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Let q be a positive integer and let (an) and (bn) be two given C-valued and
q-periodic sequences. First we prove that the linear recurrence in C

xn+2 = anxn+1 + bnxn, n ∈ Z+ (0.1)

is Hyers–Ulam stable if and only if the spectrum of the monodromy matrix
Tq := Aq−1 · · ·A0 (i.e. the set of all its eigenvalues) does not intersect the unit circle
Γ = {z ∈ C : |z| = 1}, i.e. Tq is hyperbolic. Here (and in as follows) we let

An =

(
0 1
bn an

)
n ∈ Z+. (0.2)

Secondly we prove that the linear differential equation

x′′(t) = a(t)x′(t) + b(t)x(t), t ∈ R, (0.3)

(where a(t) and b(t) are C-valued continuous and 1-periodic functions defined on R)
is Hyers–Ulam stable if and only if P (1) is hyperbolic; here P (t) denotes the solution
of the first-order matrix 2-dimensional differential system

X′(t) = A(t)X(t), t ∈ R, X(0) = I2, (0.4)

where I2 is the identity matrix of order 2 and

A(t) =

(
0 1

b(t) a(t)

)
, t ∈ R. (0.5)
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1. Short history of the problem

Oscar Perron originally settled (in the context of finite dimensional spaces) the
equivalence between the exponential dichotomy of the homogeneous system x′(t) =
A(t)x(t) and the conditional stability of the following inhomogeneous one

y′(t) = A(t)y(t) + f(t, y(t)); (1.1)

see [17]. The idea of passing from evolution equations to difference equations and
vice versa (and used in the proof of theorem 2.12 below) has a long history that
goes back to D. Henry [15].

The general framework of the stability problem for functional equations (called
Hyers–Ulam stability) arose in 1940, due to a certain question posed by S. M. Ulam
which was enunciated during a lecture he delivered in the Club of Mathematics at
the University of Wisconsin. Much attention is given in the literature to Hyers–Ulam
stability for differential and difference equations in a single variable; see [1,2,6–
8,13,14,16,19–21,23,24,27,28] and the references therein. In [18], the Hyers–
Ulam stability for linear recurrence of order n with constant coefficients is discussed.
The main theorem in the above mentioned paper concerns the roots of the algebraic
equation associated to the recurrence. The theorem says that the recurrence is
Hyers–Ulam stable if all roots of its associated algebraic equation have modulus
different to one. Brzdȩk, Popa and Xu studied in [6] the case of nonstability for
difference equations of order m. The results of the present paper generalizes and (or)
complements various earlier outcomes proved or discussed in the recent monograph
[9] and in the papers [5,8,25].

Of course it is difficult to find the exact solutions of differential equations and
of equations with differences, so as a result it is important to find approximative
solutions for these equations that are close (in a certain sense) to the exact solutions.
Fixed point theorems (see e.g. [12,22]) and the increase of computer computing
power makes it (generally speaking) easier to consider approximative solutions.
However, it is not easy to determine the measure in which the approximate solutions
are close to an exact solution. As a result it is important to establish simple criteria
to ensure that all approximative solutions are close to an exact one. The purpose
of our Hyers–Ulam programme is to highlight simple testing criteria for this type
of stability. This article is part of this programme that was initiated by the papers
[1,2,10,11]. An important novelty of this article is that the distance between an
approximative solution and an exact solution (in the case of differential equations)
is understood in the sense of the closed graph norm (see (2.13)) assuming implicitly
that the solutions are from a Sobolev type space. A natural (open) problem is if
the result in the continuous case is preserved with the ‘sup’ norm instead of the
‘closed graph norm’.

