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ABSTRACT

Motivated by a recent discovery that the two-step inference for the Lee–Carter
mortality model may be inconsistent when the mortality index does not follow
from a nearly integrated AR(1) process, we propose a test for a unit root in a
Lee–Cartermodel with anAR(p) process for themortality index. Although test-
ing for a unit root has been studied extensively in econometrics, the method and
asymptotic results developed in this paper are unconventional. Unlike a blind
application of existing R packages for implementing the two-step inference pro-
cedure in Lee and Carter (1992) to the U.S. mortality rate data, the proposed
test rejects the null hypothesis that the mortality index follows from a unit root
AR(1) process, which calls for serious attention on using the future mortality
projections based on the Lee–Carter model in policy making, pricing annuities
and hedging longevity risk. A simulation study is conducted to examine the
finite sample behavior of the proposed test too.
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1. INTRODUCTION

The increased life expectancy has posted serious challenges to insurance compa-
nies and pension funds for managing longevity risk. For hedging longevity risk
and pricing annuities, mortality models and their inferences play an important
role (see Frees et al., 1996; Currie et al., 2004; Cairns et al., 2008; Njenga and
Sherris 2011). Although many types of mortality models have been proposed in
the literature of actuarial science (see Haberman and Renshaw, 2008; Chen and
Cox, 2009; Bauer et al., 2012; Yang and Wang, 2013), a quite popular model is
the so-called Le–Carter model, where Lee and Carter (1992) proposed to model
the logarithm of the central mortality rate by

logmx,t = αx + βxkt + εx,t,
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wheremx,t denotes the central mortality rate for age group x = 1, . . . , K at time
period t = 1, . . . ,T and εx,t’s are random errors.Here, kt is an unobserved factor
calledmortality index, αx and βx are unknown parameters. Due to identification
issue, conditions

∑K
x=1 βx = 1 and

∑T
t=1 kt = 0 are imposed in finding estima-

tors α̂x, β̂x, k̂t, which are obtained by the singular value decomposition method.
A recent development on singular value decomposition method for analyzing
mortality data is given in Zhang et al. (2013). For effective prediction, Lee and
Carter (1992) further proposed to fit an ARIMA(p, d, q) model to k̂t’s, and
researchers found that an ARIMA(p, 1, q) model is preferred in fitting existing
mortality data.

Since the seminal paper of Lee and Carter (1992), many extensions and
applications have appeared in the literature with an open R package (demog-
raphy); see Brouhns et al. (2002), Li and Lee (2005), Girosi and King (2007),
Cairns et al. (2011), Bisetti and Favero (2014), D’Amato et al. (2014) and Lin
et al. (2014).

Although there are wide applications of the Lee–Carter model and its exten-
sions in policy making, there is almost no discussion on whether the two-step
inference procedure could lead to a correct identification of the dynamic struc-
ture of kt, which plays a key role in forecasting mortality rates and managing
longevity risks. Recently, Leng and Peng (2016) unfortunately proved that the
two-step inference procedure in Lee and Carter (1992) may lead to a wrong
identification of the dynamics of kt if it is not a nearly integrated AR(1) model.
Therefore, this raises an interesting question on how to test unit root in the Lee–
Carter mortality model, where the dynamics of mortality index follows from an
AR(p) model.

Since there exist no asymptotic results for the two-step inference procedure
in Lee and Carter (1992), let us blindly apply the method to the U.S. mortality
rate data from year 1933 to year 2010. More specifically, we consider Group I
with age groups 0, 1–4, 5–9, . . . , 105–109, 110+, and Group II with age groups
10–14, 15–19, . . . , 65–69. We first employ the “demography” package in R to
obtain estimators k̂t with and without re-estimation, and then we use “lm” in
R to fit both an AR(1) model and an AR(2) model with an intercept to the
obtained k̂t’s. Re-estimation involves a step to match the number of deaths; see
the “demography” package document for details. The results are reported in
Tables 1 and 2.

By looking at the reported standard deviations, we may conclude that (i) a
unit root AR(1) model is preferred for Group I; (ii) a unit root AR(1) model is
preferred for Group II if the re-estimation is employed. That is, one may think
the two-step inference procedure in Lee and Carter (1992) is applicable to these
data sets since a unit root AR(1) model for the mortality index is preferred.
Apparently, the reported standard deviations are inaccurate since they ignore
the randomness in obtaining k̂t’s. Therefore, it is necessary to derive a formal test
for testing whether the mortality index follows from a unit root AR(1) process.
Although testing for a unit root has been studied extensively in the literature
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TABLE 1

ESTIMATORS FOR COEFFICIENTS AND THEIR STANDARD DEVIATION FOR GROUP I. WE REPORT ESTIMATORS
FOR COEFFICIENTS AND THEIR STANDARD DEVIATION IN BRACKETS BY USING THE “lm” IN SOFTWARE R TO
FIT EITHER AN AR(1) MODEL OR AN AR(2) MODEL WITH AN INTERCEPT TO THE ESTIMATED kt ’S WITH AND

WITHOUT RE-ESTIMATION OBTAINED BY THE R PACKAGE “DEMOGRAPHY” FOR U.S. MORTALITY DATA
FROM YEAR 1933 TO YEAR 2010.

Group I

Model Estimated kt ’s φ0 φ1 φ2

AR(1)
No Re-estimation −0.3265(0.0448) 0.9918(0.0064) NA
Re-estimation −0.3366(0.0535) 1.0003(0.0075) NA

AR(2)
No Re-estimation −0.2983(0.0572) 1.1083(0.1131) −0.1188(0.1123)
Re-estimation −0.3987(0.0652) 0.8443(0.1132) 0.1540(0.1135)

TABLE 2

ESTIMATORS FOR COEFFICIENTS AND THEIR STANDARD DEVIATION FOR GROUP II. WE REPORT
ESTIMATORS FOR COEFFICIENTS AND THEIR STANDARD DEVIATION IN BRACKETS BY USING THE “lm” IN

SOFTWARE R TO FIT EITHER AN AR(1) MODEL OR AN AR(2) MODEL WITH AN INTERCEPT TO THE
ESTIMATED kt ’S WITH AND WITHOUT RE-ESTIMATION OBTAINED BY THE R PACKAGE “DEMOGRAPHY” FOR

U.S. MORTALITY DATA FROM YEAR 1933 TO YEAR 2010.

