt,

(2.12)

F i∗, F̄n∗ are the Fenchel conjugates of F i, F̄n, i = 1, . . . , n−1, with respect to the third
variable. Moreover, x̄ ∈ H(Xln).

The proofs of the theorems are given in §§ 3 and 4. They consist of several steps. First
we prove Proposition 2.1. Next we prove Theorem 2.4 (the main theorem). We consider
first the nonlinearity l consisting only of one function j1F

1
x , then we consider the case

for the difference of two functions j1F
1
x − F 2

x , and then by induction the general case.

3. Proof of Proposition 2.1

We use ideas based on [34, Theorem 6.3.1]. We know that x ∈ L2((0, T ); L2(Ω)) belongs
to U if and only if ∑

j,k

(|k|8 + |j|4)|xj,k|2 < ∞, (3.1)

where

xj,k =
(

2n+1

πnT

)1/2 ∫ T

0

∫
Ω

x(t, y)e−ij(2π/T )t sin k1y1 · · · sin knyn dy dt.

Hence,

x(t, y) =
(

2n+1

πnT

)1/2 ∑
j,k

xj,keij(2π/T )t sin k1y1 · · · sin knyn. (3.2)

The square root of (3.1) defines a norm in U . Similarly, for g ∈ H2⊂L2((0, T ); L2(Ω))
we have

g(t, y) =
(

2n+1

πnT

)1/2 ∑
j,k

gj,keij(2π/T )t sin k1y1 · · · sin knyn (3.3)

with ∑
j,k

|k|8|gj,k|2 < ∞.
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Substituting (3.2) and (3.3) in (2.2) gives

(−j24α−2 + |k|4)xj,k = gj,k, j ∈ Z, k ∈ L. (3.4)

By Assumption (T) we can write a solution x̄ of the problem (2.2) in the form (2.3). This
function belongs to U since∑

j,k

(|k|8 + |j|4)(−j24α−2 + |k|4)−2|gj,k|2 � B2‖g‖2
H2 (3.5)

with B some constant independent of g. This inequality is a direct consequence of the
relation

sup{(|k|8 + |j|4)(−j24α−2 + |k|4)−2(1 + |j|)0|k|−8; (j, k) ∈ Z × L} < ∞.

To prove it, let us put

Σ1 = {(j, k) ∈ Z × L; α−1|j| < |k|2},

Σ2 = {(j, k) ∈ Z × L; |k| � α−1|j| � 2|k|2},

Σ3 = {(j, k) ∈ Z × L; 2|k|2 < α−1|j|}.

We confine ourselves to estimates on the set Σ2 (the other cases are similar) and again
apply assumption (T):

(|k|8 + |j|4)(−j24α−2 + |k|4)−2|k|−8

� ((2α)4 + 1)|k|8α4|k|−8
(

α +
2|j|
|k|2

)−2(
α − 2|j|

|k|2

)−2

|k|−8

� ((2α)4 + 1)α4−2c−2|k|8−8

� ((2α)4 + 1)α2c−2

< ∞.

Hence, we also get estimate (2.4) with B2 = ((2α)4 + 1)α2c−2.

3.1. Proof of Corollary 2.2

We follow the reasoning in the proof of Proposition 2.1. It is enough to observe, as x̄j,k

satisfies (3.4), that x̂j,k = (−j24α−2 + |k|4)−1gj,k.

4. Proof of existence of solutions and their regularity for problem (1.1)

4.1. Simple case: the function l = Fx

First consider another equation

xtt(t, y) + Δ2x(t, y) + Fx(t, y, x(t, y)) = 0,

x(t, y) = Δx(t, y) = 0, t ∈ R, y ∈ ∂Ω,

x(t + T, y) = x(t, y), t ∈ R, y ∈ Ω,

⎫⎪⎬
⎪⎭ (4.1)
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and corresponding to it the functional

JF (x) =
∫ T

0

∫
Ω

(− 1
2 |Δx(t, y)|2 + 1

2 |xt(t, y)|2 − F (t, y, x(t, y))) dy dt (4.2)

defined on U1. For that problem we assume the following hypotheses.

(G1) F (t, y, x) is measurable with respect to (t, y) in (0, T ) × Ω for all x in R, is
continuously differentiable and convex with respect to the third variable in R

for a.e. (t, y) ∈ (0, T ) × Ω, and (t, y) → F (t, y, 0) is integrable on (0, T ) × Ω,
Fx(t, y, x) = F 1

x (t, y, x) + F 2(t, y), (t, y, x) ∈ (0, T ) × Ω × R, F 2(·, ·) ∈ H2.

(G2) There exists a constant E > 0 such that for x ∈ XF ,

‖F 1
x (x)‖H2 � E, (4.3)

where
XF = {x ∈ U : ‖x‖U � B(E + ‖F 2(·, ·)‖H2)}.

(G3) F (t, y, x) � a(t, y)x+b(t, y) for some a, b ∈ L2((0, T )×Ω) for all (t, y) ∈ (0, T )×Ω,
x ∈ R.

Remark 4.1. Note that, except for convexity, the restrictions for F 1
x are not strong,

and they are natural.

Remark 4.2. The convexity assumption of F (t, y, ·) is strong. For example, x5 is non-
convex. To overcome that problem (at least partly) we study in a later section the case
in which l = j1F

1
x + j2F

2
x + · · · + Fn

x + G, where F i are convex and the ji take values
in {−1, +1}. Then x5 = x6 + x5 + x2 − x6 − x2 is equal to the difference of two convex
functions x6 + x5 + x2 and x6 + x2.

Exploiting the definition of the set XF and Proposition 2.1, we prove the following
lemma.