The present paper is organized as follows. The next section contains the necessary
definitions and preliminary results for the paper to be self-contained. At the end
of this section the main results are presented. In the third section we present the
proofs of these results and in the last section two concrete examples illustrating
theoretical results are considered.
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2. Background and the statement of the result

By Z, R and C we denote the sets of integers, reals and respectively complex num-
bers and Z+ is the set of all nonnegative integers. C

m (with m given positive integer)
is the set of all vectors v = (ξ1, . . . , ξm)T with ξj ∈ C for every integer 1 � j � m;
here and in as followsT denotes the transposition. The norm on C

m is the well-
known Euclidean norm defined by ‖v‖ := (|ξ1|2 + · · · + |ξm|2)1/2. C

m×n (with m
and n given positive integers) denotes the set of all m by n matrices with complex
entries. In particular, C

m×m becomes a Banach algebra when endowed with the
(Euclidean) matrix norm defined by

‖M‖ := sup
‖v‖�1

‖Mv‖, v ∈ C
m, M ∈ C

m×m.

As is usual the rows and columns of a matrix M ∈ C
m×n are identified by vectors

of the corresponding dimensions and in that case its norm is the vector norm. Let
M be a m by n matrix. The entry of M located at the intersection between the
ith row and the jth column of the matrix M (with 1 � i � m and 1 � j � n) is
denoted by [M ]ij .

We outline the Hyers–Ulam problem for nonautonomous difference linear system
of order m driven by a family B = {Bn}n∈Z+ of m by m complex matrices. Consider
the system

xn+1 = Bnxn, n ∈ Z+. (2.1)

Let ε be a positive real number. A C
m-valued sequence (yn)n∈Z+ is called a

ε-approximative solution for (2.1) if

‖yn+1 − Bnyn‖ � ε, ∀n ∈ Z+. (2.2)

The family B (or the discrete system (2.1)) is said to be Hyers–Ulam stable if there
exists a nonnegative constant L such that, for every ε > 0 and every ε-approximative
solution (γn) of (2.1) there exists an exact solution (θn) of (2.1) such that

sup
n∈Z+

‖γn − θn‖ � Lε. (2.3)

In the following we assume that the sequence (Bn) is q-periodic for some positive
integer q. Denote by Tq := B0 · · ·Bq−1 the monodromy matrix associated with the
family B. Recall that Tq is called hyperbolic if its spectrum does not intersect
the unit circle Γ = {z ∈ C : |z| = 1} and the following result was stated in [[11],
theorem 2.1, proposition 2.2].

Theorem 2.1. The system (2.1) is Hyers–Ulam stable if and only if the mon-
odromy matrix is hyperbolic or (with the terminology in [11]) it possesses a discrete
dichotomy.

Consider the following linear recurrence in C attached to the C-valued and q-
periodic sequences (an) and (bn)
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xn+2 = anxn+1 + bnxn, n ∈ Z+ (2.4)

Recall (see [11]) that a sequence (wn)n∈Z+ of complex numbers is called an
ε-approximative solution for (2.4) if

|wn+2 − anwn+1 − bnwn| � ε, ∀n ∈ Z+. (2.5)

The recurrence (2.4) is Hyers–Ulam stable if there exists a positive constant L
such that for every ε > 0 and every ε - approximative solution (wn) of (2.4) there
exists an exact solution (θn) of (2.4) such that

sup
n∈Z+

|wn − θn| � Lε, ∀n ∈ Z+. (2.6)

For every positive integer n set U(n, n) = I2 and for every pair (n, k) of
nonnegative integers (with n � k) set U(n, k) = An−1 · · ·Ak (where

Aj :=
(

0 1
bj aj

)
, (j ∈ Z+).

Let y ∈ C
2 be a given vector and (Fn) be a C

2-valued given sequence. The solution
of the following discrete Cauchy Problem

xn+1 = yn + F 1
n+1

yn+1 = bnxn + anyn + F 2
n+1

, n ∈ Z+ y = (x0, y0)T , (2.7)

(where Fn = (F 1
n , F 2

n) ∈ C
2 and F0 = (0, 0)T )) is denoted and given by

Φn(y, 0, (Fk)) := U(n, 0)y +
n∑

k=1

U(n, k)Fk. (2.8)

In particular when (fn) is a C-valued sequence and taking F 1
n = 0 and F 2

n = fn let

φn = φn(y, 0, (fk)) := [Φn(y, 0, ((0, fk)T ))]11, n ∈ Z+.

