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Abstract

This paper extends the affine class of term structure models to describe the joint dynamics
of exchange rates and interest rates. In particular, the issue of how to reconcile the low
volatility of interest rates with the high volatility of exchange rates is addressed. The in-
complete market approach of introducing exchange rate volatility that is orthogonal to both
interest rates and the pricing kernels is shown to be infeasible in the affine setting. Models
in which excess exchange rate volatility is orthogonal to interest rates but not orthogonal
to the pricing kernels are proposed and validated via Kalman filter estimation of maximal
5-factor models for 6 country pairs.

I. Introduction

Modeling exchange rate movements as diffusion processes dates back to
Biger and Hull (1983) and Garman and Kohlhagen (1983). They use geomet-
ric Brownian motion with constant exchange rate volatility, along with constant
interest rates. As better interest rate models become available, efforts are made to
extend these models to include exchange rate dynamics. For example, Amin and
Jarrow (1991) modify the Heath-Jarrow-Morton (1992) model of forward inter-
est rates to incorporate exchange rate processes. Later, Nielsen and Saà-Requejo
(1993) and Saà-Requejo (1994) generalize the Cox-Ingersoll-Ross (1985) model
to a multicurrency environment. More recent models of the joint dynamics of ex-
change rates and interest rates are seen in Bakshi and Chen (1997), who take a
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general equilibrium approach, and in Brandt and Santa-Clara (2002), who propose
an incomplete market framework.

Recently, the most generally used interest rate models are members or vari-
ants of the Duffie-Kan (1996) class of affine term structure models, due to their
analytical tractability. This paper studies how to extend the affine class of term
structure models to describe the joint dynamics of exchange rates and interest
rates.

It is well known that exchange rate volatilities are much higher than the cor-
responding interest rate volatilities. This necessitates models that partially disso-
ciate exchange rates from interest rates without violating the fundamental pricing
equations that relate exchange rates, pricing kernels, and interest rates. One means
of dissociation is the incomplete market approach, which introduces exchange
rate volatility that is orthogonal to both interest rates and the pricing kernels. In
this paper, such an approach is shown to be infeasible in the affine setting. A dif-
ferent approach, in which excess exchange rate volatility is orthogonal to interest
rates but not orthogonal to the pricing kernels, is proposed here.

These theoretical discussions are collected in Section II of this paper. Dai
and Singleton (2000) classify N-factor affine term structure models into N + 1
subfamilies, according to the number of state variables that directly drive the con-
ditional volatilities of all the N state variables. For example, N-factor models in
which n state variables directly drive the conditional volatilities form a subfamily,
denoted asAn(N). Within each subfamily, there exists a maximal model that nests
all models in the subfamily. To validate the theoretical approach proposed in our
paper, in Section III, maximal An(5) affine models are fitted for 6 country pairs.
For each country pair, in the best-fit model, excess exchange rate volatility turns
out to be orthogonal to interest rates but not to the pricing kernels, without being
specified as such a priori. The outcome of the model fitting also sheds light on the
issue of common versus local factors (see Ahn (2004), Mosburger and Schneider
(2005)). Section IV concludes.

II. Theory

A. Fundamental Pricing Equations

We begin with a review of the fundamental pricing equations that govern
exchange rates, pricing kernels, and interest rates. The setup is discrete time. More
on discrete-time dynamic asset pricing can be found in Duffie (2001). To simplify
notation, we limit our discussion to a pair of countries: domestic and foreign.

Let M denote the domestic pricing kernel (also called the state-price deflator,
state-price kernel, stochastic discount factor, or state-price density) and M∗ the
foreign pricing kernel. Let rt be the domestic short interest rate for the period from
time t to time t + 1, with r∗t as its foreign counterpart. Let S be the exchange rate,
defined as the price of 1 unit of foreign currency in units of domestic currency.
Let s denote the natural logarithm of S.

Within the 2 individual countries, the fundamental pricing equation is

Et

[
Mt+1

Mt
ert

]
= 1 = Et

[
M∗t+1

M∗t
er∗t

]
.(1)
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One unit of domestic currency at time t, invested in a domestic interest-bearing
account, will become ert at time t + 1. The time t price of the time t + 1 pay-
off, ert , is found by pricing this amount using the domestic pricing kernel, as
Et [(Mt+1/Mt) ert ]. On the other hand, ert at time t + 1 comes from 1 unit of do-
mestic currency at time t, hence its time t price is 1. This explains the left half of
equation (1). The right half of equation (1) is explained similarly using the foreign
currency.

Between countries, Backus, Foresi, and Telmer (2001) show that the follow-
ing fundamental pricing equation has to be satisfied:

Et

[
Mt+1

Mt

St+1

St
er∗t

]
= 1 = Et

[
M∗t+1

M∗t

St

St+1
ert

]
.(2)

A domestic investor who starts with 1 unit of domestic currency at time t, converts
it to the foreign currency at the exchange rate St, then saves it in a foreign interest-
bearing account, and finally converts back to domestic currency at time t + 1 at
the exchange rate St+1, will end up having (St+1/St) er∗t domestic currency units
at time t + 1. Then one derives the left half of equation (2) by reasoning similar
to that used to derive equation (1). The right half of equation (2) is explained in
much the same way, considering a foreign investor who starts with 1 unit of the
foreign currency.

Pricing equation (1) relates interest rate processes to pricing kernels.
Equation (2) further relates exchange rate processes to both pricing kernels and
interest rates. A key question is: Given equation (1), how should exchange rate
processes be specified in a model in order to satisfy equation (2)?

With equation (1) given, a sufficient but not a necessary condition for
equation (2) to hold is

(
M∗t+1

M∗t

)/(
Mt+1

Mt

)
=

St+1

St
.(3)

Thus, specifying S according to equation (3) gives one answer to the previous
question.

Are there other ways to specify exchange rates? Because equation (3) is a
sufficient but not a necessary condition for equation (2), there should be ways
to specify S that satisfy equation (2) but not equation (3). Then, which of the 2
approaches of specifying exchange rates, according to equation (3) and not ac-
cording to equation (3), should one take? Or might both work? We address these
questions in the next 2 subsections.

B. Volatilities of Exchange Rates and Interest Rates

Backus et al. (2001) study 2 special cases of affine models involving ex-
change rates. In both cases, exchange rates are specified according to equation (3).
Their models have difficulties in accounting for the empirical characteristics of
exchange rate and interest rate dynamics. The discussion on p. 297 of their paper
suggests that the difficulties they encounter are due to the much higher volatility
of the exchange rate, compared to that of the interest rates. Equation (1) links the
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interest rates to the pricing kernels; equation (3) in turn links the pricing kernels
to the exchange rate in a very rigid fashion. Hence, the close association of the ex-
change rate and the interest rates via equations (1) and (3) in these models seems
to explain why the models have difficulties in reconciling the high volatility of the
exchange rate with the low volatility of the interest rates. In other words, once the
exchange rate and interest rates are associated as they are in these models, they
must both have high volatilities or both have low volatilities.

These analyses seem to indicate that one should specify exchange rates using
processes that satisfy equation (2) but not equation (3), in order to account for the
empirical fact that exchange rate volatilities are much higher than the correspond-
ing interest rate volatilities. This incomplete market approach is seen in Brandt
and Santa-Clara (2002).

As a convention on notation, a subscript, such as Mt, is used for time in
a discrete-time setting, whereas an argument of a function is used for time in
a continuous-time setting (e.g., M(t)). Adapted to this notational convention,
equation (24) on p. 176 of the Brandt and Santa-Clara (2002) paper specifies the
exchange rate as

S(t) =
M∗(t)
M(t)

O(t),

where O(t) “is a martingale that is orthogonal to” M(t), M∗(t), “and all domestic
and foreign assets.” The continuous-time equivalent of equation (3) would spec-
ify the exchange rate as S(t) = M∗(t)/M(t). The introduction of the extra O(t)
process, and consequently the specification of the exchange rate not according
to equation (3), do partially dissociate the exchange rate process from the inter-
est rate processes. As a result, this model is able to accommodate high exchange
rate volatility without running into difficulties with the low interest rate volatility.
However, from a foreigner’s point of view, the same exchange rate expressed as
1 unit of domestic currency in units of the foreign currency is

1
S(t)

=
M(t)
M∗(t)

1
O(t)
,

where 1/(O(t)) by the same reasoning also needs to be a martingale satisfying
similar orthogonality conditions. Although it might be possible in special cases, it
is generally not true that when O(t) is a martingale, 1/(O(t)) is also a martingale.