Lemma 4.3. Let x ∈ XF and let v be a solution of the periodic Navier problem for

vtt(t, y) + Δ2v(t, y) = −Fx(t, y, x(t, y)) almost everywhere on (0, T ) × Ω. (4.4)

Then
‖v‖U � B(E + ‖F 2(·, ·)‖H2).

Proof. Fix an arbitrary x ∈ XF ; thus, Fx(x) ∈ H2. Hence, by Proposition 2.1 there
exists a unique solution v ∈ U of the periodic Dirichlet problem for (4.4) satisfying

‖v‖U � B‖Fx(x)‖H2 .

Next we get the following estimate:

B‖Fx(x)‖H2 � B(E + ‖F 2(·, ·)‖H2).

Hence, we obtain
‖v‖U � B(E + ‖F 2(·, ·)‖H2).

�
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Define in XF the map XF � x → H(x) = v, where v is a solution of the periodic
Navier problem (4.4). From the above lemma we see that H(XF ) ⊂ XF . Put

XF = {x̂ ∈ U : x̂tt(t, y) = −Δ2v(t, y) − Fx(t, y, v(t, y)), where v ∈ H(XF )}.

By Lemma 4.3 and Corollary 2.2 we see that XF ⊂ XF .

Remark 4.4. Let us observe that if x̄ is a solution to (4.1), then, by the above lemma,
it has to belong to XF . Moreover, by Lemma 4.3, XF is bounded in U . If {xn} is weakly
convergent in U , then corresponding to it, by (4.4), {vn} is also weakly convergent—
this is a consequence of the fact that a weakly convergent sequence in U is pointwise
convergent. Therefore, XF is weakly compact in U .

Next define the set XFd: an element (p, q) ∈ H1((0, T )×Ω)×H2((0, T )×Ω) belongs to
XFd provided that there exist x̂ ∈ H(XF ), x ∈ XF such that for a.e. (t, y) ∈ (0, T ) × Ω,

p(t, y) = xt(t, y) and pt(t, y) = −Δq(t, y) − Fx(t, y, x̂(t, y)) with q(t, y) = Δx̂(t, y).

By Lemma 4.3 and Corollary 2.2 the set XFd is non-empty.
The dual functional to (4.2) is usually taken as

JF
D(p, q) =

∫ T

0

∫
Ω

F ∗(t, y, −(pt(t, y) + Δq(t, y))) dy dt

+ 1
2

∫ T

0

∫
Ω

|q(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p(t, y)|2 dy dt, (4.5)

where F ∗ is the Fenchel conjugate of F with respect to the third variable and
JF

D : H1((0, T ) × Ω) × H2((0, T ) × Ω) → R.
We will look at relationships between the functionals JF and JF

D on the sets XF and
XFd, respectively, using the variational principle at extreme points. It relates the critical
values of both functionals and provides the necessary conditions that must be satisfied
by the solution to problem (4.1).

Now we state the simple result of the paper, which is an existence theorem for a
particular case of problem (4.1).

Theorem 4.5. There exists an x̄ ∈ H(XF ) such that

inf
x∈H(XF )

JF (x) = JF (x̄).

Moreover, there exists (p̄, q̄) ∈ H1((0, T ) × Ω) × H2((0, T ) × Ω) such that

JF
D(p̄, q̄) = JF (x̄) (4.6)

and the following system holds:

x̄t(t, y) = p̄(t, y),

Δx̄(t, y) = q̄(t, y),

p̄t(t, y) + Δq̄(t, y) = −Fx(t, y, x̄(t, y)).

⎫⎪⎬
⎪⎭ (4.7)
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This result is new. However it has a strong assumption, the convexity of F (t, y, ·),
on the nonlinearity Fx. First we illustrate, by way of an example, a case of the above
theorem.

Example 4.6. Assume that n = 4 and choose T such that an α, which it defines
(according to (T)), ensures that B � 1

3 . Let us consider F 1(t, y, x) = 1
6x6+ 1

5x5+ 1
2x2+1.

Of course, F 1(t, y, ·) is convex. Let F 2(·, ·) be any function in (0, T ) × Ω belonging to
H2. We would like to stress that this B does not depend on the nonlinearity F 1 (see
Remark 2.3). Note that ‖F 1

x (x)‖H2 � ‖x‖5
U + ‖x‖4

U + ‖x‖U . Thus, take E = 1, and then
assumptions (G1)–(G3) are satisfied, so by the above theorem there exists an x̄ ∈ XF

that is a solution to (4.1).

Remark 4.7. We can consider also the case in which F (t, y, x) = x6 + x5 + x2. Then
we take F 1(t, y, x) = 1

6x6 + 1
5x5 + 1

2x2 + x and F 2(t, y) = −1. Thus, the theorem in this
case asserts that there exists a non-trivial solution to (4.1).

4.1.1. The auxiliary results

By (G1)–(G3), the definition of XF , and the mean-value theorem, we obtain the fol-
lowing lemma.

Lemma 4.8. There exist constants M1, M2 such that

M1 �
∫ T

0

∫
Ω

F (t, y, x(t, y)) dy dt � M2

for all x ∈ XF .

Lemma 4.9. The functional J attains its infimum on H(XF ), i.e. infx∈H(XF ) JF (x) =
JF (x̄), where x̄ ∈ H(XF ).

Proof. By definition of the set XF and Lemma 4.8, we see that the functional JF

is bounded on XF . We denote by {xj} a minimizing sequence for JF in H(XF ). This
sequence has a subsequence that we denote again by {xj} converging weakly in U and
strongly in U1, and hence also strongly in L2((0, T ) × Ω; R), to a certain element x̄ ∈ U .
Moreover, {xj} is also convergent almost everywhere. Thus, by construction of the set
H(XF ) and Remark 4.4, we observe that x̄ ∈ H(XF ). Hence,

lim inf
j→∞

JF (xj) � JF (x̄).