Group II

Model Estimated kt ’s φ0 φ1 φ2

AR(1)
No Re-estimation −0.2016(0.0324) 0.9847(0.0078) NA
Re-estimation −0.2002(0.0295) 0.9967(0.0070) NA

AR(2)
No Re-estimation −0.1410(0.0372) 1.3178(0.1084) −0.3325(0.1068)
Re-estimation −0.1915(0.0374) 1.0637(0.1150) −0.0693(0.1148)

of econometrics, see Phillips and Perron (1988) and the recent review paper by
Xiao (2014), methods and asymptotic results developed in this paper are quite
different from existing ones due to the special structure of the mortality model;
see Section 2 for details.

We organize this paper as follows. Section 2 presents the model, method and
asymptotic results for testing a unit root. A simulation study and real data anal-
ysis are given in Section 3, which indicates that the proposed test requires a large
number of observations (≥ 100) in order to have a reasonable size. Since prac-
titioners usually use a short period of mortality data, it is important to develop
a more powerful test in future for ensuring the applicability of the widely em-
ployed Lee–Carter model and its extensions. Some conclusions are summarized
in Section 4. All proofs are put in the Appendix.
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2. MODEL, METHODOLOGY AND ASYMPTOTIC RESULTS

Consider the following Lee–Carter model:

log mx,t = αx + βxkt + εx,t, kt = φ0 + φ1kt−1 + φ2kt−2 + et (1)

for x = 1, . . . , K and t = 1, . . . ,T, where εx,t’s and et’s are independent random
errors with E εx,t = E et = 0,E ε2x,t = σ 2

x and E e2t = σ 2. As shown in Leng and
Peng (2016), the two-step estimation procedure in Lee and Carter (1992) may be
inconsistent when {kt} does not follow from a nearly integrated AR(1) model.
Therefore, an interesting question is how to test H0 : φ1 = 1&φ2 = 0 for
the above Lee–Carter model. Note that kt’s are unobserved and the two-step
inference procedure in Lee and Carter (1992) cannot be employed due to its
inconsistency and unknown asymptotic behavior.

Rewrite (1) as

logmx,t = δx + φ1 logmx,t−1 + φ2 logmx,t−2 + ux,t, (2)

where
ux,t = βxet + εx,t − φ1εx,t−1 − φ2εx,t−2, (3)

and δx = (1−∑2
s=1 φs)αx + φ0βx, which is independent of t and represents the

age-specific trend. Put

y(i)
x,t = logmx,t−i − T−1

T∑
j=1

logmx, j−i and u∗
x,t = ux,t − 1

T

T∑
s=1

ux,s,

where logmx,t is defined to be zero for t ≤ 0 and x = 1, . . . , K . Therefore, (2) is
equivalent to

y(0)
x,t = φ1y

(1)
x,t + φ2y

(2)
x,t + u∗

x,t. (4)

This motivates us to estimate φ1 and φ2 by minimizing the following least
squares:

K∑
x=1

T∑
t=1

(
y(0)
x,t − φ1y

(1)
x,t − φ2y

(2)
x,t

)2
,

which leads to

φ̃1 = D0,1D2,2 − D0,2D1,2

D1,1D2,2 − D2
1,2

and φ̃2 = D1,1D0,2 − D0,1D1,2

D1,1D2,2 − D2
1,2

,

with Di, j = ∑K
x=1

∑T
t=1 y

(i)
x,t y

( j)
x,t .

Although testing for a unit root has received extensive studies in the litera-
ture of econometrics, the study here is quite different from existing ones. First,
under H0 : φ1 = 1&φ2 = 0, logmx,t−1 is correlated with ux,t and thus the
above least squares estimators are biased. Second, it follows from (A21) in the
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proof of Theorem 1 that the difference of the following two terms from the score
equations,

T−3/2
K∑
x=1

T∑
t=1

y(1)
x,t

(
y(0)
x,t − φ1y

(1)
x,t − φ2y

(2)
x,t

)
and

T−3/2
K∑
x=1

T∑
t=1

y(2)
x,t

(
y(0)
x,t − φ1y

(1)
x,t − φ2y

(2)
x,t

)
,

converges in probability to zero as T → ∞ when H0 : φ1 = 1&φ2 = 0 and there
exists a non-zero trend (i.e.,

∑K
x=1 δ2x > 0), which means that the joint asymp-

totic distribution of the above two terms is degenerate. Similarly, it follows from
(A10) and (A12) in the proof of Theorem 1 that the difference of the following
two terms from the score equations,

T−1
K∑
x=1

T∑
t=1

y(1)
x,t

(
y(0)
x,t − φ1y

(1)
x,t − φ2y

(2)
x,t

)
and

T−1
K∑
x=1

T∑
t=1

y(2)
x,t

(
y(0)
x,t − φ1y

(1)
x,t − φ2y

(2)
x,t

)
,

converges in probability to a constant as T → ∞when H0 : φ1 = 1&φ2 = 0 and
there exists no trend (i.e.,

∑K
x=1 δ2x = 0), which means that the joint asymptotic

distribution is degenerate. To overcome the second issue of having a degenerate
limiting distribution, we propose to test H0 : φ1 = 1&φ1 + φ2 = 1, i.e., to
use estimators for φ1 and φ1 + φ2, which has some similarity to the idea of the
augmented Dickey–Fuller test (see Said and Dickey, 1984). For dealing with
the first issue, a well-known technique developed and commonly employed in
econometrics is the so-called instrumental variable method. Due to the special
structure of ux,t, finding an instrumental variable is not easy at all. Instead we
propose the following bias corrected least squares estimator for φ1.