It is easy to see that (φn) is the solution of the scalar discrete Cauchy Problem

zn+2 = anzn+1 + bnzn + fn, n ∈ Z+ z0 = x0, z1 = y0

and φn+1 = [Φn(y, 0, ((0, fk)T ))]21.

Proposition 2.2 [11]. The following two statements are equivalent.

(1) The recurrence (2.4) is Hyers–Ulam stable.

(2) There exists a positive constant L such that for every ε > 0, every C-valued
sequence (fn)n∈Z+ with supn∈Z+

|fn| � ε, and every x ∈ C
2 there exists x0 ∈

C
2 such that

sup
n∈Z+

∣∣∣∣∣
[
U(n, 0)(x − x0) +

n∑
k=1

U(n, k)Fk

]
11

∣∣∣∣∣ � Lε, (2.9)

where Fk+1 = (0, fk)T and F0 = (0, 0)T .

https://doi.org/10.1017/prm.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.12


Hyers–Ulam stability 2179

Our first result reads as follows:

Theorem 2.3. Let (an) be a C-valued and (bn) be a C-valued and periodic sequences
with period q (q being a given positive integer). The following three statements are
equivalent:

(i) The linear recurrence (2.4) is Hyers–Ulam stable.

(ii) The discrete linear system

xn+1 = yn

yn+1 = bnxn + anyn (2.10)

is Hyers–Ulam stable.

(iii) The monodromy matrix

Tq =
(

0 1
bq−1 aq−1

)
· · ·

(
0 1
b0 a0

)
(2.11)

is hyperbolic.

Remark 2.4.

(1) The equivalence between (ii) and (iii) follows from theorem 2.1.

(2) The case q = 1 (the autonomous case) was considered in [20]. Also, the case
q = 2 was stated (under a slightly different but equivalent form) in [11]. The
latter result depends on a technical lemma ([11], lemma 3.1) whose proof
covers eight pages there.

Let a(·) and b(·) be C-valued continuous and 1-periodic functions defined on R.
Consider the linear differential equation of second order.

x′′(t) = a(t)x′(t) + b(t)x(t), t ∈ R, (2.12)

and let ε > 0 be given.
Let k be a positive integer and denote by CBk(R, C) the space of all C-valued

functions f and the derivatives f ′, . . . , f (k) exist and are bounded and f (k) is con-
tinuous on R. As is well-known CB1(R, C) is a Banach space when it is endowed
with the Closed Graph Norm given by

‖f‖1 := ‖f‖∞ + ‖f ′‖∞, f ∈ CB1(R, C); (2.13)

here ‖ · ‖∞ denotes the uniform norm on the space CB(R, C) that consists by all
continuous and bounded functions on R.

Definition 2.5. A function y(·) ∈ CB2(R, C) is called:

(i) an ε approximative solution of (2.12) (with a given ε > 0) if one has

|y′′(t) − a(t)y′(t) − b(t)y(t)| � ε, ∀t ∈ R
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and

(ii) an exact solution of (2.12) if

y′′(t) = a(t)y′(t) + b(t)y(t), t ∈ R. (2.14)

Remark 2.6. Clearly the algebraic sum of an exact solution and an ε-approximative
solution of (2.12) is also an ε-approximative solution of (2.12).

Definition 2.7. We say that (2.12) is Hyers–Ulam stable if there exists a positive
constant L such that for every ε > 0 and every ε-approximative solution y(·) of
(2.12) there exists an exact solution φ(·) of (2.12) and

‖y(·) − φ(·)‖1 � Lε.

