
TLP 8 (3): 323–361, 2008. C© 2008 Cambridge University Press

doi:10.1017/S1471068407003183 First published online 15 January 2008 Printed in the United Kingdom

323

Querying XML documents
in logic programming�

J. M. ALMENDROS-JIMÉNEZ, A. BECERRA-TERÓN

and F. J. ENCISO-BAÑOS

Dpto. de Lenguajes y Computación, Universidad de Almeŕıa

(e-mail: {jalmen,abecerra,fjenciso}@ual.es)

submitted 4 May 2006; revised 18 Sep 2007; accepted 18 October 2007

Abstract

Extensible Markup Language (XML) is a simple, very flexible text format derived from

SGML. Originally designed to meet the challenges of large-scale electronic publishing, XML

is also playing an increasingly important role in the exchange of a wide variety of data on the

Web and elsewhere. XPath language is the result of an effort to provide address parts of an

XML document. In support of this primary purpose, it becomes in a query language against

an XML document. In this paper we present a proposal for the implementation of the XPath

language in logic programming. With this aim we will describe the representation of XML

documents by means of a logic program. Rules and facts can be used for representing the

document schema and the XML document itself. In particular, we will present how to index

XML documents in logic programs: rules are supposed to be stored in main memory, however

facts are stored in secondary memory by using two kind of indexes: one for each XML tag,

and other for each group of terminal items. In addition, we will study how to query by means

of the XPath language against a logic program representing an XML document. It evolves

the specialization of the logic program with regard to the XPath expression. Finally, we will

also explain how to combine the indexing and the top-down evaluation of the logic program.

KEYWORDS: Logic Programming, XML, XPath.

1 Introduction

Extensible Markup Language (XML) (W3C 2007a) is a simple, very flexible text

format derived from SGML. Originally designed to meet the challenges of large-

scale electronic publishing, XML is also playing an increasingly important role in

the exchange of a wide variety of data on the Web and elsewhere.

XPath language (W3C 2007b) is the result of an effort to provide address parts

of an XML document. In support of this primary purpose, it becomes in a query

language against an XML document, providing basic facilities for manipulation of

� This work has been partially supported by the EU (FEDER) and the Spanish MEC under grant
TIN2005-09207-C03-02.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

324 J. M. Almendros-Jiménez et al.

strings, numbers and booleans. XPath uses a compact, non-XML syntax to facilitate

the use of XPath within URIs and XML attribute values. XPath operates on the

abstract, logical structure of an XML document, rather than its surface syntax.

XPath gets its name from its use of a path notation as in URLs for navigating

through the hierarchical structure of an XML document.

Essential to semi-structured data (Abiteboul et al. 2000) is the selection of data

from incompletely specified data items as in an XML document. For such data

selection, the XPath language is a path language which provides constructors similar

to regular expressions and “wildcards” allowing a flexible node retrieval. The XML

schema (W3C 2001), which is also an XML document, defines the structure of

well-formed documents and thus it can be seen as a type definition.

The integration of logic programming languages and web technologies, in particular

XML data processing, is interesting from the point of view of the applicability of

logic programming.

On one hand, XML documents are the standard format of exchanging information

between applications, therefore logic languages should be able to handle and query

such documents.

On the other hand, logic languages could be used for extracting and inferring

semantic information from XML documents, in the line of “Semantic Web” require-

ments (Berners-Lee et al. 2001). Therefore logic languages can find a natural and

interesting application field in this area.

1.1 Contributions of this paper

In this paper, we are interested in the use of logic programming for handling XML

documents and XPath queries. In this context, our contributions can be summarized

as follows:

1. An XML document can be seen as a logic program by considering facts and

rules for expressing both the XML schema and document.

On one hand, rules can describe the schema of an XML document in which a

(possibly recursive) definition specifies the well-formed documents.