Thus,

inf
x∈H(XF )

JF (x) = JF (x̄).

�
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4.1.2. Variational principle

As the set XF is a ball in U it is clear that we cannot directly apply any known theorem
to derive the necessary conditions.

Theorem 4.10. Let infx∈H(XF ) JF (x) = JF (x̄). Then there exists (p̄, q̄) ∈ H1((0, T )×
Ω) × H2((0, T ) × Ω) such that for a.e. (t, y) ∈ (0, T ) × Ω,

p̄(t, y) = x̄t(t, y), (4.8)

q̄(t, y) = Δx̄(t, y), (4.9)

p̄t(t, y) + Δq̄(t, y) + Fx(t, y, x̄(t, y)) = 0 (4.10)

and
JF (x̄) = JF

D(p̄, q̄).

Moreover, by Remark 4.4, x̄ ∈ H(XF ).

Proof. Let x̄ ∈ H(XF ) be such that JF (x̄) = infx∈H(XF ) JF (x). This means that
there exists an x̂ ∈ H(XF ) such that

p̂(t, y) = x̂t(t, y) (4.11)

and
p̂t(t, y) = −Δq̂(t, y) − Fx(t, y, x̄(t, y)), (4.12)

for a.e. (t, y) ∈ (0, T ) × Ω, where q̂ is given by

q̂(t, y) = Δx̄(t, y). (4.13)

By the definitions of JF , JF
D , relations (4.12), (4.13) (cf. (1.5)) and the Fenchel–Young

inequality (see (1.6)), it follows that

JF (x̄) =
∫ T

0

∫
Ω

(− 1
2 |Δx̄(t, y)|2 + 1

2 |x̄t(t, y)|2 − F (t, y, x̄(t, y))) dy dt

�
∫ T

0

∫
Ω

〈x̄t(t, y), p̂(t, y)〉 dy dt − 1
2

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt

−
∫ T

0

∫
Ω

〈Δx̄(t, y), q̂(t, y)〉 dy dt + 1
2

∫ T

0

∫
Ω

|q̂(t, y)|2 dy dt

−
∫ T

0

∫
Ω

〈x̄(t, y), p̂t(t, y) + Δq̂(t, y)〉 dy dt −
∫ T

0

∫
Ω

F (t, y, x̄(t, y)) dy dt

=
∫ T

0

∫
Ω

F ∗(t, y, −(p̂t(t, y) + Δq̂(t, y))) dy dt

+ 1
2

∫ T

0

∫
Ω

|q̂(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt.

Therefore, we get that
JF (x̄) � JF

D(p̂, q̂).
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Next observe that (again applying (1.5), but now to (4.11), and the Fenchel–Young
inequality (1.6))

inf
x∈H(XF )

JF (x) = JF (x̄)

� JF (x̂)

=
∫ T

0

∫
Ω

( 1
2 |x̂t(t, y)|2 − 〈x̂t(t, y), p̂(t, y)〉) dy dt

−
∫ T

0

∫
Ω

( 1
2 |Δx̂(t, y)|2 − 〈Δx̂(t, y), q̂(t, y)〉) dy dt

−
∫ T

0

∫
Ω

(F (t, y, x̂(t, y)) + 〈x̂(t, y), p̂t(t, y) + Δq̂(t, y)〉) dy dt

� 1
2

(
−

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt +
∫ T

0

∫
Ω

|q̂(t, y)|2 dy dt

)

+
∫ T

0

∫
Ω

F ∗(t, y, −(p̂t(t, y) + Δq̂(t, y))) dy dt

= JF
D(p̂, q̂),

and so
JF (x̄) � JF

D(p̂, q̂).

Thus, we have the equality JF (x̄) = JF
D(p̂, q̂), which implies that

∫ T

0

∫
Ω

F ∗(t, y, −(p̂t(t, y) + Δq̂(t, y))) dy dt +
∫ T

0

∫
Ω

F (t, y, x̄(t, y)) dy dt

+ 1
2

∫ T

0

∫
Ω

|q̂(t, y)|2 dy dt + 1
2

∫ T

0

∫
Ω

|Δx̄(t, y)|2 dy dt

= 1
2

∫ T

0

∫
Ω

|x̄t(t, y)|2 dy dt + 1
2

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt.

This together with p̂t(·) + Δq̂(·) = −Fx(·, x̄(·)) gives

1
2

∫ T

0

∫
Ω

|x̄t(t, y)|2 dy dt + 1
2

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt

−
∫ T

0

∫
Ω

〈x̄t(t, y), p̂(t, y)〉 dy dt + 1
2

∫ T

0

∫
Ω

|q̂(t, y)|2 dy dt

+ 1
2

∫ T

0

∫
Ω

|Δx̄(t, y)|2 dy dt −
∫ T

0

∫
Ω

(〈Δx̄(t, y), q̂(t, y)〉) dy dt = 0.

Hence, by standard convexity arguments we obtain the equality

p̂(t, y) = x̄t(t, y).
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Thus, taking into account (4.12) we infer that

x̄tt(t, y) + Δ2x̄(t, y) = −Fx(t, y, x̄(t, y)),

and therefore there exist p̄ = x̄t and q̄ = Δx̄, i.e. (4.8)–(4.10) are satisfied and so the
assertions of the theorem are satisfied. Moreover, x̄ ∈ H(XF ). �

4.2. Simple case: the function l = −Fx

A similar theorem to Theorem 4.5 is true for the problem

xtt(t, y) + Δ2x(t, y) − Fx(t, y, x(t, y)) = 0,

x(t, y) = Δx(t, y) = 0, t ∈ R, y ∈ Ω,

x(t + T, y) = x(t, y), t ∈ R, y ∈ Ω,

⎫⎪⎬
⎪⎭ (4.14)

with the corresponding functional

JF−(x) =
∫ T

0

∫
Ω

(− 1
2 |Δx(t, y)|2 + 1

2 |xt(t, y)|2 + F (t, y, x(t, y))) dy dt (4.15)

defined on U1 with the same hypotheses (G1)–(G3) on F and the set XF . Counterparts
of Lemmas 4.3–4.9 are still valid as the sign of F does not change their proofs. But of
course, now H(x) = v is defined by

vtt(t, y) + Δ2v(t, y) = Fx(t, y, x(t, y)) almost everywhere on (0, T ) × Ω

and

X−F = {x̂ ∈ U : x̂tt(t, y) = −Δ2v(t, y) + Fx(t, y, v(t, y)), where v ∈ H(XF )}.