Consider the family of matrices

A(t) =
(

0 1
b(t) a(t)

)
, t ∈ R. (2.15)

Clearly, the map t �→ A(t) : R → C
2×2 is 1-periodic and continuous.

By following [2] we introduce:

Definition 2.8. A C
2-valued function Y (·) is an ε-approximative solution of the

differential system

X ′(t) = A(t)X(t), t ∈ R (2.16)

(for a given positive ε) if

‖Y ′(·) − A(·)Y (·)‖∞ � ε.

Definition 2.9. The system (2.16) is Hyers–Ulam stable if there exists a positive
constant L such that for every ε-approximative solution Y (·) there exists an exact
solution Φ(·) of (2.16) and ‖Y (·) − Φ(·)‖∞ � Lε.

Let P (·) denote the solution of the first-order 2 by 2 differential matrix system

X ′(t) = A(t)X(t), t ∈ R, X(0) = I2, (2.17)

where I2 is the identity matrix of order 2. As is well-known P (t) is an invertible
matrix for every t ∈ R. For every pair (t, s) ∈ R × R let U(t, s) := P (t)P−1(s). Thus
the solution Ψ(t) := Ψ(t, 0, y, F ) of the Cauchy Problem

X ′(t) = A(t)X(t) + F (t), t ∈ R, X(0) = y

(with y ∈ C
2 given vector and F (·) a given continuous C

2-valued function) is

Ψ(t) = U(t, 0)y +
∫ t

0

U(t, s)F (s) ds, t ∈ R.
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Remark 2.10.

(1) Clearly, if f(·) is a C-valued continuous function defined on R and ‖f‖∞ < ε
then any solution of the differential equation

x′′(t) − a(t)x′(t) − b(t)x(t) = f(t), t ∈ R (2.18)

is an ε-approximative solution of (2.12).

(2) Conversely, every ε-approximative solution of (2.12) comes in this way.
Indeed, let y(·) be an ε-approximative solution of (2.12) and set f(t) :=
y′′(t) − a(t)y′(t) − b(t)y(t). Then ‖f‖∞ � ε and y(·) is the solution of (2.18)
with the initial conditions x(0) = y(0) and x′(0) = y′(0).

Proposition 2.11. The differential equation (2.12) is Hyers–Ulam stable (in the
sense of Definition 2.7) provided there exists a positive constant L such that for
every ε > 0, every C-valued continuous function f (with ‖f‖∞ � ε), and every x ∈
C

2 there exists x0 ∈ C
2 and∥∥∥∥

[
U(·, 0)(x − x0) +

∫ ·

0

U(·, s)F (s) ds

]∥∥∥∥
∞

� Lε

2
, (2.19)

where F (s) = (0, f(s))T .

Proof. Is enough to see that if φ(·) is a solution of

y′′(t) − a(t)y′(t) − b(t)y(t) = f(t)

with the initial condition

(φ(0), φ′(0)) = (x − x0)T ,

then

U(t, 0)(x − x0) +
∫ t

0

U(t, s)F (s) ds = (φ(t), φ′(t))T , t ∈ R. (2.20)

�

Theorem 2.12. Let a(·) and b(·) be C-valued continuous and 1-periodic functions
defined on R. The following three statements are equivalent:

(i) The differential equation (2.12) is Hyers–Ulam stable.

(ii) The linear differential system

x′(t) = y(t)

y′(t) = b(t)x(t) + a(t)y(t), t ∈ R
(2.21)

is Hyers–Ulam stable.