Are these difficulties particular to the specifications of the Brandt and Santa-
Clara (2002) model, or do they exist more generally, for the entire approach of
specifying the exchange rate according to equation (2) but not equation (3)? We
answer this question next, within the affine setting.

C. Constraints on Exchange Rate Dynamics

Before proceeding further, we need to clarify what we mean by “within the
affine setting.” For single-country interest rate term structure models, the meaning
of “the affine setting” is straightforward. From Duffie and Kan (1996), the vector
X of N state variables (sometimes also referred to as factors) evolves according to
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an affine diffusion under the risk-neutral measure, and short interest rate r is an
affine function of the state variables. Dai and Singleton (2000) impose conditions
on the parameters to ensure admissibility and identification.

The simplest way to extend the above framework to include exchange rates
is to specify the log of the exchange rate, st, also as an affine function of the state
variables:

st = a + bTXt,(4)

where a is a scalar and b is an N-vector of constant coefficients. In this way, the
analytical tractability of the affine term structure models in pricing bonds and
derivatives readily extends to the exchange rates. Also, this is a rather basic re-
quirement, in that if st can no longer be expressed as an affine function of the state
variables, the setting can hardly be called affine anymore.

In the extended models, the law governing state variable dynamics remains
the same as in the single-country models; a short interest rate in each country
remains an affine function of the state variables; and the the restrictions Dai and
Singleton (2000) placed on parameters remain intact for the state variable dynam-
ics and for the short interest rate of 1 of the countries. No restrictions are placed
on the additional parameters introduced for specifying short interest rates in the
rest of the countries and the exchange rates. In other words, we take the canonical
single-country model of Dai and Singleton, together with all their restrictions on
the parameters, then add 1 affine function of the state variables for each additional
country’s short interest rate and 1 affine function of the state variables for each log
exchange rate process. We place no restrictions on the parameters in these affine
functions we add on. We continue to call these extended models canonical.

Obviously, with the state variable dynamics and all constraints on its parame-
ters remaining intact, admissibility of the model, guaranteed by Dai and Singleton
(2000) in the single-country setting, has not been upset in such an extension to the
multicountry setting. However, we need to check that the extended model, with
no constraints on any of the additional parameters introduced in the extension,
is still identified. We do so by demonstrating that there exists at least 1 estima-
tion procedure, for which all the parameters in the extended model are identified.
Such an estimation procedure is heuristically found by following the steps of the
extension process itself.

Before any extension, for the single-country canonical affine term structure
model, identification is guaranteed by Dai and Singleton (2000). One can first
estimate this single-country model. As a by-product, one obtains estimates of the
state variable time series. After the extension to a multicountry setting, for each
additional country, one regresses its short interest rate against the state variable
time series one already has, to estimate parameters in the affine function of the
state variables for the short interest rate of that country. Similarly, parameters
in equation (4) are uniquely obtained via regression. Parameters for the market
prices of risk can be determined by using the model to price coupon bonds or
swap coupon rates and minimizing the pricing errors.

Although this estimation procedure is not the best possible (e.g., the state
variable dynamics are based on only 1 country’s term structure, not all exchange
rates and term structures in all countries as it ideally would be), it is a valid
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procedure in which all the data are utilized, and this estimation procedure identifies
all the parameters for the extended model. Therefore, the conditions we impose
on the parameters of the extended canonical models are sufficient for both the
admissibility and the identification of these multicountry models.

The specification of log exchange rates as equation (4) is very general. To
see this, one only needs to recall that for the entire single-country affine class
of term structure models, a short interest rate is specified as an affine function
of the state variables exactly like equation (4). If such a specification can de-
scribe all the different short interest rate dynamics within the affine class of term
structure models, it certainly can accommodate a wide range of exchange rate
dynamics, too.

To our knowledge, none of the previous exchange rate models in the liter-
ature specifies exchange rate dynamics in this way. Instead, existing models use
equation (3) as a starting point in specifying exchange rates. Some specify ex-
change rates as equation (3) itself (e.g., Backus et al. (2001)), some as equa-
tion (3) with additional terms (e.g., Brandt and Santa-Clara (2002)). In some
sense, this is not surprising. All exchange rate and interest rate dynamics have
to obey the fundamental pricing equations (1) and (2). It is much easier to verify
that the dynamics satisfy equations (1) and (2) when exchange rates are specified
with equation (3) as a starting point. This naturally invites a question about our
specification: In order to satisfy equations (1) and (2), how do the exchange rates
in our specification relate to equation (3)?

To answer this question, we first construct a certain domestic asset, the price
of which at time t, according to the left half of equation (1), is 1. Pricing this
domestic asset with the right half of equation (2) gives a set of constraints on the
parameters of the affine model. Similarly, we can construct a particular foreign
asset, which has a price of 1 at time t, according to the right half of equation (1),
and when priced with the left half of equation (2) gives a second set of constraints
on the model parameters. Comparing these 2 sets of constraints and taking into
account the restrictions on the model parameters, we arrive at the conclusion that
all exchange rate dynamics in our extended canonical affine models must satisfy
equation (3). In other words, in any canonical affine model an exchange rate pro-
cess specified in the format of equation (4) also conforms to equation (3).

This result is summarized in Proposition 1, proved in the discretized affine
setting in the Appendix. Here, we work with the discretized instead of the
continuous-time affine models, because of the analytical tractability of the former.
Nevertheless, the insights obtained in discrete time readily generalize to continu-
ous time.

Proposition 1. All canonical affine models of exchange rates and interest rates
must conform to equation (3).

Proposition 1 focuses our attention back to models that specify exchange
rates according to equation (3). To make such a specification work empirically,
we need to find a way to partially dissociate the exchange rate process from the
interest rates. The method is to partially break the link between the interest rates
and the pricing kernels in equation (1), and therefore dissociate interest rates from
the exchange rate, despite the tight link between the exchange rate and pricing
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kernels via equation (3). We do so by introducing factors that affect the pricing
kernels but not the interest rates.

In the affine setting, the short interest rates are specified as affine functions of
the state variables. As can be seen in more detail in the next subsection, volatility
of the pricing kernels is determined by a different set of affine functions of the state
variables. If we set some coefficients in the affine functions for interest rates to 0,
it is possible for some state variables to contribute to the pricing kernel dynamics
and consequently the exchange rate dynamics, but not directly to the dynamics of
short interest rates. Henceforth, these state variables that contribute to exchange
rate but not interest rate dynamics will be referred to as “extra.” Once exchange
rate and interest rate movements have been partially dissociated by these “extra”
state variables, exchange rate volatility in a model acquires the freedom to become
higher than interest rate volatility. In other words, these “extra” state variables
introduce excess exchange rate volatilities that are orthogonal to the interest rates,
but not orthogonal to the pricing kernels.

D. Canonical Model Specification

The discussions so far lead us to consider models that satisfy equation (3)
and also have “extra” state variables for exchange rate dynamics alone. We refer
to these models as canonical also because they conform to equations (1) and (2),
2 canons of international finance. Next, we wrap up this section on theory with a
specification of the canonical model in continuous time.