Write

D0,1D2,2 − D0,2D1,2 − (D1,1D2,2 − D2
1,2)

= D2,2

[
K∑
x=1

T∑
t=1

y(1)
x,t

(
y(0)
x,t − y(1)

x,t

)]
− D1,2

[
K∑
x=1

T∑
t=1

y(2)
x,t

(
y(0)
x,t − y(1)

x,t

)]

= −
[

K∑
x=1

T∑
t=1

y(1)
x,t

(
y(0)
x,t − y(1)

x,t

)][
K∑
x=1

T∑
t=1

y(2)
x,t

(
y(1)
x,t − y(2)

x,t

)]
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+D1,2

[
K∑
x=1

T∑
t=1

(
y(0)
x,t − y(1)

x,t

) (
y(1)
x,t − y(2)

x,t

)]

= I1 + I2,

D1,1D2,2 − D2
1,2

= (D1,1 − D1,2)(D2,2 − D1,2) + D1,2[D1,1 − D1,2 − (D1,2 − D2,2)]

= −
[

K∑
x=1

T∑
t=1

y(1)
x,t

(
y(1)
x,t − y(2)

x,t

)][
K∑
x=1

T∑
t=1

y(2)
x,t

(
y(1)
x,t − y(2)

x,t

)]

+D1,2

[
K∑
x=1

T∑
t=1

(
y(1)
x,t − y(2)

x,t

)2]

= I I1 + I I2,

and

D1,1D0,2 − D0,1D1,2

= D1,1(D0,2 − D1,2) − D1,2(D0,1 − D1,1)

=
[

K∑
x=1

T∑
t=1

y(1)
x,t

(
y(1)
x,t − y(2)

x,t

)][
K∑
x=1

T∑
t=1

y(2)
x,t

(
y(0)
x,t − y(1)

x,t

)]

−D1,2

[
K∑
x=1

T∑
t=1

(
y(0)
x,t − y(1)

x,t

) (
y(1)
x,t − y(2)

x,t

)]

= I I I1 − I2.

Since E (ux,tux,t−1) �= 0, it follows from (A10)–(A12) and (A21) in the proof of
Theorem 1 that I2 and I I2 have the same order and dominate I1, I I1 and I I I1
under H0 : φ1 = 1&φ2 = 0. When we say I2 dominates I1, it means I1 = op(I2)
as T → ∞. Therefore, the inconsistency of the least squares estimators is due
to term I2, and an obvious bias corrected estimator for φ1 is

φ̃1 −
D1,2

[∑K
x=1

∑T
t=1

(
y(0)
x,t − y(1)

x,t

) (
y(1)
x,t − y(2)

x,t

)]
D1,1D2,2 − D2

1,2

.
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However, after writing the term
∑K

x=1

∑T
t=1 y

(1)
x,t (y

(0)
x,t − y(1)

x,t ) in I1 as

K∑
x=1

T∑
t=1

u∗
x,t y

(1)
x,t +(φ1−1)

K∑
x=1

T∑
t=1

y(1)
x,t

(
y(1)
x,t − y(2)

x,t

)
+(φ1+φ2−1)

K∑
x=1

T∑
t=1

y(1)
x,t y

(2)
x,t ,

which has the same limit as
∑K

x=1

∑T
t=1 u

∗
x,t y

(1)
x,t when φ1 + φ2 − 1 = 0 and

φ1 − 1 = o(1), we conclude that the above bias corrected estimator cannot
detect the case of φ1 − 1 = o(1) when φ2 + φ1 − 1 = 0. To better detect the
departure of φ1 from one, we propose the following bias corrected estimator for
φ1:

φ̂1 = φ̃1 −
D1,2

[∑K
x=1

∑T
t=1(y

(0)
x,t − y(1)

x,t )(y
(1)
x,t − y(2)

x,t−1)
]

D1,1D2,2 − D2
1,2

.

The difference from the previous bias-corrected estimator is that we use y(2)
x,t−1

instead of y(2)
x,t , which turns out to be quite effective in detecting the departure

of φ1 from one both theoretically and practically. Note that under H0 : φ1 =
1&φ2 = 0, φ̃1 + φ̃2 converges in probability to one since the I2 term disappears.
In conclusion, we propose to consider the joint limit of estimators φ̂1 − 1 and
φ̃1 + φ̃2 − 1 for testing H0 : φ1 = 1&φ1 + φ2 = 1, which is equivalent to
H0 : φ1 = 1&φ2 = 0. Throughout we assume that

C1) {εt = (ε1,t, . . . , εK,t)
τ }Tt=1 is a sequence of independent and identically dis-

tributed random vectors with zero means and covariance matrix 	ε =
(σ ε

i, j ), {et}Tt=1 is a sequence of independent and identically distributed ran-
dom variables with zero mean and finite variance σ 2, and these two se-
quences are independent. Here, Aτ denotes the transpose of the vector or
matrix A;

C2) E (||εt||η) + E (|et|η) < ∞ for some η > 2.

Put ut = (u1,t, . . . , uK,t)
τ and it is easy to show that, under conditions of The-

orem 1 below,

lim
T→∞

1
T

E

{
T∑
t=1

ui,t
T∑
t=1

u j,t

}

= lim
T→∞

1
T

{
T∑
t=1

E (ui,tu j,t) + 2
T∑
t=1

E (ui,tu j,t−1)

}

= βiβ jσ
2

=: σi, j .
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Define 	 = (σi, j )1≤i, j≤K and

XT(r) = 1√
T

	−1/2

([r1T]∑
t=1

u1,t, . . . ,
[rKT]∑
t=1

uK,t

)τ

for r = (r1, . . . , rK)τ ∈ [0, 1]K .

Then, like the proofs in Phillips and Durlauf (1986), we have

XT(r)
D→ W(r) = (

W1(r1), . . . ,WK(rK)
)τ

, (5)

where “
D→” denotes convergence in space D([0, 1]K) and W1(r1), . . . ,WK(rK)

are independent Brownianmotions.When r1 = · · · = rK = s for some s ∈ [0, 1],
we simply write XT(r) as XT(s).

Throughout define δ = (δ1, . . . , δK)τ , logmt = (logm1,t, . . . , logmK,t)
τ ,

ut = (u1,t, . . . , uK,t)
τ , y(i)

t =
(
y(i)
1,t, . . . , y

(i)
K,t

)τ

, Jd(s) = W(s) +
d
∫ s
0 e

d(s−t)W(t) dt and J̃d(s) = Jd(s) − ∫ 1
0 Jd(t) dt. We use “

d→” and “
p→” to

denote convergence in distribution and convergence in probability, respectively.