On the other hand, each XML document can be described by means of facts, one

for each terminal item (i.e. the XML tree leaves). Although the XML schema

is usually available for XML documents, our method has been studied for

extracting the XML schema from the XML document itself. It can be considered

in a certain sense as a type inference. As future work, we will consider to adapt

our technique to directly translate XML schemas into logic rules.

2. Our second contribution is the following: once XML documents can be described

by means of a logic program, an XPath expression against the document requires

to obtain a subset of the Herbrand model (Apt 1990) represented by the logic

program. In other words, only a subset of the facts representing the XML

document is required for each XPath query.

Our idea is to provide a specialization program method in order to retrieve only

the subset of the Herbrand model required for answering the query. In other

words, we will specialize the logic program representing an XML document with

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 325

regard to an XPath expression in order to get the answer; that is, the XML data

relevant to the query.

Basically, the specialization technique will consist on specialization of rules by

removing and reordering predicates. It will be achieved on the rules for the

schema of the XML document, which now can be used for retrieving a subset

of the set of facts representing the XML document. In addition, for each XPath

query, a specific goal (or goals) is called, where appropriate arguments can be

instantiated. It depends on the occurrences of boolean conditions in the XPath

expression.

3. Our technique allows the handling of XML documents as follows.

Firstly, the XML document is loaded. It involves the translation of the XML

document into a logic program. For efficiency reasons, the rules corresponding to

the XML schema are loaded in main memory, but facts, which basically represent

the XML document, are stored in secondary memory (using appropriate indexing

techniques) whenever they do not fit in main memory.

Secondly, the user can now write queries against the loaded document. For query

solving the logic program (corresponding to the XML schema) is specialized for

each query, and the top-down evaluation of such specialized program computes

the answer. The indexing technique allows that the query solving is more efficient,

that is, it uses indexes for retrieving the facts required for the answer.

4. We have developed a prototype called XIndalog which implements XPath

following the technique presented in this paper. This prototype is hosted at

http://indalog.ual.es/XIndalog in order to be tested.

We have tested our prototype with not enough structured documents and

complex queries, and with big documents of different sizes. We will show

benchmarks of our prototype, comparing answer times with and without our

specialization technique.

Our approach opens two promising research lines.

• The first one, the extension of XPath to a more powerful query language such

as XQuery (W3C 2007c; Chamberlin et al. 2004; Wadler 2002; Chamberlin

2002; Simeon and Wadler 2003; Fernández et al. 2000), that is, the study of

the implementation of XQuery in logic programming.

The current implementations of XQuery are implemented using as host

language a functional language (see the Galax project (Chamberlin et al.

2004; Fernández and Simeon 2003; Marian and Simeon 2003)).

• The second one, the use of logic programming as inference engine for the

so-called “Semantic Web” (Berners-Lee et al. 2001; Decker et al. 2000), by

introducing semantic information like RDF (Resource Description Framework)

documents (W3C 2004b) or OWL (Ontology Web Language) specifications

(W3C 2004a) in the line of (Wolz 2004; Grosof et al. 2003; Horrocks and

Patel-Schneider 2004).

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

326 J. M. Almendros-Jiménez et al.

1.2 Related Work

The integration of declarative programming and XML data processing is a research

field of increasing interest in the last years. There are proposals of new languages for

XML data processing based on functional, and logic programming (see (Bailey et al.

2005) for a survey). In addition, XPath and XQuery have been also implemented in

declarative languages.

The most relevant contribution is the Galax project (Marian and Simeon 2003;

Chamberlin et al. 2004), which is an implementation of XQuery in functional

programming, using OCAML(Rémy 2002) as host language. There are also proposals

for new languages based on functional programming rather than implementing

XPath and XQuery. This is the case of XDuce (Hosoya and Pierce 2003) and

CDuce (Benzaken et al. 2005), which are languages for XML data processing, using

regular expression pattern matching over XML trees, subtyping as basic mechanism,

and OCAML as host language. The CDuce language does fully statically-typed

transformation of XML documents, thus guaranteeing correctness. In addition,

there are proposals around Haskell for the handling of XML documents, such as

HaXML (Thiemann 2002; Atanassow et al. 2004) and (Wallace and Runciman 1999).