In the most general 1-country continuous-time affine setting, there is an
equivalent martingale measure under which the vector of state variables X(t) fol-
lows an affine diffusion process

dX(t) = μ(X(t), t)dt + σ(X(t), t)dB(t),

where the elements of both the vector μ(X(t), t) and the matrix (σ(X(t), t)
σ(X(t), t)T) are affine functions of the state variables X(t) (see chap. 7 of Duffie
(2001) for more details) and B(t) is standard Brownian motion. The density pro-
cess ξ(t) of the equivalent martingale measure follows

dξ(t) = −ξ(t)η(t)dB(t),(5)

where η(t) is the market price of risk process.
From Duffie ((2001), Sec. 6F), the relationship between the density process

ξ(t) of the equivalent martingale measure and the pricing kernel M(t) is

ξ(t) = exp

{∫ t

0
r(s)ds

}
M(t)
M(0)

.(6)

In our setting with more than 1 country, by equations (5) and (6), it can be
shown that country i’s pricing kernel M(i)(t) is

dM(i)(t)

M(i)(t)
= −r(i)(t)dt − η(i)(t) dB(t),(7)
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where η(i)(t), the market price of risk process for that country, may be defined as

η(i)(t) =
(√
Σ(t)λ(i)

)′
,(8)

with λ(i) being an N-vector of constants.
With η(i)(t) so defined, the dynamic process followed by the state variables

X(t) under the actual probability measure is

dX(t) = Ψ(X̄ − X(t))dt +
√
Σ(t) dB(t),(9)

where Σ(t) is an N × N diagonal matrix with

Σii(t) = gi0 +
N∑

j=1

gijXj(t).(10)

For each country i, its short interest rate is

r(i)(t) = ρi0 +
N∑

j=1

ρijXj(t),(11)

where each ρij is constant, and some of the ρs can be 0s. In particular, the ρs
corresponding to the “extra” state variables are all 0s in equation (11), so that
these state variables do not enter the interest rate dynamics directly. However, the
“extra” state variables may contribute to the dynamics of the pricing kernels and
the exchange rate via nonzero g coefficients in equation (10). The exchange rate
S(ij), defined as the price of 1 unit of currency i in units of currency j, is obtained
via equation (4). Namely, using s(ij) to denote the natural logarithm of S(ij), we
have

s(ij)(t) = a(ij) + b(ij)TX(t),(12)

where a(ij) is a scalar and b(ij) is an N-vector of constant coefficients.
As explained in the previous subsection, we impose conditions from Dai and

Singleton (2000) on the parameters related to the state variable dynamics (9)—
the coefficients gij, the N × N matrix Ψ , and the N-vector X̄. We also impose the
Dai and Singleton restrictions on the ρs in equation (11) for 1 of the countries,
let us say, ρ10, ρ11, ρ12, . . . , ρ1N for the first country. For the parameters ρij with
i > 1, that is, parameters in equation (11) for the short interest rates of the rest
of the countries, we impose no constraints. There are also no constraints on the
parameters a(ij) and b(ij) in equation (12).

III. Empirical Analysis

The theoretical structure proposed above suggests that affine models of the
joint dynamics of exchange rates and interest rates need to have “extra” state
variables that contribute to exchange rate dynamics but not directly to interest
rate dynamics.

One way to empirically validate the theoretical considerations is to show that
models with these “extra” state variables provide a better fit of observed data than
those without. Given the poor empirical performance of models without the “ex-
tra” state variables, such an improvement, however, will hardly come as a surprise.
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A related but more interesting and more challenging question is: If we do
not restrict any of the ρs in equation (11) to be 0 and therefore do not specify
any “extra” state variables a priori, will the best-fit models turn out to have these
“extra” state variables nevertheless?

Empirical analyses with 1-country affine term structure models usually em-
ploy 3 state variables. Mosburger and Schneider (2005) suggest that even for 2-
country affine term structure models, 3 state variables in total are sufficient for
the 2 term structures. For the U.K.-U.S. data in particular, they discover that
all 3 state variables are common factors for both countries instead of local fac-
tors particular to an individual country. This partially explains why 3 factors are
sufficient.

Taking these results into consideration while allowing some extra room for
flexibility, we decide to fit 5-factor canonical affine models, or An(5) in the termi-
nology of Dai and Singleton (2000), for the joint dynamics of exchange rates and
interest rates. They systematically study An(3) for 1-country term structure mod-
els. To our knowledge, no study exists that examines An(5) or beyond. Hence,
successfully fitting these An(5) models and studying their performance is inter-
esting in itself.

The Kalman filter has been used by many authors to estimate term structure
models (Babbs and Nowman (1999), Duan and Simonato (1999), Duffee (1999),
De Jong (2000), Dewachter and Maes (2001), Chen and Scott (2003), among
others), and it has been shown to have good small-sample properties (Duffee and
Stanton (2004)). Because we express the exchange rate in equation (4) as an affine
function of the state variables, similar to the way short interest rates are defined
and the way zero-coupon bond yields are solved in affine term structure models,
the existing Kalman filter quasi-maximum likelihood estimation (QMLE) tech-
niques for 1-country term structure models can be applied to the joint dynamics
models here with virtually no modification.

To reduce the number of parameters that need to be estimated, in addition
to the usual assumption of a diagonal covariance matrix for measurement errors,
Brennan and Xia (2003) and Tang and Xia (2007) further use just 1 parameter for
the entire measurement error covariance matrix, either assuming all the variances
to be constant or assuming them to be inversely proportional to the maturities. We
use a method that is similar in spirit but allows more flexibilities in specifying the
variances. We divide the interest rate maturities into 3 nonoverlapping groups of
short, medium, and long terms, with short term being up to and including 1 year,
and medium term up to and including 10 years. We assume the variances of mea-
surement errors are constant within each maturity group, which leaves room for
variation across groups. We use ωs, ωm, and ωl to denote the standard deviations
of measurement errors of the short, medium, and long maturities, respectively. In
addition, the standard deviation of the measurement errors for exchange rate is
denoted as ωe.

A. The Data

Both exchange rate and interest rate data are downloaded from Datastream.
The countries involved in this study are the United States, the United Kingdom,
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Germany, and Japan. Daily data of 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and
12-month London Interbank Offered Rate (LIBOR), and of 1-, 2-, 3-, 4-, 5-, 6-, 7-,
8-, 9-, 10-, 12-, 15-, 20-, 25-, and 30-year plain vanilla fixed-for-floating interest
rate swap coupon rates, are obtained for the time period extending from May 1,
1998 to August 5, 2005. Some of the swap time series are not available prior to
May 1, 1998. Data from every Wednesday are then used to construct weekly time
series for all maturities.

We use 1-, 2-, 4-, 6-, 8-, 10-, and 12-month LIBOR, and 2-, 4-, 6-, 8-,
10-, 12-, 15-, 20-, 25-, and 30-year swap coupon rates for model estimation.
The rest of the weekly interest rate time series are reserved for testing the
out-of-sample performance of the fitted models. We emphasize that in this study
the in-sample and out-of-sample data span the same time period. Therefore, the
out-of-sample testing reveals mainly how well the model fits the data and says
little about the model’s ability to predict the future. In the literature (e.g., see
Tang and Xia (2007), p. 44) the term “out-of-sample” has been used to describe
this situation, though this is not the most common use of the term.

Because of the special structure of counterparty risks in swap contract ex-
ecution, the default-related component in swap coupon rates has been shown to
be rather small (Duffie and Huang (1996)). As is customary in the literature, we
ignore the default risk in LIBOR and swap. Because zero-coupon bond yields are
solved as affine functions of the state variables in affine models, in estimation of
these models using Kalman filters it is convenient to work with zero-coupon bond
yields. We use iteration to fit Nelson-Siegel (1987) zero-coupon bond yield curves
to the LIBOR-swap data.

B. Models Estimated

Out of the 4 countries, one can construct 6 country pairs. When Dai and
Singleton (2000) carry out an empirical analysis of the An(3) family of 1-country
canonical affine term structure models, they focus on A1(3) and A2(3). The rea-
son for ignoring A0(3) is that it implies constant conditional volatilities of the
state variables, which is apparently counter-factual. The reason for not empiri-
cally fitting A3(3) is that it cannot account for negative unconditional correlations
among the state variables, and the U.S. interest rate data they use likely necessitate
such negative correlations. The problem with A0(3) also applies to A0(5), and it
does not depend on which country’s data we are fitting the model to. However, the
problem of A3(3), and similarly, of A5(5), may not exist for all countries’ data,
as some may not call for the negative correlations. Therefore, we decide to fit the
maximal A1(5), A2(5), A3(5), A4(5), and A5(5)models for each of the 6 country
pairs.