Theorem 1. Suppose model (1) holds with conditions C1) and C2).

(i) If δτ δ = 0, i.e., δ ≡ 0, then for φ1 = 1 + d1/
√
T&φ1 + φ2 = 1 + d2/T, we

have (√
T(φ̂1 − 1),T(φ̃1 + φ̃2 − 1)

) d→ (Z1, Z̃1),

where

Z1∼N

⎛
⎜⎝ d1

∑K
x=1 σ ε

x,x∑K
x=1(σx,x + 2σ ε

x,x)
,

∑K
x1=1

∑K
x2=1

(
(σx1,x2 + 2σ ε

x1,x2)
2 + 2(σ ε

x1,x2)
2
)

(∑K
x=1(σx,x + 2σ ε

x,x)
)2

⎞
⎟⎠,

Z̃1 = Z2
∑K

x=1 σ ε
x,x

Z3
∑K

x=1(σx,x + 2σ ε
x,x)

+ Z2 + ∑K
x=1 σ ε

x,x

Z3
+ d2

∑K
x=1(σx,x + 3σ ε

x,x)∑K
x=1(σx,x + 2σ ε

x,x)
,

Z2 = 1
2
tr
(

	
(
J̃d2(1) J̃

τ
d2(1) − J̃d2(0) J̃

τ
d2(0) − 2(d2 + d21 )

∫ 1

0
J̃d2(s) J̃

τ
d2(s) ds

) − 	 − 2	ε

)
,

Z3 = tr
(
	

∫ 1
0 J̃d2(s) J̃

τ
d2(s) ds

)
and Z1 is independent of W(s). Here, tr(A)

denotes the trace of matrix A.
(ii) If δτ δ > 0, i.e., δ �≡ 0, then for φ1 = 1 + d1/

√
T&φ1 + φ2 = 1 + d2/T3/2,

we have (√
T(φ̂1 − 1),T3/2(φ̃1 + φ̃2 − 1)

) d→ (Z1, Z̃∗
1),
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where

Z̃∗
1 = 12

∑K
x=1(σx,x + 3σ ε

x,x)

δτ δ
∑K

x=1(σx,x + 2σ ε
x,x)

Z4 + d2

∑K
x=1(σx,x + 3σ ε

x,x)∑K
x=1(σx,x + 2σ ε

x,x)

and

Z4 = tr
(

	1/2
(
W(1)
2

−
∫ 1

0
W(s) ds

)
δτ

)
∼ N

(
0,

1
12

tr(	δδτ )

)
.

Based on the above theorem, we can develop a test for a unit root in the Lee–
Carter model via estimating the unknown quantities in the limit. For mortality
rates, one usually has δTδ > 0 in practice.Hence, we apply the asymptotic results
in Theorem 1 (ii) to test a unit root for the Lee–Carter model as follows.

Under H0 : φ1 = 1&φ2 = 0, we have from (2) that

logmx,t = δx + logmx,t−1 + ux,t, x = 1, . . . , K.

Since E (ux,t) = 0, we estimate δx by

δ̂x = T−1
T∑
t=1

(logmx,t − logmx,t−1) = T−1 logmx,T.

Define
δ̂ = (δ̂1, . . . , δ̂K)τ , û∗

t = (û∗
1,t, . . . , û

∗
K,t)

τ ,

û∗
x,t = y(0)

x,t − φ̂1

(
y(1)
x,t − y(2)

x,t

)
− (φ̃1 + φ̃2)y

(2)
x,t ,

	̂ = 1
T

T∑
t=1

û∗
t û

∗τ
t + 2

T

T∑
t=1

û∗
t û

∗τ
t−1, �̂1 = tr(	̂), 	̂ε = − 1

T

T∑
t=1

û∗
t û

∗τ
t−1,

�̂2 = tr(	̂ε) and �̂3 = sum
(
(	̂ + 2	̂ε)2 + 2(	̂ε)2

)
,

where A2 denotes the matrix with each element being the square of the corre-
sponding element in the matrix A and sum(A) denotes the summation of all
elements in the matrix A. Then under H0 : φ1 = 1&φ2 = 0, our test statistic is
defined as

Z= T(φ̂1 − 1)2(�̂1 + 2�̂2)
2

�̂3
+ T3(φ̃1 + φ̃2 − 1)2(δ̂τ δ̂)2(�̂1 + 2�̂2)

2

12 tr(	̂δ̂δ̂τ ) (�̂1 + 3�̂2)2
. (6)

It immediately follows from Theorem 1 (ii) that Z has a chi-squared limiting
distribution with two degrees of freedom as T → ∞ when δ �≡ 0. Hence, in this
case, we reject H0 at level α if Z > χ2

1−α,2, where χ2
1−α,2 denotes the (1 − α)-th

quantile of a chi-squared distribution with two degrees of freedom.
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TABLE 3

U.S. MORTALITY RATES. WE REPORT ESTIMATORS φ̂1, φ̃1 + φ̃2, δ̂τ δ̂ FOR φ1, φ1 + φ2 AND δτ δ, RESPECTIVELY.
THE COMPUTED TEST STATISTIC ZDEFINED IN (6) AND ITS P-VALUE ARE REPORTED TOO. GROUP I MEANS

AGE GROUPS 0, 1–4, 5–9, . . . , 105–109, 110+, AND GROUP II MEANS AGE GROUPS 10–14, . . . , 65–69.