There are also contributions in the field of logic programming for the handling

of XML documents. For instance, the Xcerpt project (Schaffert and Bry 2002; Bry

and Schaffert 2002a) proposes a pattern and rule-based query language for XML

documents, using the so-called query terms including logic variables for the retrieval

of XML elements. For this new language a specialized unification algorithm for

query terms has been studied in (Bry and Schaffert 2002b). Another contribution of

a new language is XPathLog (the Lopix system) (May 2004) which is a Datalog-

style extension for XPath with variable bindings. Elog (Baumgartner et al. 2001)

is also a logic-based XML data manipulation language, which has been used for

representing Web documents by means of logic programming. This is also the case

of XCentric (Coelho and Florido 2003, 2004), which can represent XML documents

by means of logic programming, and handles XML documents by considering terms

with functions of flexible arity and regular types. Finally, FNPath (Seipel 2002) is a

proposal in order to use Prolog as query language for XML documents based on a

field-notation, for evaluating XPath expressions based on DOM.

The Rule Markup Language (RuleML) (Boley 2001, 2000a,b) is a different kind of

proposal in this research area. The aim of RuleML is the representation of Prolog

facts and rules in XML documents, and thus, the introduction of rule systems into

the Web.

Finally, some well-known Prolog implementations include libraries for loading

and querying XML documents, such as SWI-Prolog (Wielemaker 2005) and CIAO

(Cabeza and Hermenegildo 2001).

In the cited logic approaches interested in XPath queries (Schaffert and Bry

2002; May 2004) XPath is directly handled, that is, rules and queries use a

new kind of Prolog terms adapted to XML patterns. It involves to study new

unification algorithms for the new Prolog terms. However, in our work we will

show how to handle XML documents not introducing new Prolog terms, but

using the standard Prolog terms. In addition, in our case, XPath queries evolve a

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 327

program transformation. The top-down evaluation of the goals w.r.t. the transformed

program obtains a set of answers which represents a subset of the Herbrand model

of the transformed program. This subset allows the reconstruction of the XML

document representing the answer. The reconstruction follows the same criteria as

the translation of XML document-logic program.

Our proposal requires the representation of XML documents into logic program-

ming, and thus it can be compared with those ones representing XML documents

in logic programming for instance, (Schaffert and Bry 2002; Coelho and Florido

2003; Cabeza and Hermenegildo 2001; Wielemaker 2005) and, with those ones

representing XML documents in relational databases for instance, (Boncz et al.

2005; O’Neil et al. 2004; Tatarinov et al. 2002). In our case, rules are used for

expressing the structure of well-formed XML documents, and XML elements are

represented by means of facts. Moreover, our handling of XML documents is more

“database-oriented” since we use secondary memory and file indexing in order to

retrieve the database records. The reason for such decision is that XML documents

can usually be too big for main memory (Marian and Simeon 2003).

With regard to RuleML (Boley 2001), we translate XML documents into a logic

program using facts and rules; however we are not still interested in the translation

of logic rules into XML (or RDF) documents. This translation would be interesting

when semantic information is handled by means of logic programming. In fact, our

idea is to consider these aspects as future work in the line of (Wolz 2004; Grosof

et al. 2003; Horrocks and Patel-Schneider 2004).

There is an analogy among our specialization technique and the magic sets-

based program specialization technique used for deductive databases, which uses the

bottom-up evaluation for answering queries. We have also studied such technique

for XML documents in a previous work (Almendros-Jiménez et al. 2006). In fact,

we have developed two releases of XIndalog: one of them implements the top-down

approach presented in this paper and the other one implements the bottom-up

approach.

The main differences between the top-down and the bottom-up approaches are

the program transformation technique and evaluation method of queries. In the

second case, we use: (1) the fix-point operator in order to evaluate XPath queries,

and (2) a magic sets based technique in order to specialize and evaluate the program.