Even for models with only 3 state variables, given the number of parame-
ters involved and the nontrivial shape of the likelihood function surface in the
parameter space, all one can hope is to find a good local maximum of the likeli-
hood function, instead of the global maximum. Preliminary experimentation with
different starting parameter values suggests that there is a positive correlation be-
tween the likelihood value at the starting point of the optimization search and the
likelihood value at the resultant maximum. Therefore, for each of the models we
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estimate, within a reasonable space of the parameter values, we randomly sample
100,000 points of parameter combinations and evaluate the likelihood function at
each point. The 10 points with the best likelihood values are selected as the start-
ing points for search of a parameter combination that maximizes the likelihood
function, using the Nelder-Mead optimization algorithm. The best among the 10
results, unless it is obviously unreasonable, is reported as the final estimate of the
model parameters. Selecting the best starting points, as well as optimization from
each starting point, each takes about a day to run on a personal computer. Given
that we estimate 5 models each for 6 pairs of countries, the total computational
time for the empirical analysis is approximately an entire year if performed on 1
computer.

Table 1 presents the log likelihood values, Akaike information criteria (AIC),
Bayesian information criteria (BIC), and the number of parameters estimated for
the maximalA1(5) throughA5(5)models of the 6 country pairs. For these models,
log likelihood values, AIC, and BIC all indicate that the best fit is the maximal
A1(5) model for each of the country pairs, with the exception of the Japan-U.S.
pair, which has the maximal A2(5) model as its best fit. As mentioned in the
Introduction, from Dai and Singleton (2000), the value of n in An(5) indicates the
number of state variables that directly drive the conditional volatilities of the state

TABLE 1

Comparison of Estimated Models

Log likelihood values, Akaike information criterion (AIC), Bayesian information criterion (BIC), and number of parameters,
for the maximal A1(5)–A5(5)models estimated, of the 6 country pairs. An asterisk next to the log likelihood value indicates
the best model for each country pair. Throughout, countries are represented by the international standard 3-letter codes
for their currencies.

Country Pair n in An(5) Log Likelihood AIC BIC Parameter Count

DEM JPY 1 78,057* –155,992 –155,752 61
DEM JPY 2 76,280 –152,436 –152,192 62
DEM JPY 3 73,763 –147,400 –147,152 63
DEM JPY 4 76,267 –152,406 –152,154 64
DEM JPY 5 75,957 –151,784 –151,528 65

DEM GBP 1 78,843* –157,564 –157,324 61
DEM GBP 2 75,853 –151,582 –151,338 62
DEM GBP 3 78,106 –156,086 –155,838 63
DEM GBP 4 76,434 –152,740 –152,488 64
DEM GBP 5 74,086 –148,042 –147,786 65

DEM USD 1 77,266* –154,410 –154,170 61
DEM USD 2 77,000 –153,876 –153,632 62
DEM USD 3 76,636 –153,146 –152,898 63
DEM USD 4 74,836 –149,544 –149,292 64
DEM USD 5 72,867 –145,604 –145,348 65

JPY GBP 1 77,786* –155,450 –155,210 61
JPY GBP 2 74,693 –149,262 –149,018 62
JPY GBP 3 77,226 –154,326 –154,078 63
JPY GBP 4 77,081 –154,034 –153,782 64
JPY GBP 5 74,751 –149,372 –149,116 65

JPY USD 1 74,294 –148,466 –148,226 61
JPY USD 2 79,406* –158,688 –158,444 62
JPY USD 3 72,021 –143,916 –143,668 63
JPY USD 4 73,485 –146,842 –146,590 64
JPY USD 5 76,488 –152,846 –152,590 65

GBP USD 1 76,084* –152,046 –151,806 61
GBP USD 2 73,110 –146,096 –145,852 62
GBP USD 3 75,952 –151,778 –151,530 63
GBP USD 4 75,214 –150,300 –150,048 64
GBP USD 5 72,757 –145,384 –145,128 65
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variables themselves, viaΣ in equation (9). Because it is the square root ofΣ that
enters equation (9), all the n state variables are guaranteed by model construction
to be nonnegative. There is a trade-off: The bigger the value of n, the richer
the conditional volatility structure of the state variables, but at the same time
the less flexible the model becomes in specifying conditional correlations of the
state variables. Our results indicate that in this trade-off, flexibility in specifying
the conditional correlations is more important than flexibility in specifying the
conditional volatilities of the state variables.

We focus on the best-fit model of each country pair for the remainder of this
section. For each of the 6 best-fit models, the time series of smoothed estimates
of the state variables are constructed, which consequently yield the model-fitted
values of each of the observed data time series. For the interest rates of each coun-
try, for each week in the time series and each maturity across the term structure,
the absolute value of the error between the fitted value and the observed is calcu-
lated. The mean of these absolute fitting errors (MAE) and the corresponding root
mean squared errors (RMSE) are reported in Table 2 in units of basis points. In
Table 2 we also report the MAE and RMSE of the log exchange rate, expressed as
a fraction of the mean magnitude of the log exchange rate itself, to facilitate com-
parison between models for different country pairs. Clearly, the models provide
reasonable fits of interest rates and exchange rates in most cases, although the fit
on interest rates is generally better than on exchange rates. The reason, besides
the fact that exchange rates are more volatile, is that there are 17 observed inter-
est rate time series for each country, corresponding to the 17 different maturities
we use across the term structure, but there is only 1 observed time series for the
exchange rate. The Kalman filter estimation gives equal attention to each of the
observed time series. As a result, the interest rate term structures weigh more in
the likelihood function than the exchange rate.

TABLE 2

Statistics on Absolute Fitting Errors

The means of the absolute fitting errors (MAE) and the root mean squared errors (RMSE) for the best-fit model of each
country pair. Each row represents a different model for a different country pair. The MAE and RMSE reported next to the
country itself are for the interest rates of that country, expressed in basis points. “FX MAE” and “FX RMSE” are for the log
exchange rates between the 2 currencies.

Country MAE RMSE Country MAE RMSE FX MAE FX RMSE

JPY 16.49 28.49 DEM 5.58 9.50 0.0438 0.0506
DEM 7.11 11.06 GBP 9.03 14.45 0.1259 0.1531
DEM 12.40 21.02 USD 8.14 13.89 0.5135 0.6085
JPY 16.45 28.26 GBP 6.00 10.02 0.0351 0.0462
JPY 15.60 27.18 USD 4.95 7.06 0.0242 0.0317
USD 12.89 21.16 GBP 8.26 12.84 0.1819 0.2010

In Table 3 we examine how fitting errors vary across different maturities. To
save space, we present results for each country taken from only 1 model instead
of all 12 appearances of the countries in the 6 models. The results in Table 3 show
that absolute fitting errors are generally larger for long maturities than short and
medium maturities.

We do not use the 3-, 5-, 7-, 9-, and 11-month LIBOR or the 1-, 3-, 5-, 7-, and
9-year swap coupon rates when fitting the models. Zero-coupon bond yields are
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TABLE 3

Statistics on Absolute Fitting Errors for Different Maturities

The means of the absolute fitting errors (MAE) and the root mean squared errors (RMSE) for different in-sample maturities,
in basis points, for each of the 4 countries. Both the GBP and the USD statistics are taken from the model for the GBP/USD
pair. The JPY statistics are from the model for the JPY/USD pair, and DEM from the DEM/JPY pair.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Country DEM DEM JPY JPY GBP GBP USD USD

1-month 2.35 3.40 1.36 3.04 2.03 2.89 3.18 5.12
2-month 1.47 2.81 0.98 2.20 1.24 2.44 1.80 4.28
4-month 2.48 4.05 1.20 2.16 2.39 3.61 3.26 5.31
6-month 2.17 2.96 0.82 1.39 1.74 2.14 2.68 3.64
8-month 1.35 1.67 0.41 0.56 1.21 1.52 1.52 1.96

10-month 0.87 1.33 0.49 0.67 1.02 1.48 1.24 1.77
12-month 1.86 2.49 0.85 1.28 2.49 2.88 2.67 3.37

2-year 6.02 7.27 5.19 7.29 10.92 13.87 11.23 13.93
4-year 5.21 6.34 16.50 19.36 14.51 16.76 12.10 15.94
6-year 2.66 3.22 25.90 30.84 12.25 14.03 8.82 10.77
8-year 2.10 2.63 29.78 36.48 9.96 12.45 13.84 16.97

10-year 4.10 5.00 30.47 38.50 9.14 11.36 18.13 21.72
12-year 6.16 7.48 31.15 40.33 9.06 11.47 20.69 24.90
15-year 9.11 11.14 31.75 42.14 10.88 13.92 24.14 29.78
20-year 12.72 15.82 30.82 41.84 13.76 17.80 29.74 37.09
25-year 15.64 19.77 28.96 40.04 16.48 21.63 31.13 39.73
30-year 18.51 22.84 28.48 39.89 21.30 26.32 33.01 41.47

extracted from these interest rate data for testing the out-of-sample performance of
the fitted models. Similar to Table 3, statistics on the out-of-sample fitting errors
are presented in Table 4. For every currency, comparable maturities from Tables
3 and 4 tend to have comparable fitting errors. It is reassuring that the models
perform just as well out of sample as in sample.