Hence, we get for (4.14) the following theorem.

Theorem 4.11. Let infx∈H(XF ) JF−(x) = JF−(x̄). Then there exists (p̄, q̄) ∈
H1((0, T ) × Ω) × H2((0, T ) × Ω) such that for a.e. (t, y) ∈ (0, T ) × Ω,

p̄(t, y) = x̄t(t, y),

q̄(t, y) = Δx̄(t, y),

p̄t(t, y) + Δq̄(t, y) − Fx(t, y, x̄(t, y)) = 0

⎫⎪⎬
⎪⎭ (4.16)

and
JF−(x̄) = JF−

D (p̄, q̄),

where

JF−
D (p̄, q̄) = −

∫ T

0

∫
Ω

F ∗(t, y, −(p̄t(t, y) + Δq̄(t, y))) dy dt

+ 1
2

∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p̄(t, y)|2 dy dt.

Moreover, x̄ ∈ H(XF ).
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To prove the above theorem, in the next section we also need an extension of Corol-
lary 2.2 to a nonlinear case.

Proposition 4.12. Let F be as in Theorem 4.11 and let x̄ ∈ U be such that
infx∈H(XF ) JF−(x) = JF−(x̄). There then exists an x̂ ∈ U that is a solution to

xtt(t, y) − Fx(t, y, x(t, y)) = −Δ2x̄(t, y), (4.17)

x(t, y) = 0, t ∈ R, y ∈ ∂Ω,

x(t + T, y) = x(t, y), t ∈ R, y ∈ Ω,

and such that
‖x̂‖U � B(E + ‖F 2(·, ·)‖H2). (4.18)

First note that the functional corresponding to (4.17) has the form

JF−(x) =
∫ T

0

∫
Ω

( 1
2 |xt(t, y)|2 + F (t, y, x(t, y)) − 1

2 |Δx̄(t, y)|2) dy dt

and by the assumption on F we see that it is strictly convex, lower semi-continuous
and Gateux differentiable in U . Thus, it attains its minimum x̂ in the set H(XF ) and x̂

satisfies (4.17) as well as estimate (4.18).

Proof of Theorem 4.11. Let x̄ ∈ H(XF ) be such that J−F (x̄) = infx∈H(XF ) J−F (x).
Let us define an x̂ ∈ X−F such that

p̂(t, y) = x̂t(t, y) (4.19)

and
p̂t(t, y) = −Δ2q̄(t, y) + Fx(t, y, x̂(t, y)), (4.20)

for a.e. (t, y) ∈ (0, T ) × Ω, where q̂ is given by

q̄(t, y) = Δx̄(t, y). (4.21)

From the above Proposition 4.12 we see that such an x̂ exists. By the definitions of J−F

and J−F
D it follows that

J−F (x̄) =
∫ T

0

∫
Ω

(− 1
2 |Δx̄(t, y)|2 + 1

2 |x̄t(t, y)|2 + F (t, y, x̄(t, y))) dy dt

�
∫ T

0

∫
Ω

〈x̄t(t, y), p̂(t, y)〉 dy dt − 1
2

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt

−
∫ T

0

∫
Ω

〈Δx̄(t, y), q̄(t, y)〉 dy dt + 1
2

∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt

−
∫ T

0

∫
Ω

〈x̄(t, y), p̂t(t, y) + Δq̂(t, y)〉 dy dt +
∫ T

0

∫
Ω

F (t, y, x̄(t, y)) dy dt

= −
∫ T

0

∫
Ω

F ∗(t, y, (p̂t(t, y) + Δq̄(t, y))) dy dt

+ 1
2

∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt.
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Therefore, we get that
J−F (x̄) � J−F

D (p̂, q̄).

Next observe that

inf
x∈H(XF )

J−F (x) = J−F (x̄)

� J−F (x̂)

=
∫ T

0

∫
Ω

( 1
2 |x̂t(t, y)|2 − 〈x̂t(t, y), p̂(t, y)〉) dy dt

−
∫ T

0

∫
Ω

( 1
2 |Δx̂(t, y)|2 − 〈Δx̂(t, y), q̄(t, y)〉) dy dt

+
∫ T

0

∫
Ω

(F (t, y, x̂(t, y)) + 〈x̂(t, y), p̂t(t, y) + Δq̄(t, y)〉) dy dt

� 1
2

(
−

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt +
∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt

)

+
∫ T

0

∫
Ω

F ∗(t, y, (p̂t(t, y) + Δq̄(t, y))) dy dt

= J−F
D (p̂, q̄),

and so
J−F (x̄) � J−F

D (p̂, q̄).

Thus, we have the equality J−F (x̄) = J−F
D (p̂, q̄), which implies that

∫ T

0

∫
Ω

F ∗(t, y, (p̂t(t, y) + Δq̄(t, y))) dy dt +
∫ T

0

∫
Ω

F (t, y, x̄(t, y)) dy dt

+ 1
2

∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt + 1
2

∫ T

0

∫
Ω

|Δx̄(t, y)|2 dy dt

= 1
2

∫ T

0

∫
Ω

|x̄t(t, y)|2 dy dt + 1
2

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt.