(iii) The monodromy matrix P (1) is hyperbolic.
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3. Proofs

Proof of theorem 2.3. We already noticed that, via theorem 2.1, the statements (ii)
and (iii) are equivalent. �

Proof of (i) ⇒ (iii). We argue by contradiction. Assume that the complex number
λ1 (with |λ1| = 1) is an eigenvalue of Tq. Under such an assumption we show that
for every ε > 0 and every initial condition y = (z0, z1)T there exists a sequence (fn)
with ‖(fn)‖∞ � ε such that the sequence (φn) is unbounded, and that contradicts
(2.9) for y := x − x0. Noticing that

Φn := Φn(y, 0, ((0, fk)T ))) = (φn, φn+1)T

and thus (for our purpose) is enough to prove that ([Φn]11) (or ([Φn]21)) is
unbounded. We break the proof into four cases. �

Case 1. Let σ(Tq) = {λ1, λ2} ⊂ C with λ1 �= λ2 and [Tq]12 �= 0.
Let ε > 0, u0 = (0, (ε/2[Tq]12))T ∈ C

2. Notice that ‖u0‖ � ε. Set

Fnq := λn
1u0, (n ∈ Z+) and Fk = 0 when k is not a multiple of q. (3.1)

From the Spectral Decomposition Theorem, (see e.g. [1, lemma 4.5]), there are
2 by 2 matrices B and C such that

Tn
q = λn

1B + λn
2C n ∈ Z+.

Now, taking into account (2.8) one has

Eλ1Φnq(x − x0, 0, (Fk)) = λn
1B(x − x0) +

n∑
k=1

Eλ1U(nq, kq)λk
1u0

= λn
1B(x − x0) +

n∑
k=1

Eλ1T
n−kλk

1u0

= λn
1 [B(x − x0) + nBu0], n ∈ Z+, (3.2)

where

B =
1

λ1 − λ2
(Tq − λ2I2) (3.3)

and Eλ1 is the elementary (Riesz) projection; see for example ([11] pages 911–912)
for further details.

Hence,

|[nBu0]11| = n
ε

2|λ1 − λ2| → ∞ as n → ∞

and thus the sequence (|[Eλ1Φnq]11|)n is unbounded and a contradiction arises.
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Case 2. Let σ(Tq) = {λ1, λ2} ⊂ C with λ1 �= λ2 and [Tq]12 = 0.

2.1. Let

Tq =
(

λ2 0
∗ λ1

)
.

Thus (via (3.3)) one has

B =
(

0 0
∗ 1

)
.

Set (Fk) as in (3.1) with u0 := (0, (ε/2))T . Then ‖u0‖ � ε and

|[nBu0]21| = n
ε

2
→ ∞.

2.2.

Let Tq =
(

λ1 0
∗ λ2

)
and one has B =

(
1 0
∗ 0

)
.

Set

Fk =

{
λn

1u0, if k = nq − 1
0, if k + 1 is not a multiple of q

(3.4)

where u0 := (0, (ε/2))T . One has

Eλ1Φnq(x − x0, 0, (Fk)) = λn
1B(x − x0) +

n∑
k=1

Eλ1U(nq, kq − 1)λk
1u0

= λn
1B(x − x0) +

n∑
k=1

Eλ1T
n−kU(q, q − 1)λk

1u0

= λn
1 [B(x − x0) + nBAq−1u0] (3.5)

and

BAq−1 =
(

0 1
0 ∗

)

and this yields

|[nBAq−1u0]11| = n
ε

2
→ ∞, ( as n → ∞).

Case 3. Let σ(Tq) = {λ1} and [Tq]12 �= 0.
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In this case the Spectral Decomposition Theorem yields

Tn
q = λn

1 (nB + I2) (n ∈ Z+), with B :=
1
λ1

(Tq − λ1I2). (3.6)

Set again (Fn) as in (3.1) with u0 := (0, (ε/2))T . Thus ‖u0‖ � ε and

λ−n
1 Φnq(x − x0, 0, (Fk)) = (nB + I2)(x − x0) +

[
nI2 +

n(n − 1)
2

B

]
u0

and this yields

[λ−n
1 Φnq]11 = [(nB + I2)(x − x0)]11 +

n(n − 1)
2

[B]12
ε

2

that is unbounded since [B]12 = [Tq]12 �= 0.
Case 4. Let σ(Tq) = {λ1} and [Tq]12 = 0.