For the best-fit model of each of the 6 country pairs, asymptotic standard
errors of the parameter estimates are calculated using the covariance matrix for
QMLE proposed by White (1982). The parameter estimates, as well as their stan-
dard errors, are presented in Table 5 for the Japan-U.S. pair, the only country pair
for which A2(5), instead of A1(5), is the best fit. The state variables contribute
directly to the short interest rates via the parameters ρ and to the exchange rate
dynamics via the parameters b.

TABLE 4

Statistics on Out-of-Sample Fitting Errors

The means of the absolute fitting errors (MAE) and the root mean squared errors (RMSE) for different out-of-sample ma-
turities, in basis points, for each of the 4 countries. Both the GBP and the USD statistics are taken from the model for the
GBP/USD pair. The JPY statistics are from the model for the JPY/USD pair, and DEM from the DEM/JPY pair. The in-sample
and out-of-sample data cover the same time period.

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
Country DEM DEM JPY JPY GBP GBP USD USD

3-month 2.28 4.32 1.32 2.62 2.42 4.20 2.97 6.29
5-month 2.43 3.68 1.09 1.81 2.20 2.92 3.28 4.82
7-month 1.79 2.29 0.56 0.91 1.48 1.77 2.11 2.73
9-month 1.01 1.31 0.37 0.47 1.05 1.46 1.36 1.77

11-month 1.20 1.74 0.66 0.97 1.61 1.98 1.82 2.40

1-year 2.90 3.63 1.68 2.55 7.88 9.34 5.91 7.79
3-year 6.30 7.60 10.62 12.93 13.70 15.91 15.35 19.10
5-year 3.91 4.81 21.91 25.76 13.67 15.42 8.99 11.16
7-year 1.76 2.14 28.46 34.36 10.85 12.97 11.24 13.92
9-year 3.03 3.70 30.24 37.66 9.24 11.57 16.27 19.60
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TABLE 5

Parameter Estimates of the Best-Fit Model for the Japan-U.S. Pair

The best-fit model for the Japan-U.S. pair belongs to the A2(5) subfamily. Asymptotic standard errors of the estimated
parameters are given in parentheses. Some of the parameters are specified by the model as 0 or 1 and thus appear in
Table 5 without accompanying standard errors.

Index i 1 2 3 4 5

Ψ1i 1.4981 (0.0426) –0.0229 (0.0096) 0 0 0
Ψ2i –0.0062 (0.0072) 0.9034 (0.0235) 0 0 0
Ψ3i –0.1207 (0.0301) –0.0004 (0.0088) 1.4669 (0.0014) 0.0869 (0.0226) –0.0352 (0.0206)
Ψ4i –0.3066 (0.0444) –0.1074 (0.0387) –0.0523 (0.0156) 0.0435 (0.0239) –0.0109 (0.1119)
Ψ5i –0.1304 (0.1871) –0.1029 (0.3405) –0.0471 (0.0091) –0.0583 (0.0878) 0.3708 (0.0131)

X̄i 1.6048 (0.0483) 0.6731 (0.0438) 0 0 0

gi0 0 0 1 1 1

g1i 1 0 0 0 0
g2i 0 1 0 0 0
g3i 0.0000 (0.0000) 0.6762 (0.0796) 0 0 0
g4i 1.6726 (0.1476) 0.2121 (0.0445) 0 0 0
g5i 0.9438 (0.6747) 0.0278 (0.3905) 0 0 0

ρ0,JPY 0.0024 (0.0027)
ρi,JPY 0.0508 (0.0013) 0.1303 (0.0010) 0.0952 (0.0015) 0.0016 (0.0026) 0.0215 (0.0040)
ρ0,SD 0.2685 (0.0058)
ρi,USD –0.0230 (0.0011) –0.3569 (0.0050) 0.1112 (0.0017) 0.0212 (0.0018) 0.0048 (0.0033)

λi,JPY –0.0138 (0.1075) –0.1886 (0.0227) 0.0411 (0.0111) 0.4788 (0.3134) 0.9606 (0.2997)
λi,USD 3.2499 (0.0410) 0.0026 (0.0183) 0.3675 (0.0128) –0.5887 (0.0654) 0.5251 (0.1930)

a 0.0479 (0.0826)
bi 0.0464 (0.0028) 0.1325 (0.0009) 0.0835 (0.0029) 0.1880 (0.0694) –0.2599 (0.0756)

ωs ωm ωl

JPY 0.00021 (0.00000) 0.00284 (0.00002) 0.00412 (0.00004)
USD 0.00055 (0.00001) 0.00104 (0.00001) 0.00066 (0.00001)

ωe 0.13683 (0.00079)

To see which state variables enter each of the exchange rate and interest
rate dynamics, in Table 6, for each of the ρ and b parameters, we record if that
parameter estimate is significantly different from 0 at the 1% level for all 6 country
pairs. Consistent with the theory, we can see from Table 6 that in the best-fit
models there are indeed “extra” state variables that contribute to the exchange
rate dynamics, but not directly to interest rate dynamics, even without specifying
the models as such a priori. The “extra” state variable is X3 in the Japan-Germany
pair, X4 for the Germany-U.K. pair, X3 for the Germany-U.S. pair, and X5 for
the Japan-U.K. pair. In the Japan-U.S. pair, X4 is a state variable that enters the
exchange rate dynamics, but not directly the short interest rate of Japan, and X5 is
a state variable that enters the exchange rate dynamics, but not directly the short
interest rate of the U.S. Similarly, in the U.K.-U.S. pair, X2 is a state variable
that enters the exchange rate dynamics, but not directly the short interest rate of
the U.S.

What happens to the U.K. short interest rate in the best-fit model for the
U.K.-U.S. pair? From Table 6, all state variables have nonzero contribution to
the U.K. short interest rate, which at a first glance seems to be an exception to
the general pattern in that table and to our theoretical framework as well. Although
1 exception out of 12 countries in the table may seem negligible, we investigate
this case further.

Table 7 details the parameter estimates, as well as their standard errors, for
this U.K.-U.S. pair. In Figures 1–3, we plot the observed log exchange rate in
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TABLE 6

Contributions of the State Variables to Exchange Rate and Interest Rate Dynamics

For the best-fit model of each country pair, the estimates of the ρ and b parameters are tested to see which state variables
have significant direct contributions to each of the exchange rate and interest rate dynamics. An asterisk shows that the
corresponding parameter is statistically significantly different from 0 at the 1% level. Here “—” indicates nonsignificance.
Because st = a + bTXt, where the vector b contains elements b1 through b5, results for the parameter a is reported in the
space for b0 in Table 6.