With respect to the transformation of XML documents into a logic program, let us

remark that this one in both approaches is the same. However, the specialization

technique is different, the technique of this paper is based on predicate removing

and reordering, and the instantiation of the goals called in a top-down fashion.

1.3 Structure of the Paper

The structure of the paper is as follows. Section 2 will review basic concepts

of XML documents and XPath queries; section 3 will study the translation of

XML documents into Prolog; section 4 will present the program specialization

technique applied to XPath queries; section 5 will prove theoretical results about

our technique; section 6 will show the indexing technique over XML documents

represented by means of logic programming and will explain the combination of

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

328 J. M. Almendros-Jiménez et al.

the indexing and program specialization techniques; section 7 will show the Web

prototype developed under SWI-Prolog for the language XPath at the University

of Almeria (http://indalog.ual.es/Xindalog), presenting benchmarks of our

prototype; and finally, section 8 will conclude and present future work.

2 XML and XPath

An XML document basically is a labeled tree with inner nodes representing composed

or non-terminal items and leaves representing values or terminal items. For instance,

let us consider the following XML document which we will use in the paper as

running example:

<books>

<book year=“2003”>

<author>Abiteboul</author>

<author>Buneman</author>

<author>Suciu</author>

<title>Data on the Web</title>

<review>A fine book.</review>

</book>

<book year=“2002”>

<author>Buneman</author>

<title>XML in Scotland</title>

<review>The best ever!</review>

</book>

</books>

In the XML document, the tags are used for specifying a set of books described by

means of author’s names, the title and a review. Each book is qualified by means an

attribute called year . For each element book , we have three grouped subelements

author , title and review . In addition, the element review contains subelements used

for formatting the text described by the review.

Here, the XML database includes two books. The first one, edited in 2003, with

authors Abiteboul, Buneman and Suciu, and title “Data on the Web.” Finally, the

opinion of the reviewer for this book was: “A fine book.” The second one, edited in

2002, was written by Buneman with title XML in Scotland, and the opinion of the

reviewer was “The best ever!”.

XML documents describe data by means of a semi-structured data model

(Abiteboul et al. 2000), whose main features are the occurrences of heterogeneous

records, and in particular, non-first normal relations, missing values, among others.

Now, with respect to the above XML document, we can consider the following

two XPath expressions, as well as the expected answers in XML format:

XPath Expression Expected XML Answer

(1) /books/book[author=“Suciu”]/title (1) <title>Data on the Web</title>

—————————————- —————————————-

(2) /books//title
(2) <title>Data on the Web</title>

(2) <title>XML in Scotland</title>

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 329

where (1) requests Suciu’s book titles, and (2) requests book titles without taking

into account the structure of the book records.

3 Translating XML Documents into Logic Programming

In this section, we will show how to translate an XML document into a logic

program. We will use a set of rules for describing the XML schema and a set of

facts for storing the XML document.

In general, an XML document includes:

(a) tagged elements which have the form:

< tag att1 = v1 , . . . , attn = vn > subelem1 , . . . , subelemk < /tag >

where att1 , . . . , attn are the attributes names, v1 , . . . , vn are the attribute values

supposed to have a basic type: strings, integers, real numbers, lists of integers

or real numbers, and subelem1 , . . . , subelemk are subelements; and

(b) untagged elements which have a basic type.

Terminal tagged elements (i.e. XML tree leaves) are those ones whose subelements

have a basic type and do not have attributes. Otherwise they are called non-terminal

tagged elements (i.e. inner nodes). Two tagged elements are similar whether they have

the same structure; that is, they have the same tag and attributes names, and the

subelements are similar. Untagged elements are always similar. Two tagged elements

are distinct if they do not have the same tag and, finally, they are weakly distinct if

they have the same tag but they are not similar.

3.1 Numbering XML documents

In order to define our translation we need to number the nodes of the XML

document. Similar kinds of node numbering have been studied in some works about

XML processing in relational databases (Boncz et al. 2005; O’Neil et al. 2004;

Tatarinov et al. 2002). Our goal is similar to these approaches: to identify each inner

node and leaf of the tree represented by the XML document.