Group I Group II

φ̂1 1.0301 1.0674
φ̃1 + φ̃2 0.9519 0.9829
δ̂τ δ̂ 0.1161 0.0800
Z 533 148
P-value 0.0000 0.0000

Remark 1. If the mortality index follows from an AR(p) model:

kt = φ0 +
p∑

s=1

φskt−s + et,

then, using the same notation as above, we can write

y(0)
x,t =

p∑
s=1

φs y
(s)
x,t + u∗

x,t = φ1(y
(1)
x,t − y(2)

x,t − · · · − y(p)
x,t ) +

p∑
s=2

(φ1 + φs)y
(s)
x,t + u∗

x,t,

where u∗
x,t = ux,t − 1

T

∑T
s=1 ux,s with ux,t = βxet + εx,t − ∑p

s=1 φsεx,t−s . Based
on the least squares estimators for φ1, φ1 + φ2, . . . , φ1 + φp, a similar test to the
case of p = 2 can be derived for testing H0 : φ1 = 1 = φ1 + φ2 = · · · = φ1 + φp,
which is equivalent to H0 : φ1 = 1, φ2 = · · · = φp = 0. Here, we skip the details
since mortality rate data usually do not prefer p > 2.

3. DATA ANALYSIS AND SIMULATION STUDY

First, we apply the proposed test in Section 2 for testing H0 : φ1 = 1&φ2 = 0 in
model (1) to the U.S. mortality rate data from year 1933 to year 2010 with two
different age groups by assuming δTδ > 0. Group I contains K = 24 age groups,
which are 0, 1–4, 5–9, 10–14, . . . , 105–109, 110+, and Group II represents K =
12 age groups, which are 10–14, 15–19, . . . , 65–69. This data set is available in
the Human Mortality Database, http://www.mortality.org. Table 3 reports φ̂1,
φ̃1 + φ̃2, δ̂τ δ̂, the test statistic Z given in (6) and its P-value. We also plot δ̂,
diag(	̂) and diag(	̂ε) in Figure 1, which are employed to set up the following
simulation study. Here, diag(A) means replacing the off-diagonal elements of
matrix Aby 0.

In contradictory to the blind application of the two-step inference procedure
in Lee and Carter (1992) given Section 1, the P-values in Table 3 clearly reject
the null hypothesis H0 : φ1 = 1 andφ2 = 0. Hence, applying the two-step in-
ference procedure in Lee and Carter (1992) to the U.S. mortality rate data is
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FIGURE 1: Estimates δ̂, diag(	̂) and diag(	̂ε) are plotted for the U.S. mortality rates.

problematic, and one should be cautious to use the future mortality projections
based on the Lee–Carter model in policy making, pricing annuities and hedging
longevity risk.

Next, we examine the finite sample performance of the proposed test by
generating observations from (2) and (3) with φ1 = 1 + d/

√
T, φ1 + φ2 =

1 + d/T3/2, δ = δ̂, (β1, . . . , βK)τet ∼ (
√

σ̂1,1, . . . ,
√

σ̂K,K)τN(0, 1) and εt ∼
N
(
0, |diag(	̂ε)|) , where δ̂, 	̂ = (σ̂i, j ) and 	̂ε are estimates obtained from the

above U.S. mortality rates. The empirical sizes (d = 0) and empirical powers
(d = −1, −2, −3, −4, −5) of the proposed test Zare computed based on 10,000
replications, and are reported in Tables 4–6.

Table 4 shows that (i) the size becomes more accurate when T is larger, (ii) it
is a bit larger than the nominal level for a smaller T and (iii) the size for Group
II is more accurate than that for Group I since age groups at the two ends are
believed to be quite volatile. Tables 5 and 6 show that the proposed test has
non-trivial powers, and for a larger T, the power increases as |d| becomes bigger.
Note that we do not expect the power will increase as T becomes large for a fixed
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TABLE 4

EMPIRICAL SIZE. WE COMPUTE THE EMPIRICAL SIZE OF THE PROPOSED TEST Z AT NOMINAL LEVEL
α = 0.05, 0.1 BASED ON 10, 000 REPETITIONS FOR SAMPLE SIZE T = 50, 100, 200, 500 FROM (2) AND (3) WITH

φ1 = 1ANDφ2 = 0.

α = 0.05 α = 0.1

T = 50 T = 100 T = 200 T = 500 T = 50 T = 100 T = 200 T = 500

Group I 0.1483 0.0951 0.0692 0.0579 0.2280 0.1583 0.1311 0.1135
Group II 0.0912 0.0625 0.0578 0.0532 0.1453 0.1155 0.1114 0.1062

TABLE 5

EMPIRICAL POWER FOR GROUP I. WE REPORT THE EMPIRICAL POWER OF THE PROPOSED TEST Z AT
NOMINAL LEVEL α = 0.05, 0.1 BASED ON 10, 000 REPETITIONS FOR SAMPLE SIZE T = 50, 100, 200, 500 FROM

(2) AND (3) WITH φ1 = 1 + d/
√
T&φ1 + φ2 = 1 + d/T3/2.

α = 0.05 α = 0.1

d T = 50 T = 100 T = 200 T = 500 T = 50 T = 100 T = 200 T = 500

−1 0.2960 0.1980 0.1300 0.1017 0.4074 0.2853 0.2215 0.1753
−2 0.4804 0.3385 0.2478 0.1931 0.5846 0.4472 0.3513 0.2966
−3 0.6384 0.5146 0.3962 0.3220 0.7187 0.6206 0.5124 0.4310
−4 0.7113 0.6868 0.5534 0.4740 0.7515 0.7665 0.6589 0.5908
−5 0.6801 0.7600 0.7235 0.6122 0.6940 0.8030 0.8079 0.7107

TABLE 6

EMPIRICAL POWER FOR GROUP II. WE REPORT THE EMPIRICAL POWER OF THE PROPOSED TEST Z AT
NOMINAL LEVEL α = 0.05, 0.1 BASED ON 10, 000 REPETITIONS FOR SAMPLE SIZE T = 50, 100, 200, 500 FROM

(2) AND (3) WITH φ1 = 1 + d/
√
T&φ1 + φ2 = 1 + d/T3/2.