Index i 0 1 2 3 4 5

ρi,JPY * * — — * *
ρi,DEM * * * — * —
bi * * — * * *

ρi,DEM * * * — — *
ρi,GBP * * * — — *
bi * * * — * *

ρi,DEM * * — — * *
ρi,USD * * * — — —
bi * * — * * —

ρi,JPY * * * * * —
ρi,GBP * * — * * —
bi * * * * — *

ρi,JPY — * * * — *
ρi,USD * * * * * —
bi — * * * * *

ρi,USD * * — * * —
ρi,GBP * * * * * *
bi * * * * * —

U.S. dollars per British pound and the smoothed estimates of 2 state variables,
X2 and X5, in the U.K.-U.S. model. From Table 6, there are 2 state variables, X2

and X5, which do not contribute directly to the U.S. interest rate. Thus 1 or both
of these 2 variables are likely responsible for the excess exchange rate volatility.
Also, it can be seen from Table 6 that X5 does not have a significant contribution
to the exchange rate dynamics. So it is X2 alone that is responsible for modeling
the excess exchange rate volatility. Because X2 also enters the U.K. short inter-
est rate, it brings much of the high exchange rate volatility into the U.K. short
interest rate in the model, which may create a problem. X5 is interesting because
it enters neither the U.S. short interest rate nor the log exchange rate, but instead
just the U.K. short interest rate, as seen in Table 6. This means X5 may provide an
additional dimension of freedom in modeling the U.K. short interest rate, which
can be used to cancel out the excess exchange rate volatility brought in by X2.
This conjecture is supported by the correlation coefficient between X2 and X5 of
−0.34. But a more definitive support comes from the correlation coefficient be-
tween the log exchange rate and (ρ2,GBP ·X2 +ρ5,GBP ·X5). After all, it is neither X2

alone nor X5 alone, but (ρ2,GBP ·X2 +ρ5,GBP ·X5) that enters the U.K. short interest
rate in the model. The correlation coefficient between the log exchange rate and
(ρ2,GBP · X2 + ρ5,GBP · X5) is a mere −0.04. In other words, although X2 by itself
brings excess exchange rate volatility into the U.K. short interest rate, much of
this excess volatility is canceled out by X5, so that when we look at the net impact
of X2 and X5 together on the U.K. interest rate, very little excess exchange rate
volatility has been brought into the interest rate. In that sense, even for the U.K.
short interest rate in the U.S.-U.K. pair, we do still have an “extra” state variable
that contributes to exchange rate dynamics but not directly to the interest rate. It is
an “extra” state variable synthesized out of X2 and X5 in this rather intriguing way.
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TABLE 7

Parameter Estimates of the Best-Fit Model for the U.S.-U.K. Pair

The best-fit model for the U.S.-U.K. pair belongs to the A1(5) subfamily. Asymptotic standard errors of the estimated
parameters are given in parentheses. Some of the parameters are specified by the model as 0 or 1 and thus appear in
Table 7 without accompanying standard errors.

Index i 1 2 3 4 5

Ψ1i 1.0452 (0.0101) 0 0 0 0
Ψ2i –0.1041 (0.0431) 2.4677 (0.0208) –0.0653 (0.0784) 0.0252 (0.0580) 0.0133 (0.0587)
Ψ3i –0.2743 (0.0343) 0.0077 (0.1169) 0.2760 (0.0168) 0.1310 (0.2013) –0.0390 (0.0533)
Ψ4i –0.0284 (0.0971) 0.0267 (0.0918) 0.0302 (0.2823) 2.1886 (0.0238) –0.0164 (0.1592)
Ψ5i –0.0008 (0.1007) 0.0070 (0.1375) 0.0034 (0.0688) –0.0029 (0.2549) 0.8266 (0.0069)

X̄i 0.5179 (0.0186) 0 0 0 0

gi0 0 1 1 1 1

g1i 1 0 0 0 0
g2i 0.0364 (0.0186) 0 0 0 0
g3i 0.3884 (0.0101) 0 0 0 0
g4i 0.2566 (0.0391) 0 0 0 0
g5i 0.9765 (0.1676) 0 0 0 0

ρ0,USD –0.0368 (0.0031)
ρi,USD 0.4228 (0.0043) 0.2395 (0.1065) 0.1764 (0.0624) 0.3617 (0.0357) 0.0157 (0.0527)
ρ0,GBP 0.1700 (0.0035)
ρi,GBP 0.0940 (0.0003) 0.1674 (0.0470) 0.1521 (0.0441) 0.1950 (0.0163) 0.1398 (0.0459)

λi,USD –0.2166 (0.0115) 0.1318 (0.1099) –0.4287 (0.1362) 0.8845 (0.0519) 0.4668 (0.3378)
λi,GBP –0.5680 (0.0104) –1.2550 (0.1611) –0.2810 (0.3173) 0.8917 (0.2831) 0.7061 (0.1003)

a 0.0775 (0.0054)
bi –0.0787 (0.0019) 0.1826 (0.0030) –0.3572 (0.0027) 0.0838 (0.0073) –0.0032 (0.0061)

ωs ωm ωl

USD 0.00049 (0.00001) 0.00165 (0.00001) 0.00349 (0.00002)
GBP 0.00030 (0.00000) 0.00163 (0.00001) 0.00157 (0.00003)

ωe 0.88810 (0.00006)

FIGURE 1

Log Exchange Rate between U.S. Dollar and British Pound

Weekly log exchange rate between the U.S. dollar and the British pound, in dollars per pound, taken every Wednesday
from May 1, 1998 to August 5, 2005.
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FIGURE 2

Smoothed Estimates of the State Variable X2

Smoothed estimates of the state variable X2, in the best-fit model A1(5) for the U.K.-U.S. pair. Estimates are weekly for
every Wednesday from May 1, 1998 to August 5, 2005.

FIGURE 3

Smoothed Estimates of the State Variable X5

Smoothed estimates of the state variable X5, in the best-fit model A1(5) for the U.K.-U.S. pair. Estimates are weekly for
every Wednesday from May 1, 1998 to August 5, 2005.

To assess how much the “extra” state variables better explain exchange rate
volatilities and therefore better fit the exchange rates, we estimate 3-factor models
for all 6 country pairs. In each of the models, the 3 state variables are responsible
for interest rate term structures in both countries and the exchange rate. Hence
there is no room for any of the 3 state variables to become “extra.” Table 8 presents
the fitting errors for the best-fit 3-factor models in a format comparable to Table 2.
While the 3-factor models occasionally fit the interest rate better than the 5-factor
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models, the fitting of the exchange rate in the 3-factor models is worse for every
country pair and far worse in the majority of the country pairs.

TABLE 8

Statistics on Absolute Fitting Errors for 3-Factor Models

The means of the absolute fitting errors (MAE) and the root mean squared error (RMSE) for the best-fit model of each
country pair. Each row represents a different model for a different country pair. The MAE and RMSE reported next to the
country itself are for the interest rates of that country, expressed in basis points. “FX MAE” and “FX RMSE” are for the log
exchange rates between the 2 currencies.

Country MAE RMSE Country MAE RMSE FX MAE FX RMSE

JPY 17.44 27.76 DEM 9.08 12.69 0.7058 0.7132
DEM 20.35 25.55 GBP 9.46 13.00 0.3684 0.3784
DEM 14.49 24.20 USD 28.24 39.44 0.9538 1.0535
JPY 27.59 42.60 GBP 31.44 41.47 0.0873 0.1298
JPY 17.66 28.74 USD 39.52 52.45 0.1726 0.2092
USD 28.28 38.29 GBP 13.10 19.63 0.2199 0.2715

Ahn (2004) shows that the existence of factors or state variables local to
a particular country, as opposed to factors common to both countries, is neces-
sary for investors to benefit from international diversification of a bond portfolio.
Mosburger and Schneider (2005), on the other hand, fit 3-factor 2-country affine
models to the U.K.-U.S. data and conclude that all 3 factors in their models are
common instead of local factors. This paper directly contributes to the resolution
of this issue. From Table 6, it can be seen that common factors or common state
variables are indeed more common than most would think, supporting the find-
ings of Mosburger and Schneider. Nevertheless, local factors do exist in many,
although not all, cases, consistent with Ahn.

IV. Conclusion

This paper addresses issues in extending the affine class of term structure
models to a multicountry setting to describe the joint dynamics of exchange rates
and interest rates. We emphasize the need to adequately model the high volatility
of exchange rates vis-à-vis the low volatility of interest rates. Even though this
need itself may not come as a great surprise to researchers in this field, exactly
how to correctly model the volatilities is not clear from the previous works.