Given an XML document we can consider a new XML document called node-

numbered XML document as follows. Starting from the root element numbered

as 1, the node-numbered XML document is numbered using an attribute called

nodenumber1 where each j -th child of a tagged element is numbered with the

sequence of natural numbers i1it .j whenever the parent is numbered as i1it :

< tag att1 = v1 , . . . , attn = vn , nodenumber = i1.it.j >

elem1 , . . . , elems < /tag >

This is the case of tagged elements; If the j-th child has a basic type and the

parent is a non-terminal tagged element then the element is labeled and numbered

as follows:

< unlabeled nodenumber = i1.it.j > elem < /unlabeled >

1 It is supposed that “nodenumber” is not already used as attribute in the original XML document.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

330 J. M. Almendros-Jiménez et al.

Otherwise the element is not numbered. It gives to us a hierarchical and left-to-right

numbering of the nodes of an XML document. An element in an XML document

is further left in the XML tree than another when the node number is smaller w.r.t.

the lexicographic order on sequences of natural numbers. The node numbered XML

document corresponding to the running example is as follows:

<books nodenumber=1>

<book year=“2003”, nodenumber=1.1>

<author nodenumber=1.1.1>Abiteboul</author>

<author nodenumber=1.1.2>Buneman</author>

<author nodenumber=1.1.3>Suciu</author>

<title nodenumber=1.1.4>Data on the Web</title>

<review nodenumber=1.1.5>

<unlabeled nodenumber=1.1.5.1> A </ unlabeled>

<em nodenumber=1.1.5.2>fine

<unlabeled nodenumber=1.1.5.3> book. </ unlabeled>

</review>

</book>

<book year=“2002” nodenumber=1.2>

<author nodenumber=1.2.1>Buneman</author>

<title nodenumber=1.2.2 >XML in Scotland</title>

<review nodenumber=1.2.3 >

<em nodenumber=1.2.3.1>

<unlabeled nodenumber=1.2.3.1.1> The </unlabeled>

<em nodenumber=1.2.3.1.2>best

<unlabeled nodenumber=1.2.3.1.3> ever! </unlabeled>

</review>

</book>

</books>

In addition, we have to consider a new document called type and node-numbered

XML document numbered using an attribute called typenumber as follows. Starting

the numbering from 1 in the root of the node-numbered XML document, each

tagged element is numbered as:

< tag att1 = v1 , . . . , attn = vn , nodenumber = i1 , it .j , typenumber = k >

elem1 , . . . , elems < /tag >

and

< unlabeled nodenumber = i1it .j , typenumber = k >

elem < /unlabeled >

for “unlabeled” nodes. In both cases, the type number of the tag is k = l + n + 1

whenever the type number of the parent is l, and n is the number of tagged elements

weakly distinct to the parent, occurring in leftmost positions at the same level of

the XML tree. Therefore, all the children of a tag have the same type number.

For instance, with respect to the running example, we can see in the Figure 1 the

type and node numbering which represent the following type and node numbered

XML document.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 331

Fig. 1. Type and node numbering in the XML tree of the running example.