α = 0.05 α = 0.1

d T = 50 T = 100 T = 200 T = 500 T = 50 T = 100 T = 200 T = 500

−1 0.1517 0.1146 0.0989 0.0956 0.2205 0.1892 0.1675 0.1606
−2 0.2866 0.2236 0.2089 0.2000 0.3727 0.3226 0.3092 0.2983
−3 0.4570 0.4008 0.3709 0.3644 0.5378 0.5065 0.4758 0.4793
−4 0.5242 0.6047 0.5541 0.5437 0.5802 0.6961 0.6598 0.6631
−5 0.5018 0.7494 0.7397 0.7170 0.5379 0.8025 0.8118 0.8077

d since the alternative hypothesis depends on both d and T. Since the proposed
test requires a large T to ensure a reasonable size and the mortality index plays a
key role in forecasting mortality risk, it is important to develop a more powerful
test for a unit root in the Lee–Carter model in the future.
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4. CONCLUSIONS

Although the Lee–Carter mortality model and its extensions have been exten-
sively applied in demography and actuarial science, asymptotic properties of its
statistical inference remain unknown. Recently, Leng and Peng (2016) proved
that the two-step inference procedure proposed by Lee and Carter (1992) may
lead to a wrong identification of the dynamics of the mortality index when the
mortality index does not follow from a unit root AR(1) process. A blind ap-
plication of the two-step inference procedure to the U.S. mortality rate data
leads to the conclusion that the mortality index follows from a unit root AR(1)
model.

By assuming that the mortality index follows from an AR(p) model, this
paper proposes a method to test whether it is a unit root AR(1) model. Due to
the special structure of errors, asymptotic distribution derived for the proposed
test is quite different from existing ones in the literature of econometrics. An
application of this test to the U.S. mortality rate data rejects the null hypothesis
that the mortality index follows from a unit root AR(1) model, which contra-
dicts the blind application of the two-step inference procedure proposed by Lee
and Carter (1992). Therefore, the proposed test is useful in checking the appli-
cability of the widely employed Lee–Carter mortality model and its extensions.
On the other hand, the simulation study indicates that the proposed test requires
a large number of observations (≥100) to ensure a reasonable size, it becomes
important to develop a more powerful test for a unit root in the Lee–Carter
model in the future.
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APPENDIX A

A.1. Proof of Theorem 1

Before we prove the main theorem, we need some lemmas.

Lemma 1. Suppose conditions of Theorem 1 hold.
i. If δτ δ = 0, then for φ1 = 1 + d1/

√
T&φ1 + φ2 = 1 + d2/T and any fixed i , we have

ia. T−1/2y(i)
[sT]

D→ 	1/2 J̃d2(s) in space D([0, 1]);
ib. T−2

∑T
t=1 y

(i)
t y(i)τ

t
d→ 	1/2

∫ 1
0 J̃d2(s) J̃

τ
d2

(s) ds 	1/2;
ic. T−5/2

∑T
t=1 ty

(i)
t

d→ 	1/2
∫ 1
0 s J̃d2(s) ds;

id.

T−1
∑T

t=1

(
y(i+1)
t u∗τ

t−i + u∗
t−i y

(i+1)τ
t

)
d→ 	1/2

(
J̃d2(1) J̃

τ
d2

(1) − J̃d2(0) J̃
τ
d2

(0) − 2(d2 + d2
1 )

∫ 1
0 J̃d2(s) J̃

τ
d2

(s) ds
)

	1/2 − 	 − 2	ε.

ii. If δτ δ > 0, then for φ1 = 1 + d1/
√
T&φ1 + φ2 = 1 + d2/T3/2 and any fixed i , we have

iia. T−3
∑T

t=1 y
(i)
t y(i)τ

t
p→ 1

12 δδ
τ ;

iib. T−3
∑T

t=1 ty
(i)
t

p→ 1
12 δ;

iic. T−3/2
∑T

t=1 u
∗
t y

(i)τ
t

d→ 	1/2(W(1)
2 − ∫ 1

0 W(s) ds)δτ .

Proof 1. Write(
logmx,t

logmx,t−1

)
=

(
φ1 φ2

1 0

)(
logmx,t−1

logmx,t−2

)
+

(
δx + ux,t

0

)
,

and it follows from iterations that

(
logmx,t

logmx,t−1

)
=

t∑
i=1

(
φ1 φ2

1 0

)t−i (
δx + ux,i

0

)
.

Using the arguments in Kölbl (2006), we have

logmx,t =
t−1∑
i=1

λi+1
1 − λi+1

2

λ1 − λ2
(δx + ux,t−i ), (A1)

where

λ1 =
φ1 +

√
φ2
1 + 4φ2

2
and λ2 =

φ1 −
√

φ2
1 + 4φ2

2
.

First, we consider the case of δτ δ = 0. In this case,

λ1 = 1 + d2
T

+ o(T−1) and λ2 = d1√
T

+ o(T−1/2). (A2)
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It follows from (A1), (A2), (5) and the same arguments in Phillips (1987) that

	−1/2

√
T

logm[sT]
D→

∫ s

0
ed2(s−t) dW(t) = Jd2(s),

i.e.,

	−1/2

√
T

y(0)
[sT]

D→ Jd2(s) −
∫ 1

0
Jd2(t) dt = J̃d2(s). (A3)

Hence, (ia)–(ic) follows from (A3) easily. For proving (id), it follows from (4) that

y(0)
t = φ1y(1)

t + φ2y(2)
t + u∗

t . (A4)

So, we have

1
T

T∑
t=1

y(0)
t y(0)τ

t

= 1
T

T∑
t=1

(
φ1y(1)

t + φ2y(2)
t + u∗

t

) (
φ1y(1)

t + φ2y(2)
t + u∗

t

)τ

= 1
T

T∑
t=1

φ2
1 y

(1)
t y(1)τ

t + 1
T

T∑
t=1

φ2
2 y

(2)
t y(2)τ

t + 1
T

T∑
t=1

u∗
t u

∗τ
t

+ 1
T

T∑
t=1

φ1φ2
(
y(1)
t y(2)τ

t + y(2)
t y(1)τ

t

) + 1
T

T∑
t=1

φ1
(
y(1)
t u∗τ

t + u∗
t y

(1)τ
t

)

+ 1
T

T∑
t=1

φ2
(
y(2)
t u∗τ

t + u∗
t y

(2)τ
t

)