This together with p̂t(·) + Δq̄(·) = Fx(·, x̂(·)) gives

1
2

∫ T

0

∫
Ω

|x̄t(t, y)|2 dy dt + 1
2

∫ T

0

∫
Ω

|p̂(t, y)|2 dy dt −
∫ T

0

∫
Ω

〈x̄t(t, y), p̂(t, y)〉 dy dt = 0.

Hence, by standard convexity arguments we obtain the equality

p̂(t, y) = x̄t(t, y).

Thus, taking into account (4.20) we infer that

x̄tt(t, y) + Δ2x̄(t, y) − Fx(t, y, x̄(t, y)) = 0,

and therefore the assertions of the theorem are satisfied. �

https://doi.org/10.1017/S0013091516000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000092


Periodic Navier solutions for the plate equation 221

4.3. The case of the nonlinearity F − G

We now consider the more complicated problem

xtt(t, y) + Δ2x(t, y) − Gx(t, y, x(t, y)) − j1Fx(t, y, x(t, y)) = 0,

x(t, y) = Δx(t, y) = 0, t ∈ R, y ∈ ∂Ω,

x(t + T, y) = x(t, y), t ∈ R, y ∈ Ω,

⎫⎪⎬
⎪⎭ (4.22)

with the corresponding functional

JFG(x) =
∫ T

0

∫
Ω

(− 1
2 |Δx(t, y)|2 + 1

2 |xt(t, y)|2 + G(t, y, x(t, y)) + j1F (t, y, x(t, y))) dy dt

defined in U1, where j1 ∈ {−1, 1}. The case in which L (l = Lx) is a difference of two
convex non-autonomous functions, for the wave equation, was investigated in [4]; there
the nonlinearity l ∈ C([0, π]×R

2, R) had the form l(t, y, x) = λg(t, y, x)+μh(t, y, x) with
λ, μ ∈ R, g superlinear in x, h sublinear in x, and both g and h were 2π-periodic in t

and non-decreasing in x.
For problem (4.22) we assume that the following hypotheses hold.

(GG1) F (t, y, x) and G(t, y, x) are measurable with respect to (t, y) in (0, T ) × Ω for all x

in R, are continuously differentiable and convex with respect to the third variable
in R for a.e. (t, y) ∈ (0, T ) × Ω, and (t, y) → F (t, y, 0) − G(t, y, 0) is integrable on
(0, T ) × Ω.

(GG2) There exist constants E, G such that for x ∈ XFG = {x ∈ U : ‖x‖U � B(E + G)},
Gx(x) ∈ H2, Fx(x) ∈ H2 and ‖Fx(x)‖H2 , ‖Gx(x)‖H2 are bounded in XFG by E,
G, respectively. Moreover, assume that Gx(x) ∈ L2 for all x ∈ U , that

∫ T

0

∫
Ω

Gx(t, y, x(t, y)) dy dt → ±∞ when
∫ T

0

∫
Ω

x(t, y) dy dt → ±∞,

and that an argument minimum of

min
x∈H(XF G)

∫ T

0

∫
Ω

(− 1
2 |Δx(t, y)|2 + 1

2 |xt(t, y)|2 + j1F (t, y, x(t, y))) dy dt

is the same as that of

min
x∈H(XF G)

∫ T

0

∫
Ω

G(t, y, x(t, y)) dy dt,

where H(XFG) is defined in the lemma below.

(GG3) F (t, y, x) and G(t, y, x) satisfy (G3).

We have, analogously to the simple case, the following lemma.
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Lemma 4.13. Let x ∈ XFG and let v be a solution of the periodic Navier problem
for

vtt(t, y) + Δ2v(t, y) = j1Fx(t, y, x(t, y)) + Gx(t, y, x(t, y))

almost everywhere on (0, T ) × Ω. (4.23)

Then
‖v‖U � B(E + G).

Define in XFG the map XFG � x → H(x) = v, where v is a solution of the periodic
Navier problem (4.23). Next, define the set Xd

FG: an element (p̂, q̂, z) ∈ H1((0, T )×Ω)×
H2((0, T ) × Ω) × H1((0, T ) × Ω) belongs to Xd

FG provided that there exist x ∈ XFG,
x̂ ∈ H(XFG) such that for a.e. (t, y) ∈ (0, T ) × Ω,

p̂(t, y) = x̂t(t, y) and p̂t(t, y) + Δq̂(t, y) = j1Fx(t, y, x(t, y)) + z(t, y)

with

q̂(t, y) = Δx̂(t, y) and z(t, y) = Gx(t, y, x(t, y)).

By Lemma 4.13, the set Xd
FG is non-empty.

The dual functional to JFG is then taken as

JFG
D (p, q, z) = −j1

∫ T

0

∫
Ω

F ∗(t, y, −(pt(t, y) + Δq(t, y) − z(t, y))) dy dt

−
∫ T

0

∫
Ω

G∗(t, y, z(t, y)) dy dt

+ 1
2

∫ T

0

∫
Ω

|q(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p(t, y)|2 dy dt, (4.24)

where F ∗, G∗ are the Fenchel conjugates of F , G with respect to the third variable and

JFG
D : H1((0, T ) × Ω) × H2((0, T ) × Ω) × H1((0, T ) × Ω) → R.

Similarly to the case of the functional JF , we have the following result.

Lemma 4.14. The functional JFG attains its minimum on H(XFG), that is,

inf
x∈H(XF G)

JFG(x) = JFG(x),

where x̄ ∈ H(XFG).