<books nodenumber=1, typenumber=1>

<book year=“2003”, nodenumber=1.1, typenumber=2>

<author nodenumber=1.1.1 typenumber=3>Abiteboul</author>

<author nodenumber=1.1.2 typenumber=3>Buneman</author>

<author nodenumber=1.1.3 typenumber=3>Suciu</author>

<title nodenumber=1.1.4 typenumber=3>Data on the Web</title>

<review nodenumber=1.1.5 typenumber=3>

<unlabeled nodenumber=1.1.5.1 typenumber=4> A </ unlabeled>

<em nodenumber=1.1.5.2 typenumber=4>fine

<unlabeled nodenumber=1.1.5.3 typenumber=4> book. </ unlabeled>

</review>

</book>

<book year=“2002” nodenumber=1.2, typenumber=2>

<author nodenumber=1.2.1 typenumber=3>Buneman</author>

<title nodenumber=1.2.2 typenumber=3>XML in Scotland</title>

<review nodenumber=1.2.3 typenumber=3>

<em nodenumber=1.2.3.1 typenumber=5>

<unlabeled nodenumber=1.2.3.1.1, typenumber=6> The </unlabeled>

<em nodenumber=1.2.3.1.2, typenumber=6>best

<unlabeled nodenumber=1.2.3.1.3,typenumber=6> ever! </unlabeled>

 </review>

</book>

</books>

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

332 J. M. Almendros-Jiménez et al.

Let us focus our attention to the type numbering of review. According to the

proposed type numbering, the children of review are numbered as k = l + n + 1

where l is the type number of review, and n is the number of weakly distinct records

of review at the same level of the tree. Therefore, the first set of children is numbered

as 4 = 3 + 0 + 1 and the second set of children is numbered as 5 = 3 + 1 + 1 (i.e. the

first and second reviews are weakly distinct). This kind of type numbering allows us

to distinguish both kind of records and not to confuse them.

Let us remark that in practice the type and node numbering of XML documents

can be simultaneously generated at the same time as the translation into the logic

program. In fact, the type and node numbered version of the original XML document

is not generated as an XML file.

3.2 Translation of XML documents

Now, the translation of the XML document into a logic program P is as follows. For

each non-terminal tagged element in the type and node numbered XML document:

< tag att1 = v1 , . . . , attn = vn , nodenumber = i , typenumber = k >

elem1 , . . . , elems < /tag >

we consider the following rule, called schema rule:

tag(tagtype(Tagi1 , . . . ,Tagit , [Att1 , . . . ,Attn]),NodeTag , k):-

tagi1 (Tagi1 , [NodeTagi1 |NodeTag], r),

. . .,

tagit (Tagit , [NodeTagit |NodeTag], r),

att1 (Att1 ,NodeTag , r),

. . .,

attn (Attn ,NodeTag , r).

where

• tagtype is a new function symbol used for building a Prolog term containing

the XML document;

• {tagij |ij ∈ {1, . . . , s}, 1 � j � t} is the set of tags of the tagged elements

elem1, . . . , elems;

• Tagi1 , . . . ,Tagit are variables;

• att1 , . . . , attn are the attribute names;

• Att1 , . . . ,Atn are variables, one for each attribute name;

• NodeTagi1 , . . . ,NodeTagit are variables (used for representing the first digit of

the node number of the children).

• NodeTag is a variable (used for representing the node number of the tag).

• k is the type number of tag .

• r is the type number of the tagged elements in elem1, . . . , elems
2

2 Let us remark that given that tag is a tagged element then elem1, . . . , elems have been tagged with
“unlabeled” labels when they had a basic type in the type and node numbered XML document, and
thus all of them have a type number.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 333

In addition, we consider facts of the form:

attj (vj , i , k)

for each 1 � j � n . Finally, for each terminal tagged element in the type and node

numbered XML document:

< tag nodenumber = i , typenumber = k > value < /tag >

we consider the fact:

tag(value, i , k).

In summary, each non-terminal tag (element) is translated into a predicate name,

with three arguments.

The first argument of the predicate is used for building a Prolog term containing

the XML document. It consists of a function symbol named as “elementname+type”

with an argument for each subelement and an additional argument for storing the

list of attributes.

The second argument of the predicate is used for numbering each node of the

XML document tree, and the third one is use for numbering each type.

Finally, each terminal element and attribute is translated into a fact.

Let us remark that the same “elementname + type” function symbol could have

several occurrences with different arity depending on the document includes weakly

distinct elements or not.

From a type and node numbered XML document X, we can build a unique

program P, and conversely, from a logic program P we can build a unique type

and node numbered XML document X.

The logic program obtained from a document X is denoted by Prog(X), and the

XML document obtained from a program P is denoted by Doc(P). In addition,

Doc(Prog(X)) = X and Prog(Doc(P)) = P.