= 1
T

T∑
t=1

(
1 + 2d1√

T
+ d2

1

T

)
y(1)
t y(1)τ

t + 1
T

T∑
t=1

d2
1

T
y(2)
t y(2)τ

t + 1
T

T∑
t=1

u∗
t u

∗τ
t

+ 1
T

T∑
t=1

(
d2
T

− d1√
T

− d2
1

T

) (
y(1)
t y(2)τ

t + y(2)
t y(1)τ

t

)

+ 1
T

T∑
t=1

(
y(1)
t u∗τ

t + u∗
t y

(1)τ
t

) (
1 + op(1)

) + op(1)

= 1
T

T∑
t=1

y(1)
t y(1)τ

t + 1
T

T∑
t=1

(
2d1√
T

+ d2
1

T

)(
1 + d1√

T

)2

y(2)
t y(2)τ

t

+ 1
T

T∑
t=1

d2
1

T
y(2)
t y(2)τ

t + 1
T

T∑
t=1

u∗
t u

∗τ
t
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+ 1
T

T∑
t=1

(
d2
T

− d1√
T

− d2
1

T

)(
1 + d1√

T

) (
y(2)
t y(2)τ

t + y(2)
t y(2)τ

t

)

+ 1
T

T∑
t=1

(
y(1)
t u∗τ

t + u∗
t y

(1)τ
t

) (
1 + op(1)

) + op(1)

= 1
T

T∑
t=1

y(1)
t y(1)τ

t + 1
T

T∑
t=1

2(d2
1 + d2)
T

y(2)
t y(2)τ

t

+ 1
T

T∑
t=1

u∗
t u

∗τ
t + 1

T

T∑
t=1

(
y(1)
t u∗τ

t + u∗
t y

(1)τ
t

) (
1 + op(1)

) + op(1),

which implies (id) with i = 0 by using (ia), (ib) and T−1
∑T

t=1 u
∗
t u

∗τ
t

p→ 	 + 2	ε. Similarly,
we can show (id) holds for i ≥ 1.

Next, we consider the case of δτ δ > 0. In this case,

λ1 = 1 + d2
T3/2

+ o
(
T−3/2

)
and λ2 = d1√

T
+ o

(
T−1/2

)
. (A5)

Then, it follows from (A1) and (A5) that

T−1 logm[sT]
p→ sδ,

i.e.,
T−1y(0)

[sT]
p→

(
s −

∫ 1

0
y dy

)
δ = (s − 1/2)δ. (A6)

Hence, we can show (iia)–(iic) by using (A6).

Proof of Theorem 1 2. Define

Ai, j :=
K∑
x=1

T∑
t=1

(
y(0)
x,t−i − φ1y

(1)
x,t−i − φ2y

(2)
x,t−i

) (
y(0)
x,t− j − φ1y

(1)
x,t− j − φ2y

(2)
x,t− j

)

=
K∑
x=1

T∑
t=1

u∗
x,t−i u

∗
x,t− j

and
Bi, j :=

K∑
x=1

T∑
t=1

y( j)
x,t

(
y(0)
x,t−i − φ1y

(1)
x,t−i − φ2y

(2)
x,t−i

)
=

K∑
x=1

T∑
t=1

u∗
x,t−i y

( j)
x,t .

i. It follows from the weak law of large numbers that, as T → ∞,

T−1Ai, j =
K∑
x=1

T−1
T∑
t=1

u∗
x,t−i u

∗
x,t− j

p→
K∑
x=1

E (βxet−i + εx,t−i − εx,t−i−1)(βxet− j + εx,t− j − εx,t− j−1)

=
⎧⎨
⎩

∑K
x=1(σx,x + 2σ ε

x,x) if i = j
−∑K

x=1 σ ε
x,x if |i − j | = 1

0 if |i − j | > 1,
(A7)
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lim
T→∞

T−1E

{
K∑
x=1

T∑
t=1

u∗
x,tu

∗
x,t−2

}2

= lim
T→∞

T−1E

{
K∑
x=1

T∑
t=1

ux,tux,t−2

}2

= lim
T→∞

K∑
x1=1

K∑
x2=1

1
T

T∑
t=1

{
E (ux1,tux2,t)

}2

+ lim
T→∞

K∑
x1=1

K∑
x2=1

2
T

T∑
t=1

E (ux1,tux1,t−2ux2,t−1ux2,t−3)

=
K∑

x1=1

K∑
x2=1

{
(σx1,x2 + 2σ ε

x1,x2
)2 + 2(σ ε

x1,x2
)2
}
.

and

1√
T
A0,2

d→ N

⎛
⎝0,

K∑
x1=1

K∑
x2=1

{
(σx1,x2 + 2σ ε

x1,x2
)2 + 2(σ ε

x1,x2
)2
}⎞⎠ , (A8)

which is independent ofW(s). It follows from Lemma 1 (i) and (A7) that

T−2Di,i = tr
(
T−2

T∑
t=1

y(i)
t y(i)τ

t

)
d→ tr

(
	

∫ 1

0
J̃d2(s) J̃

τ
d2

(s) ds
)

, (A9)

T−1Bi,i+1 = tr

(
T−1

T∑
t=1

u∗
t−i y

(i+1)τ
t

)

= 1
2
tr

(
T−1

T∑
t=1

(
u∗
t−i y

(i+1)τ
t + y(i+1)

t u∗τ
t−i

))

d→ 1
2
tr
(

	
(
J̃d2(1) J̃

τ
d2

(1) − J̃d2(0) J̃
τ
d2

(0) − 2(d2 + d2
1 )

∫ 1

0
J̃d2(s) J̃

τ
d2

(s) ds
)−	−2	ε

)

= Z2, (A10)

T−1Bi,i = T−1
K∑
x=1

T∑
t=1

u∗
x,t−i

(
y(i)
x,t − y(i+1)

x,t

) + T−1Bi,i+1

d→
K∑
x=1

(σx,x + 2σ ε
x,x) + Z2 (A11)
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and

T−1Bi,i+2 = T−1
K∑
x=1

T∑
t=1

u∗
x,t−i y

(i+1)
x,t − T−1

K∑
x=1

T∑
t=1

u∗
x,t−i

(
y(i+1)
x,t − y(i+2)

x,t

)

d→ Z2 +
K∑
x=1

σ ε
xx. (A12)