Theorem 4.15. Let JFG(x̄) = infx∈H(XF G) JFG(x). Then there exists (p̄, q̄) ∈
H1((0, T ) × Ω) × H2((0, T ) × Ω) such that for a.e. (t, y) ∈ (0, T ) × Ω,

p̄(t, y) = x̄t(t, y),

q̄(t, y) = Δx̄(t, y),

p̄t(t, y) + Δq̄(t, y) − Gx(t, y, x̄(t, y)) − j1Fx(t, y, x̄(t, y)) = 0

⎫⎪⎬
⎪⎭ (4.25)
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and
JFG(x̄) = JFG

D (p̄, q̄, z̄),

where z̄(t, y) = Gx(t, y, x̄(t, y)). Moreover, x̄ ∈ H(XFG).

Example 4.16. We show how to use the above theorem to solve the non-convex
superlinear problem, assuming that n = 4 and with T such that α (defined by (T)) is
such that B � 1

3 and

xtt + Δ2x + x4 = 0,

x(t, y) = Δx(t, y) = 0, t ∈ R, y ∈ ∂Ω,

x(t + T, y) = x(t, y), t ∈ R, y ∈ Ω.

⎫⎪⎬
⎪⎭ (4.26)

Let us put 1
5x5 = 1

6x6 + 1
5x5 + 1

2x2 − 1
6x6 − 1

6x2. Then assume that

F (t, y, x) = 1
6x6 + 1

5x5 + 1
2x2 and G(t, y, x) = 1

6x6 + 1
6x2.

F (t, y, ·) and G(t, y, ·) are convex. Note that ‖Gx(x)‖H2 � ‖x‖5
U + ‖x‖U . Thus, take, for

example, E = 1 and G = 1. Then assumptions (GG1)–(GG3) are satisfied, so by the
above theorem there exists an x̄ ∈ H(XFG) that is a solution to (4.26).

Proof of Theorem 4.15. Let us fix j1 = 1, the j1 = −1 case is similar. Let x̄ ∈
H(XFG) be such that JFG(x̄) = infx∈H(XF G) JFG(x). Let us choose x̂ ∈ U (by the
assumption on Gx, such an x̂ exists) such that

JFG(x̄) = JF (x̄)+
∫ T

0

∫
Ω

Gx(t, y, x̂(t, y))x̄(t, y) dy dt−
∫ T

0

∫
Ω

G∗(t, y, Gx(x̂(t, y))) dy dt.

By Theorem 4.10, putting
ẑ(t, y) = Gx(t, y, x̂(t, y))

we have that

JF (x̄) +
∫ T

0

∫
Ω

Gx(t, y, x̂(t, y))x̄(t, y) dy dt = JF+
D (p̄, q̄, ẑ), (4.27)

where in that case

JF+
D (p̄, q̄, ẑ) = 1

2

∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p̄(t, y)|2 dy dt

+
∫ T

0

∫
Ω

F ∗(t, y, −(p̄t(t, y) + Δq̄(t, y) − ẑ(t, y))) dy dt

and

p̄(t, y) = x̄t(t, y),

q̄(t, y) = Δx̄(t, y),

p̄t(t, y) + Δq̄(t, y) − ẑ(t, y) = −Fx(t, y, x̄(t, y)). (4.28)
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Thus, by (4.27) we have the equality

JFG(x̄) +
∫ T

0

∫
Ω

G∗(t, y, Gx(x̂(t, y))) dy dt = JF+
D (p̄, q̄, ẑ).

From the above equalities we furthermore infer that

Gx(t, y, x̂(t, y)) = Gx(t, y, x̄(t, y)).

Putting this into (4.28) we obtain the assertions of the theorem. �

4.4. The more general case: proof of the main theorem

Let us consider now a sequence of convex (with respect to the third variable) func-
tions F 1, F 2, . . . , Fn of the variables (t, y, x) and a function G of the variable (t, y). Let
j1, . . . , jn−1 be a sequence of numbers having values either −1 or +1. Let us assume that
our original nonlinearity (see (1.1)) has the form

l = −j1F
1
x − j2F

2
x − · · · − jn−1F

n−1
x − Fn

x − G.

Let Assumption M hold. To prove existence of a solution to (1.1) with a nonlinearity l

we use an induction argument. To this effect, let us put ln−1 = −j1F
1
x − j2F

2
x − · · · −

jn−2F
n−2
x − Fn−1

x and consider the problem

xtt(t, y) + Δ2x(t, y) + ln−1(t, y, x(t, y)) − G(t, y) = 0,

x(t, y) = Δx(t, y) = 0,

x(t + T, y) = x(t, y),

t ∈ R, y ∈ Ω,

t ∈ R, y ∈ ∂Ω,

t ∈ R, y ∈ Ω.

⎫⎪⎬
⎪⎭ (4.29)

For this problem we assume that the following hypotheses hold.

(Gn−11) F 1, F 2, . . . , Fn−1 are measurable with respect to (t, y) in (0, T ) × Ω for all x in
R, are continuously differentiable and convex with respect to the third variable in
R for a.e. (t, y) ∈ (0, T ) × Ω, and (t, y) → F i(t, y, 0) are integrable on (0, T ) × Ω,
n = 1, . . . , n − 1.

(Gn−12) There exist some constants En−1, G such that, for

x ∈ Xln−1 = {x ∈ U : ‖x‖U � B(En−1 + G)},

ln−1(x) ∈ H2, G(·) ∈ H2 and ‖ln−1(x)‖H2 and ‖G(·)‖H2 are bounded in Xln−1 by
En−1 and G, respectively.

(Gn−13) F 1, F 2, . . . , Fn−1 satisfy (G3).

Similarly to Lemma 4.3, we have the following lemma.
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Lemma 4.17. Let x ∈ Xln−1 and let v be a solution of the periodic Navier problem
for

vtt(t, y) + Δ2v(t, y) = −ln−1(t, y, x(t, y)) + G(t, y)
almost everywhere on (0, T ) × Ω, (4.30)

v(t, y) = Δv(t, y) = 0, t ∈ R, y ∈ Ω,

v(t + T, y) = v(t, y), t ∈ R, y ∈ Ω.