Moreover, we can associate from our translation to each tag a set of patterns of

the form tagtype(Tag, [Att]), denoted by PT (tag).

Finally, to each pattern t of PT (tag), we can associate the set of type numbers

{r1, . . . , rn} assigned to t in our translation–there could be more than one type

number for one pattern due to occurrences of weakly distinct elements. This set is

denoted by TN(t), and pattern instances tθ have the same set of type numbers, that

is, TN(tθ) =def TN(t) for all θ.

3.3 Examples

For instance, the running example can be represented by means of a logic program

as follows:

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

334 J. M. Almendros-Jiménez et al.

Rules (Schema):

—————————————-

books(bookstype(Books, []), NodeBooks,1) :-

book(Books, [NodeBook|NodeBooks],2).

book(booktype(Author, Title, Review, [Year]), NodeBook ,2) :-

author(Author, [NodeAuthor|NodeBook],3),

title(Title, [NodeTitle|NodeBook],3),

review(Review, [NodeReview|NodeBook],3),

year(Year, NodeBook,3).

review(reviewtype(Unlabeled,Em,[]),NodeReview,3):-

unlabeled(Unlabeled,[NodeUnlabeled|NodeReview],4),

em(Em,[NodeEm|NodeReview],4).

review(reviewtype(Em,[]),NodeReview,3):-

em(Em,[NodeEm|NodeReview],5).

em(emtype(Unlabeled,Em,[]),NodeEms,5) :-

unlabeled(Unlabeled,[NodeUnlabeled|NodeEms],6),

em(Em, [NodeEm|NodeEms],6).

Facts (Document):

——————————————

year(’2003’, [1, 1], 3).

author(’Abiteboul’, [1, 1, 1], 3).

author(’Buneman’, [2, 1, 1], 3).

author(’Suciu’, [3, 1, 1], 3).

title(’Data on the Web’, [4, 1, 1], 3).

unlabeled(’A’, [1, 5, 1, 1], 4).

em(’fine’, [2, 5, 1, 1], 4).

unlabeled(’book.’, [3, 5, 1, 1], 4).

year(’2002’, [2, 1], 3).

author(’Buneman’, [1, 2, 1], 3).

title(’XML in Scotland’, [2, 2, 1], 3).

unlabeled(’The’, [1, 1, 3, 2, 1], 6).

em(’best’, [2, 1, 3, 2, 1], 6).

unlabeled(’ever!’, [3, 1, 3, 2, 1], 6).

Here we can see the translation of each tag into a predicate name: books , book , etc.

Each predicate has three arguments:

The first one, used for representing the XML document structure, is encapsulated

into a function symbol with the same name as the tag adding the suffix type.

Therefore, we have bookstype, booktype, etc.

The second argument is used for numbering each node. For instance, the three

facts for the authors of the first book are numbered [1 , 1 , 1], [2 , 1 , 1] and [3 , 1 , 1],

representing the authors ′Abiteboul ′, ′Buneman ′ and ′Suciu ′, respectively, and [1 , 2, 1]

for representing ′Buneman ′ in the second book (see Figure 1). Let us remark that

the numbering in the facts is in reverse order with respect to the numbering in the

node numbered XML document due to the use of lists for representing them.

The third argument of the predicate is a number used for numbering each type.

The type number is needed to distinguish weakly distinct elements. For instance,

the tag review has two rules, one for the case: “A fine book .”

and other one for the case “ The best ever! , ”

where in the first case the sole emphasized text is ′fine′, and in the second case all is

emphasized, and ′best ′ is doubled emphasized. The facts and rules in this case are:

unlabeled(’A’, [1, 5, 1, 1], 4).

em(’fine’, [2, 5, 1, 1], 4).

unlabeled(’book.’, [3, 5, 1, 1], 4).

unlabeled(’The’, [1, 1, 3, 2, 1], 6).