Now, using (A4), (A9), (A10), (A7) and Lemma 1 (i), we have

D0,1 − D1,1 =
K∑
x=1

T∑
t=1

y(1)
x,t

(
y(0)
x,t − y(1)

x,t

)

=
K∑
x=1

T∑
t=1

u∗
x,t y

(1)
x,t +

K∑
x=1

T∑
t=1

y(1)
x,t

(
(φ1 − 1)y(1)

x,t + φ2y(2)
x,t

)

= B0,1 + (φ1 − 1)
K∑
x=1

T∑
t=1

y(1)
x,t

(
y(1)
x,t − y(2)

x,t

) + (φ1 + φ2 − 1)D1,2

= Op(T). (A13)

Similarly, we have

D1,1 − D1,2 = B1,1 + (φ1 − 1)
K∑
x=1

T∑
t=1

y(1)
x,t

(
y(2)
x,t − y(3)

x,t

)

+(φ1 + φ2 − 1)D1,3 + op(1)

= Op(T), (A14)

D1,2 − D2,2 = B1,2 + (φ1 − 1)
K∑
x=1

T∑
t=1

y(2)
x,t

(
y(2)
x,t − y(3)

x,t

)

+(φ1 + φ2 − 1)D2,3 + op(1)

= Op(T) (A15)

and

D0,2 − D1,2 = B0,2 + (φ1 − 1)
K∑
x=1

T∑
t=1

y(2)
x,t

(
y(1)
x,t − y(2)

x,t

)

+(φ1 + φ2 − 1)D2,2 + op(1)

= Op(T), (A16)
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which imply that

D1,1 − D1,2 − (D1,2 − D2,2) = B1,1 − B1,2 + op(T) = A1,1 + op(T).

Therefore, we obtain

D1,1D2,2 − D2
1,2

= D1,2[D1,1 − D1,2 − (D1,2 − D2,2)] − (D1,1 − D1,2)(D1,2 − D2,2)

= D1,2A1,1 + op(T3), (A17)

D0,1D2,2 − D0,2D1,2 − D12

K∑
x=1

T∑
t=1

(
y(0)
x,t − y(1)

x,t

) (
y(1)
x,t − y(2)

x,t−1

)
− (D1,1D2,2 − D2

1,2)

= (D0,1 − D1,1)(D2,2 − D1,2) − D1,2

K∑
x=1

T∑
t=1

(
y(0)
x,t − y(1)

x,t

) (
y(2)
x,t − y(2)

x,t−1

)

= Op(T2) − D12

[
K∑
x=1

T∑
t=1

u∗
x,t

(
y(2)
x,t − y(2)

x,t−1

)

+ d1√
T

K∑
x=1

T∑
t=1

(
y(1)
x,t − y(2)

x,t

) (
y(2)
x,t − y(2)

x,t−1

)
+ op(

√
T)

]

= −D1,2

(
A0,2 + d1√

T
A1,2

)
+ op(T5/2), (A18)

and

D0,1D2,2 − D0,2D1,2 + D1,1D0,2 − D0,1D1,2 − (D1,1D2,2 − D2
1,2)

= −(D0,1 − D1,1)(D1,2 − D2,2) + (D1,1 − D1,2)(D0,2 − D1,2)

= −
(
B0,1 + d2

T
D1,2

)(
B1,2 + d2

T
D2,3

)
+

(
B1,1 + d2

T
D1,3

)(
B0,2 + d2

T
D2,2

)
+ op(T2)

= −
(
B0,1 + d2

T
D1,2

)(
B1,2 + d2

T
D1,2

)
+

(
B1,1 + d2

T
D1,2

)(
B0,2 + d2

T
D1,2

)
+ op(T2)

= −B0,1B1,2 + B1,1B0,2 + d2
T

(−B0,1 − B1,2 + B1,1 + B0,2)D1,2 + op(T2)

= −A0,1B1,2 + A1,1B0,2 + d2
T
D1,2(A1,1 − A0,1) + op(T2). (A19)

Hence, Theorem 1 (i) follows from (A17)–(A19).
ii. It follows from Lemma 1 (ii) that

T−3Di, j
p→ δτ δ

12
(A20)
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and

T−3/2Bi, j
d→ tr

(
	1/2

(
W(1)
2

−
∫ 1

0
W(s) ds

)
δτ

)
. (A21)

As before, using (A20) and (A21), we can show that

D1,1D2,2 − D2
1,2 = D1,2A1,1 + op(T4),

D0,1D2,2 − D0,2D1,2 − D1,2
∑K

x=1

∑T
t=1

(
y(0)
x,t − y(1)

x,t

) (
y(1)
x,t − y(2)

x,t−1

)
− (D1,1D2,2 − D2

1,2)

=
(
A0,2 + d1√

T
A1,2

)
D1,2 + op(T7/2),

and

D0,1D2,2 − D0,2D1,2 + D1,1D0,2 − D0,1D1,2 − (D1,1D2,2 − D2
1,2)

= −A0,1B1,2 + A1,1B0,2 + d2
T3/2

(A1,1 − A0,1)D1,2 + op(T5/2),

which imply Theorem 1 (ii) by noting that

E

(
Wi (1)
2

−
∫ 1

0
Wi (s) ds

)2

= 1
4

−
∫ 1

0
s ds +

∫ 1

0

∫ 1

0
min(s, t) dsdt = 1

4
− 1

2
+ 1

3
= 1

12

and

E Z2
4 = E

{
tr
(

δτ	1/2

(
W(1)
2

−
∫ 1

0
W(s) ds

)(
Wτ (1)

2
−

∫ 1

0
Wτ (s) ds

)
	1/2δ

)}

= tr
(
E

[(
W(1)
2

−
∫ 1

0
W(s) ds

)(
Wτ (1)

2
−

∫ 1

0
Wτ (s) ds

)]
	1/2δδτ	1/2

)

= 1
12

tr
(
IK×K	1/2δδτ	1/2

)

= 1
12

tr (	δδτ ) .
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