Then
‖v‖U � B(En−1 + G).

Define in Xln−1 the map Xln−1 � x → H(x) = v, where v is a solution of the periodic
Navier problem (4.30).

The induction hypothesis is stated as follows.

(IH) Under hypotheses (Gn−11), (Gn−12) and (Gn−13), problem (4.29) has a solution
in H(Xln−1), i.e. we assume that the following theorem holds.

Theorem 4.18. Let x̄ be such that J ln−1(x) = infx∈H(Xln−1 ) J ln−1(x). Then there
exists (p̄, q̄) ∈ H1((0, T ) × Ω) × H2((0, T ) × Ω) such that for a.e. (t, y) ∈ (0, T ) × Ω,

p̄(t, y) = x̄t(t, y),

q̄(t, y) = Δx̄(t, y),

p̄t(t, y) + Δq̄(t, y) + ln−1(t, y, x̄(t, y)) − G(t, y) = 0

and
J ln−1(x̄) = J

ln−1
D (p̄, q̄, z̄1, . . . , z̄n−2),

where

z̄i = jiF
i
x(t, y, x̄(t, y)), i = 1, . . . , n − 2,

J ln−1(x̄) =
∫ T

0

∫
Ω

(− 1
2Δx̄(t, y)|2 + 1

2 |x̄t(t, y)|2) dy dt

+
∫ T

0

∫
Ω

( n−2∑
i=1

jiF
i(t, y, x̄(t, y)

)
+ F̄n−1(t, y, x̄(t, y))) dy dt,

J
ln−1
D (p̄, q̄, z̄1, . . . , z̄n−2)

= 1
2

∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p̄(t, y)|2 dy dt

−
∫ T

0

∫
Ω

n−2∑
i=1

jiF
i∗(t, y, z̄i(t, y)) dy dt

−
∫ T

0

∫
Ω

F̄n−1∗(t, y, −(p̄t(t, y) + Δq̄(t, y) − z̄1(t, y)

− · · · − z̄n−2(t, y))) dy dt,
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F i∗ are the Fenchel conjugates of F i, i = 1, . . . , n−1, with respect to third variable, and
F̄n−1 = Fn−1 + xG. Moreover, x̄ ∈ H(Xln−1).

Now consider our problem (see (1.1)).
Using hypothesis (IH), we have the following lemma.

Lemma 4.19. Let x ∈ Xln and let v be a solution of the periodic Navier problem for

vtt(t, y) + Δ2v(t, y) = −ln−1(t, y, x(t, y)) + F̄n
x (t, y, x(t, y))

almost everywhere on (0, T ) × Ω. (4.31)

v(t, y) = Δv(t, y) = 0, t ∈ R, y ∈ ∂Ω,

v(t + T, y) = v(t, y), t ∈ R, y ∈ Ω.

Then

‖v‖U � B(En−1 + F).

Example 4.20. Following the same argument as in the previous examples (with
the same n, T small), we obtain that l is a polynomial with respect to the variable
x with suitable small positive coefficients (functions of the variables (t, y) belonging to
L∞((0, T )×Ω)) that satisfies (Gn−11)–(Gn−13) for some chosen constants En−1 and F .

Define in Xln the map Xln � x → H(x) = v, where v is a solution of the periodic
Navier problem (4.31). Define a functional corresponding to the problem (see (1.1)) with
l defined by (2.6):

J ln(x) =
∫ T

0

∫
Ω

(− 1
2 |Δx(t, y)|2 + 1

2 |xt(t, y)|2) dy dt

+
∫ T

0

∫
Ω

n−1∑
i=1

jiF
i(t, y, x(t, y)) dy dt

+
∫ T

0

∫
Ω

F̄n(t, y, x(t, y)) dy dt. (4.32)

Next, define the set Xd
ln

: an element (p, q, z1, . . . , zn−1) ∈ H1((0, T ) × Ω) × H2((0, T ) ×
Ω) × · · · × H1((0, T ) × Ω) belongs to Xd

ln
provided that there exist x̂ ∈ Xln , x ∈ H(Xln)

such that for a.e. (t, y) ∈ (0, T ) × Ω,

pt(t, y) + Δq(t, y) = z1(t, y) + · · · + zn−1(t, y) + F̄n
x (t, y, x̂(t, y))

and

p(t, y) = xt(t, y) with q(t, y) = Δx(t, y),

z1(t, y) = j1F
1
x (t, y, x̂(t, y)), . . . , zn−1(t, y) = jn−1F

n−1
x (t, y, x̂(t, y)).
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The dual functional to (4.32) is then taken as

J ln
D (p, q, z1, . . . , zn−2, zn)

= −jn−1

∫ T

0

∫
Ω

Fn−1∗(t, y, −(pt(t, y) + Δq(t, y) − z1(t, y)

− · · · − zn−2(t, y) − zn(t, y))) dy dt

+ j1

∫ T

0

∫
Ω

F 1∗(t, y, z1(t, y)) dy dt

... (4.33)

+ jn−2

∫ T

0

∫
Ω

Fn−2∗(t, y, zn−2(t, y)) dy dt

+ 1
2

∫ T

0

∫
Ω

|q(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p(t, y)|2 dy dt, (4.34)

where F i∗ are the Fenchel conjugates of F i with respect to the third variable, i =
1, . . . , n − 1, and

J ln
D : H1((0, T ) × Ω) × H2((0, T ) × Ω) × · · · × H1((0, T ) × Ω) → R.

Similarly to the case of the functional JFG, we have the following result.

Lemma 4.21. The functional J ln attains its infimum on H(Xln), that is,

inf
x∈H(Xln )

J ln(x) = J ln(x̄),

where x̄ ∈ H(Xln).