Set Gnq−1 = λn
1u0 (whenever n is a positive integer) and Gk = 0 elsewhere (i.e.

when k + 1 is not a multiple of q). Here u0 is the same as in the third case. Now
Φnq = Φnq(x − x0, 0, (Gk)) is given by

Φnq = λn
1 (nB + I2)(x − x0) +

n∑
k=1

U(nq, kq)U(kq, kq − 1)Gkq−1

= λn
1 (nB + I2)(x − x0) +

n∑
k=1

Tn−kAq−1λ
k
1u0

= λn
1

[
(nB + I2)(x − x0) +

n∑
k=1

[(n − k)B + I2]Aq−1u0

]

= λn
1

[
(nB + I2)(x − x0) +

(
n(n − 1)

2
B + nI2

)
Aq−1u0

]
. (3.7)

Since

B =
(

0 0
a 0

)
(for some a ∈ C),

one has

λ−n
1 [Φnq]11 = [x − x0]11 + [nAq−1u0]11 = [x − x0]11 + n

ε

2
that is unbounded.

Proof of (ii) ⇒ (i). Is enough to see that for every ε > 0, every C-valued sequence
(fn) with ‖(fn)‖∞ � ε and every vector y ∈ C

2 one has

‖Φn(y, 0, ((0, fk)T ))‖∞ � |[Φn(y, 0, ((0, fk)T ))]11‖∞. �

Proof of theorem 2.12. From [2, theorem 1.3] it follows that (ii) and (iii) are
equivalent. �
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Proof of (i) ⇒ (iii). We argue by contradiction. Assume that the spectrum of T :=
P (1) intersects the unit circle. Let eiμ with μ ∈ R be an eigenvalue of T. In view
of proposition 2.11 it is enough to prove that for some ε > 0 and some continuous
function f (with ‖f‖∞ � ε) and all (x − x0) ∈ C

2, the map

t �→ X(t) = X(t, 0, x − x0, F ) := U(t, 0)(x − x0) +
∫ t

0

U(t, s)F (s) ds, (3.8)

(where F (s) = (0, f(s))T ) is unbounded on R+. �

Let ε > 0 be given and let u0 ∈ C
2 with [u0]11 = 0, [u0]21 �= 0 and ‖u0‖ � ε. Let

G be the 1-periodic, C
2-valued map that is defined on the interval [0, 1] by

G(s) := sin(πs)
P (s)
M

u0, s ∈ [0, 1] (3.9)

(where M = supt∈[0,1] ‖U(t, 0)‖) and set F (s) := eiμsG(s). Thus, via (3.8), succes-
sively one has

X(n) = U(n, 0)(x − x0) +
n−1∑
k=0

∫ k+1

k

U(n, s)F (s) ds

= U(n, 0)(x − x0) +
n−1∑
k=0

∫ 1

0

U(n, k + r) eiμ(k+r)G(r) dr

= U(n, 0)(x − x0) +
n−1∑
k=0

∫ 1

0

Tn−k−1 eiμkU(1, r) eiμrG(r) dr

= Tn(x − x0) +
Lμ

M

n−1∑
k=0

Tn−k eiμku0, (3.10)

where Lμ :=
∫ 1

0
eiμr sinπr dr. Using the well-known Euler formula

(
sin πt =

1
2i

(eiπt − e−iπt), i ∈ C, i2 = −1
)

it is easy to see (we omit the details) that Lμ is a nonzero complex number for all
μ ∈ R.

Now, whenever [T ]21 �= 0 (as in the proof of theorem 2.3) we can choose a suitable
vector u0 such that the sequence (X(n)) is unbounded and a contradiction arises.

