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quite a bit of∞-category theory, culminating in the nontrivialRezk completion. In the chapter
on Set Theory, we see the “cumulative hierarchy” arise as a higher inductive type.
The chapter on Analysis, however, was a let-down for me: a straightforward translation

into type theory of the set-theoretic definition of the real numbers via Dedekind cuts. I had
hoped for something more synthetic.
A genuine drawback of the book (in my view) is the absence of any model theory for

MLTT + Univalence. Although at several places one reads things like ‘this principle is
not part of type theory, but it can be consistently assumed’, one gets no clue as to how
this consistency is proved. More seriously for a new foundation, this deprives the reader of
the opportunity to test his understanding of the ontology (‘spaces’ and ‘paths’) against a
model. Admittedly, a careful treatment of Voevodsky’s model in the category of simplicial
sets might require quite a bit of space, but at least an informal sketch would have been
appreciated.
But in all, the book is a wonderful achievement in a very short time (maybe this explains

the spelling Komolgorov. . . ) and it is extremely useful to get the word to a large audience.
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Thomas Hales. Dense Sphere Packings: A Blueprint for Formal Proofs. Cambridge
University Press, Cambridge, 2012, xiv + 271 pp.
In 1611, Johannes Kepler asserted that the highest density that can be achieved when

arranging infinitely many congruent spheres in three-dimensional space is attained by the
face-centered cubic packing, in which the spheres are arranged in hexagonal layers much the
way that oranges are stacked at the grocery store. In August 1998, Thomas Hales announced
a proof of Kepler’s conjecture, obtained with his student, Samuel Ferguson. Like the proof of
the four-color theorem, the proof of theKepler conjecture reduced the problem to an extensive
calculation that was then carried out by computer. Specifically, the proof shows that any
counterexample to theKepler conjecture would imply the existence of a finite arrangement of
spheres satisfying certain properties, giving rise, in turn, to a certain combinatorial structure.
Computer code then produced an exhaustive enumeration of the possible combinatorial
structures; to be realized geometrically, any such structure would have to satisfy certain
inequalities. Using branch-and-bound methods, these inequalities were relaxed to linear
ones, atwhich point linear programmingmethodswere used to demonstrate their infeasibility.
In other words, the computations showed that there is no finite arrangement of spheres of
the kind guaranteed by a putative counterexample. The proof thus consisted of a traditional
mathematical argument (250pages at the time) combinedwith a substantial bodyof computer
code used to carry out the calculations.
In 1999, theAnnals ofMathematics assigned a panel of twelve referees the task of reviewing

the proof. After four years, the panel reported that they were “99% certain” that the proof
was correct, but did not have the means to verify the correctness of the accompanying code.
This unsatisfying state of affairs prompted Hales to embark on a project that he named
“Flyspeck,” to develop a computer-checked axiomatic proof.
The emerging field of formal verification uses logic-based computational methods to ensure

the correctness of hardware and software design with respect to specifications, as well as the
correctness of mathematical claims. One approach, known as interactive theorem proving, has
users working with a computational system to construct a detailed deductive proof, starting
from a small foundational system of axioms and rules. Such a formal derivation can even be
checked independently of the system that constructs it. The technology needed to bridge the
gap between such a low-level axiomatic presentation and an ordinary, informal mathematical
proof is nontrivial, but there have already been impressive achievements along these lines.
One such accomplishment is the formalization of the Feit–Thompson Odd Order Theorem
by a team of researchers led by Georges Gonthier, announced in late 2012. (For surveys,
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see J. Avigad and J. Harrison. Formally verified mathematics.Communications of the ACM,
57(2014), pp. 66–75 and T.Hales.Developments in formal proofs. Séminaire Bourbaki, 66éme
année, no. 1086, June 2014.)
On August 10, 2014, Hales announced that he and a team of researchers had succeeded

in verifying the Kepler conjecture, concluding the project he had begun in 2003. The bulk of
the proof was carried out in an interactive proof system known as HOL Light, although the
enumeration of the relevant combinatorial configurations — tame hypermaps—was verified
using a systemknown as Isabelle. The book under review,Dense Sphere Packings, was written
to support the formalization of the textual part of the proof, which Hales managed to stream-
line using ideas from Gonthier and Christian Marchal. (The project also made important
contributions in developing methods for verifying the accompanying computations.)
As the subtitle suggests, formal verification is the subtext throughout. The book opens with

colorful quotations that encourage us to reflect on the relationship between foundationalism,
computation, andproof, andHales’ prefacemakes a strong case for the role of formalmethods
in mathematics: “In my view, the choice between the conventional process by a human referee
and computer verification is as evident as the choice between a sundial and an atomic clock
in science.” An appendix summarizes the state of the verification project in May, 2012. But
between the preface and appendix, the role of formal verification is left implicit, and we are
given a wonderfully clear and illuminating presentation of the mathematics itself. The book
is divided into three parts: the first provides an overview of the proof; the second develops
the requisite background in trigonometry and measure theory, as well as key combinatorial
and geometric notions (specifically, hypermaps and fans); and the third presents the central
argument.
There are a number of reasons thatDense Sphere Packings should be of interest tomembers

of the Association for Symbolic Logic. To start with, there is its historic importance: the
increasing complexity of mathematical proofs and the increasing use of computers to deliver
mathematical results make it inevitable that formal methods will eventually play a key role in
supporting mathematical reasoning and ensuring correctness. The verification of the Kepler
conjecture is an important landmark in this regard.
But the book is also notable for what it tells us about the nature of mathematical proof.

The three pillars of modern logic are computability, definability, and provability, and while
important strides have been made in the theory of computation and semantics, we have not
progressed much beyond the basic textbook notions of theory and proof: we generally view a
“theory” as a deductively closed set of sentences, and a “proof” as a sequence of assertions,
each either an axiom of the theory or justified by a logical rule of inference. In reality, a
mathematical theory is much more than that: it is a highly structured body of knowledge,
embodying patterns of reasoning, ways of thinking, methods of problem solving, and means
of calculation. A proof is similarly structured, marshaling those theoretical resources towards
obtaining the desired result. Preparing the proof of the Kepler conjecture for formalization
involved laying out the components with clearly demarcated interfaces and intended uses,
and the resulting presentation illuminates the higher-level structure.
The best reason to spend time with the book, however, is that it presents a beautiful

proof, in a manner that is clear, thoughtful, and engaging. Like any really good piece of
mathematics, the result has something to tell us about the nature of mathematics itself, and
there is a lot here to think about and enjoy.
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Johan van Benthem.Logic in Games.TheMIT Press, Cambridge MA, 2014, xv + 547 pp.
Logic in Games by Johan van Benthem is split into two broad topics. Logic of games on

the one hand, and logic as games on the other. Parts I–III cover the former, with the latter
covered by parts IV–VI.
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