We are now in position to prove Theorem 2.5.

Proof of the main theorem. Let us fix jn−1 = 1, the jn−1 = −1 case is similar.
Let x̄ ∈ H(Xln) be such that J ln(x̄) = infx∈H(Xln ) J ln(x). Let us choose x̂ ∈ U (by the
assumption on Fn

x , such an x̂ exists) such that

J ln(x̄) =
∫ T

0

∫
Ω

(− 1
2Δx̄(t, y)|2 + 1

2 |x̄t(t, y)|2) dy dt +
∫ T

0

∫
Ω

n−1∑
i=1

jiF
i(t, y, x̄(t, y)) dy dt

+
∫ T

0

∫
Ω

Fn
x (t, y, x̂(t, y))x̄(t, y) dy dt −

∫ T

0

∫
Ω

Fn∗t, y, Fn
x (x̂(t, y)) dy dt.

By Theorem 4.18, putting

ẑn(t, y) = Fn
x (t, y, x̂(t, y))
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we have that

J ln−1(x̄) =
∫ T

0

∫
Ω

(− 1
2 |Δx̄(t, y)|2 + 1

2 |x̄t(t, y)|2) dy dt

+
∫ T

0

∫
Ω

n−2∑
i=1

jiF
i(t, y, x̄(t, y)) dy dt −

∫ T

0

∫
Ω

Fn−1(t, y, x̄(t, y)) dy dt

+
∫ T

0

∫
Ω

Fn
x (t, y, x̂(t, y))x̄(t, y) dy dt

= J
ln−1
D (p̄, q̄, z̄1, . . . , z̄n−2, ẑn), (4.35)

where in that case

J
ln−1
D (p̄, q̄, z̄1, . . . , z̄n−2, ẑn)

= 1
2

∫ T

0

∫
Ω

|q̄(t, y)|2 dy dt − 1
2

∫ T

0

∫
Ω

|p̄(t, y)|2 dy dt

− j1

∫ T

0

∫
Ω

F 1∗(t, y, z̄1(t, y)) dy dt

...

− jn−2

∫ T

0

∫
Ω

Fn−2∗(t, y, z̄n−2(t, y)) dy dt

+
∫ T

0

∫
Ω

Fn−1∗(t, y, −(p̄t(t, y) + Δq̄(t, y) − z̄1(t, y)

− · · · − z̄n−2(t, y) − ẑn(t, y))) dy dt

and

p̄(t, y) = x̄t(t, y),

q̄(t, y) = Δx̄(t, y),

z̄i(t, y) = jiF
i
x(t, y, x̄(t, y)), i = 1, . . . , n − 2,

p̄t(t, y) + Δq̄(t, y) − z̄1(t, y) − · · · − z̄n−2(t, y) − ẑn(t, y) = −Fn−1
x (t, y, x̄(t, y)). (4.36)

From (4.35) and the above equalities we furthermore obtain that

Fn
x (t, y, x̂(t, y)) = Fn

x (t, y, x̄(t, y)).

Putting this into (4.36) we obtain the assertions of the theorem. �

5. Conclusions

The nonlinear terms in problems of type (1.1) are usually monotone functions or sublinear
at infinity (see the survey [29]). In [4] Bartsch et al . considered a nonlinear term that
is the difference of two monotone functions. In this paper we extend the theory to a
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nonlinearity that is a finite linear combination of monotone functions. The open question
arises as to whether the nonlinearity l can be of the form l = f +g, where f is a monotone
function and g is only continuous. It was pointed out in [10] that arithmetical properties
of the ratio α = T/π play an important role in solvability of the periodic Navier problem
(1.1) (see also an interesting discussion on that problem in [34]). There are only a few
papers that treat the problem in the case in which T is an irrational number such that
α = T/π has not necessarily bounded partial quotients in its continued fraction with
a nonlinear l. The case in which the spatial dimension n � 2 is investigated only by a
few authors; an interesting discussion on current methods is contained in [3, § 4]. We
have proved, for n � 2, that if α satisfies assumption (T), then with l a finite linear
combination of monotone functions, problem (1.1) has a solution in H2,0

per(R × Ω), i.e. a
strong solution. Moreover, we proved that this solution satisfies a variational and duality
principle.
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28. H. Lovicarová, Periodic solutions of a weakly nonlinear wave equation in one dimension,

Czech. Math. J. 19 (1969), 324–342.
29. J. Mawhin, Periodic solutions of some semilinear wave equations and systems: a survey,

Chaos Solitons Fractals 5 (1995), 1651–1669.
30. M. Novak, Remark on periodic solutions of linear wave equation in one dimension, Com-

mentat. Math. Univ. Carolinae 15 (1975), 513–519.
31. P. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential

equations, in Nonlinear analysis: a collection of papers in honour of Erich H. Rothe (ed.
L. Cesari, E. R. Rothe, R. Kannan and H. F. Weinberg), pp. 161–178 (Academic Press,
1978).

32. W. Schmidt, Diophantine approximation (Springer, 1980).
33. M. Struwe, Variational methods (Springer, 1990).
34. O. Vejvoda, Partial differential equations: time-periodic solutions (Sijthoff & Noordhoff,

Alphen aan den Rijn, 1981).
35. Y. Wang, Finite time blow-up and global solutions for fourth order damped wave equa-

tions, J. Math. Analysis Applic. 418 (2014), 713–733.
36. C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM

theory, Commun. Math. Phys. 127 (1990), 479–528.
37. C. E. Wayne, Periodic solutions of nonlinear partial differential equations, Not. Am.

Math. Soc. 44 (1997), 895–902.
38. M. Willem, Density of the range of potential operators, Proc. Am. Math. Soc. 83 (1981),

341–344.

https://doi.org/10.1017/S0013091516000092 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000092