Contrary to existing beliefs in the literature, we show that the feasible choices
for exchange rate specification in the extended affine models are surprisingly nar-
row. Namely, in order to satisfy the fundamental pricing equation (2), one has to
specify exchange rates according to equation (3). To adequately model the volatil-
ity of exchange rates and interest rates despite such an exchange rate specifica-
tion, we propose to partially dissociate interest rates and exchange rates through
fundamental pricing equation (1) by introducing “extra” state variables, and hence
excess exchange rate volatilities, that are orthogonal to interest rates but not or-
thogonal to the pricing kernels. When we fit maximal An(5) 2-country extended
affine models to data of 6 country pairs, all of the best-fit models turn out to have
these “extra” state variables without being specified as such a priori.

https://doi.org/10.1017/S0022109010000438  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109010000438


Anderson, Hammond, and Ramezani 1359

A very general class of analytically tractable models for the joint dynamics
of exchange rates and interest rates can open doors to many interesting future
investigations.

In particular, the canonical model we formulate is general for multiple
countries. Using multicountry Cox-Ingersoll-Ross (1985) models, Hodrick and
Vassalou (2002) suggest that multicountry models explain the dynamics of inter-
est rates and exchange rates better than 2-country models. It will be interesting
to see how their findings generalize in maximal multicountry affine models. The
impact of 3rd-country factors may also be unveiled (e.g., whether the U.S. interest
rate has any role to play in the exchange rate between the Japanese yen and the
British pound).

In addition, better exchange rate models can more accurately price deriva-
tives on exchange rates. Choi and Hauser (1990) find that the term structures of
interest rates can impact currency option prices. Taking into account both ex-
change rates and interest rates when pricing currency derivatives is a task the
models proposed in this paper can easily handle. Derivatives also exist that nat-
urally involve both exchange rates and interest rates and therefore genuinely re-
quire a joint dynamics model to price (e.g., cross-currency spread options and
cross-currency swaptions).

In this paper, we have extended the “completely affine” term structure mod-
els to a multicountry setting with exchange rates. The completely affine models
are only a special case of the “essentially affine” models of Duffee (2002). Due to
the more sophisticated specification of the market price of risk process in the es-
sentially affine models, the pricing kernels in the essentially affine setting may no
longer assume the log-linear form of the completely affine setting. Thus, extend-
ing our work to the essentially affine setting could be a project for future research
that promises to be both very interesting and very challenging.

Appendix. Proof of Proposition 1

The Duffie-Kan (1996) class of continuous-time affine interest rate term structure
models was discretized in Backus et al. (2001). There is a vector X of N state variables that
evolves according to the law

Xt+1 − Xt = Ψ(X̄ − Xt) +
√
Σt εt+1.(A-1)

Here, ε is an N-vector of independent normal (0, 1) disturbances, and Σt is an N × N
diagonal matrix with elements given by the affine functionsΣii,t = gi0 +

∑N
j=1 gijXj,t. Con-

ditions from Dai and Singleton (2000) are imposed on the parameters—the coefficients gij,
the N × N matrix Ψ , and the N-vector X̄, as explained in Section II.C of the main text.

The domestic and foreign pricing kernels are respectively specified by

− log

(
Mt+1

Mt

)
= δ + γT Xt + λT√Σt εt+1,(A-2)

− log

(
M∗t+1

M∗t

)
= δ∗ + γ∗T Xt + λ∗T√Σt εt+1,(A-3)

where δ and δ∗ are constant scalar parameters and γ, γ∗, λ, and λ∗ are N-vectors of con-
stant parameters. Also, equations (A-1), (A-2), and (A-3) share the same set of disturbance
εt+1.
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In the affine setting, pricing kernels take the form of equation (A-2), or equivalently,
equation (A-3) (Backus et al. (2001)). This log-linear form of pricing kernels for the affine
setting is standard (see, e.g., Duffee (2006), p. 511). It should be emphasized that equations
(A-2) and (A-3) do not in any way imply that the pricing kernels are unique in either
country. All equation (A-2) says is that there exists a domestic pricing kernel as specified
by equation (A-2). It does not exclude the possibility that there exists a different pricing
kernel M̃, where − log

(
M̃t+1/M̃t

)
= δ̃ + γ̃T Xt + λ̃T√Σt εt+1, for the domestic country. The

same can be said for equation (A-3) and the foreign country. This proof does not require
the uniqueness of the pricing kernel in any country. In fact, the proof does not even require
that the remaining pricing kernels in a country be of the log-linear form. As long as there
exists 1 pricing kernel in the domestic country that can be specified as equation (A-2) and
1 foreign pricing kernel that can be specified as equation (A-3), this proof stands.

The short interest rates r and r∗ are affine functions of the state variables, which need
to satisfy the fundamental pricing equation (1). In the case of r, substituting equation (A-2)
into equation (1) gives

Et

[
Mt+1

Mt
ert

]
= Et

[
exp
(
−δ − γT Xt − λT√Σt εt+1 + rt

)]
= 1.(A-4)

Recall that, if J is a normal random variable with mean μJ and standard deviation σJ , then
E[exp(cJ)] = exp(cμJ + c2σ2

J/2) for any constant c. The only normal random variables in
equation (A-4) are the components of εt+1. Therefore, equation (A-4) becomes

exp

⎧⎨
⎩−δ − γT Xt + rt +

N∑
i=1

λ2
i

⎛
⎝gi0 +

N∑
j=1

gijXj,t

⎞
⎠/ 2

⎫⎬
⎭ = exp{0} = 1.

Hence

rt = δ + γT Xt −
N∑

i=1

λ2
i

⎛
⎝gi0 +

N∑
j=1

gijXj,t

⎞
⎠/ 2,(A-5)

and similarly

r∗t = δ∗ + γ∗T Xt −
N∑

i=1

λ∗2
i

⎛
⎝gi0 +

N∑
j=1

gijXj,t

⎞
⎠/ 2.(A-6)

In our extension of the affine term structure models, the log of the exchange rate, st,
is an affine function of the state variables:

st = a + bT Xt,

where a is a scalar and b is an N-vector of constant coefficients.
First consider a domestic asset K that pays off at time (t + 1) in units of domestic

currency,

Kt+1 = exp{δ + γT Xt + λT√Σt εt+1}.(A-7)

Its price at time t in units of the domestic currency is obtained as

Et

[
Mt+1

Mt
Kt+1

]
= Et

[
exp
{
−δ − γT Xt − λT√Σt εt+1 + δ + γT Xt + λT√Σt εt+1

}]
= exp{0} = 1.
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If a foreign investor invests 1 unit of the foreign currency in K at time t, his time (t + 1)
payoff in units of the foreign currency is (St/St+1)Kt+1. The time t foreign currency price
of this payoff is obtained by Et[(M∗t+1/M

∗
t ) (St/St+1) Kt+1]. However, we already know that

the payoff (St/St+1)Kt+1 comes from an investment of 1 unit of the foreign currency at time
t, thus the foreign currency price at time t of this investment is 1:

Et

[
M∗t+1

M∗t

St

St+1
Kt+1

]
= 1.

Substituting equations (A-3), (4), (A-7), and (A-1) into the above equation, and once again
applying the formula E[exp(cJ)] = exp(cμJ + c2σ2

J/2) on εt+1, we have

Et

[
M∗t+1

M∗t

St

St+1
Kt+1

]
= Et[exp{−δ∗ − γ∗T Xt − λ∗T√Σt εt+1 − bT(Xt+1 − Xt)

+ δ + γT Xt + λT√Σt εt+1}]
= Et[exp{−δ∗ − γ∗T Xt − λ∗T√Σt εt+1 − bTΨ(X̄ − Xt)

− bT√Σt εt+1 + δ + γT Xt + λT√Σt εt+1}]
= Et[exp{−(δ∗− δ)− (γ∗ − γ)T Xt − bTΨ(X̄ − Xt)

+ (λ− b− λ∗)T√Σt εt+1}]
= exp{−(δ∗ − δ)− (γ∗ − γ)T Xt − bTΨ(X̄ − Xt)

+
N∑

i=1

(λi − bi − λ∗i )2(gi0 +
N∑

j=1

gijXj,t)/2}

= 1 = exp{0}.
To simplify notation, the exponent is denoted as

f (Xt) = −(δ∗ − δ)− (γ∗ − γ)T Xt − bTΨ(X̄ − Xt)

+
N∑

i=1

(λi − bi − λ∗i )2(gi0 +
N∑

j=1

gijXj,t)/2.