When [T ]21 = 0, let G1 be the 1-periodic, C
2-valued map that is defined on the

interval [0, 1] by

G1(s) := sin(πs)
P (s)A0

M1
u0, s ∈ [0, 1] (3.11)

(where M1 = supt∈[0,1] ‖U(t, 0)A0‖) and set F1(s) := eiμsG1(s).
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In this case, (as in (3.10)) X(n) (corresponding to F1) is given by

X(n, 0, x − x0, F1) = Tn(x − x0) +
Lμ

M

n−1∑
k=0

Tn−kA0 eiμku0

and it is unbounded (we omit the details).

Proof of (ii) ⇒ (i). Since the system (2.21) is Hyers–Ulam stable, for some L > 0
and every ε > 0, every C-valued functions f and g with

max{‖f‖∞, ‖g‖∞} � ε

2

and every x ∈ C
2 there exists x0 ∈ C

2 such that∥∥∥∥
[
U(·, 0)(x − x0) +

∫ ·

0

U(·, s)G(s) ds

]∥∥∥∥
∞

� Lε

2
, (3.12)

where G(s) = (g(s), f(s))T , [2, remark 2.4]. �

In particular, for g = 0 and taking into account that

U(t, 0)(x − x0) +
∫ t

0

U(t, s)F (s) ds = (φ(t), φ′(t))T , t ∈ R (3.13)

(where F (s) = (0, f(s))T and φ(·) is the solution of (2.18) with the initial condition
(φ(0), φ′(0)) = (x − x0)T ), (3.12) and (3.13) yield

‖φ‖1 = ‖φ‖∞ + ‖φ′‖∞ � Lε

and the assertion follows.

4. Examples

Example 4.1. The linear recurrence of order 2

xn+2 = sin
2nπ

3
xn+1 + cos

2nπ

3
xn, n ∈ Z (4.1)

is Hyers–Ulam stable.
Indeed, with the above notation one has

A0 =
(

0 1
1 0

)
, A1 =

⎛
⎝ 0 1

−1
2

√
3

2

⎞
⎠ , A2 =

⎛
⎝ 0 1

−1
2

−
√

3
2

⎞
⎠

and the monodromy matrix associated to (4.1) is

T3 = A2A1A0 =

⎛
⎜⎜⎝
√

3
2

−1
2

−5
4

√
3

4

⎞
⎟⎟⎠ .

The characteristic equation of T3 is λ2 − (3
√

3/4)λ − (1/4) = 0 and the absolute
value of its solutions is different to 1.
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Example 4.2. The differential equation of order 2

x′′(t) = exp(2πt)x′(t), t ∈ R (4.2)

is not Hyers–Ulam stable.
Indeed, with the above notation, for t ∈ R, one has

A(t) =
(

0 1
0 exp(2πit)

)

and the map t �→ A(t) : R → C
2×2 is continuous and 1-periodic. For the Cauchy

Problem (2.17) we associate the recurrence

Xn+1(t) = I2 +
∫ t

0

A(s)Xn(s) ds, X0 = I2,

whose solution is given by

Xn(t) = I2 +
∫ t

0

A(tn)dtn + · · · +
∫ t

0

∫ tn

0

· · ·
∫ t2

0

A(tn) · · ·A(t1) dt1 · · · dtn.

As is well-known, for each t ∈ R,Xn(t) → P (t) as n → ∞ (in the matrix norm) and
the convergence is uniformly on compact intervals of R.

A simple calculation (that is left as an exercise) shows, for each positive integer
n, one has [Xn(1)]11 = 1 and [Xn(1)]21 = 0.

Thus [P (1)]11 = 1 and [P (1)]21 = 0 and that shows 1 is an eigenvalue of P (1),
i.e. P (1) is not hyperbolic. Now we apply theorem 2.12 to get the assertion.

Remark 4.3. We believe that the methods used in the proof of the results in
this article could be adapted to obtain similar results in the case of higher order
recurrences in the operator framework as in [3,26].

Declaration
We confirm that the manuscript has been read and approved by all named authors
and that there are no other persons who satisfied the criteria for authorship but are
not listed. We further confirm that the order of authors listed in the manuscript
has been approved by all of us.

References
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