Because the equality exp{f (Xt)} = exp{0} has to hold for any value Xt can take at t, it
must be true that the coefficient for every element of vector Xt in f (Xt) is 0. Otherwise,
the values of Xt can be varied to find a contradiction to the equality. Consequently, the
remaining constant term in f (Xt) must also be 0. Thus N + 1 equations are obtained:

bTΨ X̄ − (δ − δ∗) =
N∑

i=1

(λi − bi − λ∗i )2gi0/2 and(A-8)

−(bTΨ)j − (γj − γ∗j ) =
N∑

i=1

(λi − bi − λ∗i )2gij/2, for j= 1, 2, . . . ,N.(A-9)

Similarly, consider a foreign asset K∗ that pays off, at time (t + 1), in units of the
foreign currency,

K∗t+1 = exp
{
δ∗ + γ∗T Xt + λ∗T√Σt εt+1

}
.(A-10)

The price of K∗ at time t in units of the foreign currency is

Et

[
M∗t+1

M∗t
K∗t+1

]
= Et

[
exp
{
−δ∗ − γ∗T Xt − λ∗T√Σt εt+1 + δ∗

+ γ∗T Xt + λ∗T√Σt εt+1

}]
= exp{0} = 1.
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If a domestic investor invests 1 unit of the domestic currency in K∗ at time t, his time (t+1)
payoff in units of the domestic currency is (St+1/St)K∗t+1. The time t domestic currency
price of this payoff is obtained by Et[(Mt+1/Mt) (St+1/St) K∗t+1]. However, we already know
that the payoff (St+1/St)K∗t+1 comes from an investment of 1 unit of the domestic currency
at time t, thus the domestic currency price at time t of this investment is 1:

Et

[
Mt+1

Mt

St+1

St
K∗t+1

]
= 1.

Substituting equations (A-2), (4), (A-10), and (A-1) into the above equation, we have

Et

[
Mt+1

Mt

St+1

St
K∗t+1

]
= Et[exp{−δ − γT Xt − λT√Σt εt+1 + bT(Xt+1 − Xt)

+ δ∗ + γ∗T Xt + λ∗T√Σt εt+1}]
= Et[exp{−δ − γT Xt − λT√Σt εt+1 + bTΨ(X̄−Xt) + bT√Σt εt+1

+ δ∗ + γ∗T Xt + λ∗T√Σt εt+1}]
= Et[exp{(δ∗ − δ) + (γ∗ − γ)T Xt + bTΨ(X̄ − Xt)

+ (b + λ∗ − λ)T√Σt εt+1}]
= exp{(δ∗ − δ) + (γ∗ − γ)T Xt + bTΨ(X̄ − Xt)

+
N∑

i=1

(λi − bi − λ∗i )2(gi0 +
N∑

j=1

gijXj,t)/2}

= 1 = exp{0}.
Considering once again the coefficients of the elements of X and the constant term

inside the exponent, we obtain the following N + 1 equations:

bTΨ X̄ − (δ − δ∗) = −
N∑

i=1

(λi − bi − λ∗i )2gi0/2 and(A-11)

−(bTΨ)j − (γj − γ∗j ) = −
N∑

i=1

(λi − bi − λ∗i )2gij/2, for j= 1, 2, . . . ,N.(A-12)

Comparing equation (A-8) with equation (A-11), and equation (A-9) with equation
(A-12), we immediately have

bTΨ X̄ − (δ − δ∗) = 0,(A-13)

−(bTΨ)j − (γj − γ∗j ) = 0, for j= 1, 2, . . . ,N,(A-14)

and

N∑
i=1

(λi − bi − λ∗i )2gi0/2 = 0,(A-15)

N∑
i=1

(λi − bi − λ∗i )2gij/2 = 0, for j= 1, 2, . . . ,N.(A-16)

We define an N × (N + 1) matrix G = [gij], with i = 1, 2, . . . ,N, j = 0, 1, 2, . . . ,N,
and constants gij the same constants gij as in the definition of Σt. For models in each
subfamily An(N), among the N state variables in X, there are n of them that are guaranteed
to be always nonnegative by construction. Without loss of generality, arrange these always-
nonnegative state variables to be the 1st n components of X. According to the conditions
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of Dai and Singleton (2000), gi0 = 0 for 1 ≤ i ≤ n and gi0 = 1 for n < i ≤ N. Substituting
these values of gi0 into equation (A-15), we have

bi = λi − λ∗i , for n < i ≤ N.(A-17)

Therefore, from equation (A-16) we have

n∑
i=1

(λi − bi − λ∗i )2gij/2 = 0, for j= 1, 2, . . . , n.(A-18)

Also according to Dai and Singleton’s conditions, the submatrix of G, G̃ = [gij], with
i=1, 2, . . . , n, j=1, 2, . . . , n, is an identity matrix, and thus of rank n. Hence from equation
(A-18),

bi = λi − λ∗i , for 1 ≤ i ≤ n.(A-19)

Together with equation (A-17), we have

bi = λi − λ∗i , for 1 ≤ i ≤ N.(A-20)

Applying equations (A-1), (A-13), (A-14), and (A-20), we obtain

st+1 − st = bT(Xt+1 − Xt)

= bTΨ(X̄ − Xt) + bT√Σt εt+1

= bTΨ X̄ − bTΨXt + bT√Σt εt+1

= (δ − δ∗) + (γ − γ∗)T Xt + (λ− λ∗)T√Σt εt+1

= log

(
M∗t+1

M∗t

)
− log

(
Mt+1

Mt

)
.

In total, 3 conditions from Dai and Singleton (2000) are used in the proof: gi0= 0 for
1 ≤ i ≤ n, gi0=1 for n < i ≤ N, and the submatrix of G, G̃=[gij], with i=1, 2, . . . , n, j=
1, 2, . . . , n, is an identity matrix. The conditions are used solely for the purpose of deriving
equation (A-20) from equations (A-15) and (A-16). These conditions can be weakened and
the proof still stands.

We can require, instead, only that gij ≥ 0, for i = 1, 2, . . . ,N, j = 0, 1, 2, . . . ,N.
In addition, we assume that the specification in equation (A-1) is not degenerate, in that
for each diagonal element of Σt, Σii,t = gi0 +

∑N
j=1 gijXj,t, at least 1 of the coefficients

gi0, gi1, gi2, . . . , giN is not 0. Otherwise,Σii,t= 0 and Xi in equation (A-1) becomes a deter-
ministic linear combination of the rest of the state variables. Below, we show how to derive
equation (A-20) from equations (A-15) and (A-16) under these weakened conditions.

Given gij ≥ 0, for i = 1, 2, . . . ,N, j = 0, 1, 2, . . . ,N, equations (A-15) and (A-16)
imply

(λi − bi − λ∗i )2gij = 0, for i= 1, 2, . . . ,N, j= 0, 1, 2, . . . ,N.(A-21)

Suppose that, for k, equation (A-20) does not hold. That is, bk ≠λk−λ∗k . From equa-
tion (A-21), we have, for j= 0, 1, 2, . . . ,N, (λk − bk − λ∗k )2gkj = 0. Because bk ≠λk − λ∗k ,
it has to be true that gkj= 0, for j= 0, 1, 2, . . . ,N. This implies Σkk,t= gk0 +

∑N
j=1 gkj

Xj,t= 0 and is inconsistent with the condition above that the specification in equation (A-1)
is not degenerate. Therefore, it has to be the case that bk=λk − λ∗k , for k = 1, 2, . . . ,N,
which is equation (A-20).
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