em(’best’, [2, 1, 3, 2, 1], 6).

unlabeled(’ever!’, [3, 1, 3, 2, 1], 6).

review(reviewtype(Unlabeled,Em,[]),NodeReview, 3):-

unlabeled(Unlabeled,[NodeUnlabeled|NodeReview],4),

em(Em,[NodeEm|NodeReview],4).

review(reviewtype(Em,[]),NodeReview,3):-

em(Em,[NodeEm|NodeReview],5).

em(emtype(Unlabeled,Em,[]), NodeEms,5) :-

unlabeled(Unlabeled,[NodeUnlabeled|NodeEms],6),

em(Em, [NodeEm|NodeEms],6).

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 335

They allow us to distinguish that the first case is built from the first review rule

and the second from the second review rule–together with the em rule. Obviously,

in highly nonstructured documents there could have many schema rules. The same

happens in the case of the following XML document:

<books>

<book year=“2003”>

<author>Abiteboul</author>

<title>Data on the Web</title>

<review>A fine book.</review>

</book>

<book year=“2002”>

<author>Buneman</author>

<title>XML in Scotland</title>

</book>

</books>

where we have two kinds of records, one with author, title, review, and year, and

the second one with author, title, and year. In this case, we have to consider the

following schema rules:

books(bookstype(Book, []), NodeBooks,1):-

book(Book, [NodeBook|NodeBooks],2).

book(booktype(Author, Title, Review, [Year]), NodeBook,2) :-

author(Author, [NodeAuthor|NodeBook],3),

title(Title, [NodeTitle|NodeBook],3),

review(Review, [NodeReview|NodeBook],3),

year(Year, NodeBook,3).

book(booktype(Author, Title, [Year]), NodeBook,2) :-

author(Author, [NodeAuthor|NodeBook],4),

title(Title, [NodeTitle|NodeBook],4),

year(Year, NodeBook,4).

author(’Abiteboul’,[1,1,1],3).

author(’Buneman’,[1,2,1],4).

...

The use of numbers 2-3-3-3-3 and 2-4-4-4 in the above rules, and in the corresponding

facts, allows the distinction of the subelements of Abiteboul and Buneman ’s books.

The use of the same type numbering would suppose ambiguity, given that the

Abiteboul ’s book has also the type described by second rule of book .

On the other hand, whenever in a tagged element there is more than one value

for the same subtag, we introduce one fact for each value, numbered with the same

type number, but distinct node number. For instance, with respect to the running

example:

author(’Abiteboul’, [1, 1, 1], 3).

author(’Buneman’, [2, 1, 1], 3).

author(’Suciu’, [3, 1, 1], 3).

In addition, the attributes of tagged elements are stored in a Prolog list. For

instance, with respect to the following XML document:

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

336 J. M. Almendros-Jiménez et al.

<book year=“2003”,keyword=“XML”>

<author>Abiteboul</author>

<title>Data on the Web</title>

<review>A fine book.</review>

</book>

we will consider the following schema rule:

book(booktype(Author, Title, Review, [Year,Keyword]), NodeBook, 2) :-

author(Author, [NodeAuthor|NodeBook],3),

title(Title, [NodeTitle|NodeBook],3),

review(Review, [NodeReview|NodeBook],3),

year(Year,NodeBook,3),

keyword(Keyword,NodeBook,3).

Finally, each value in a non-terminal tagged element is translated into a fact

called unlabeled . This is the case in the running example of ′A′ and ′book .′ in the

first review, and ′The′ and ′ever!′ in the second one.

4 Program Specialization for XPath Expressions

In this section, we will present the program specialization technique for querying

XPath expressions against an XML document represented by means of a logic

program. Firstly, we present the semantic of the XPath expressions.

4.1 XPath Semantics

An XPath expression xpathexpr has the form /expr1/ . . . /exprn where each simple

XPath expression expri has the form:

1. expr ≡ tag

2. expr ≡ tag[cond]

3. expr ≡ @att

4. expr ≡ text()

and cond is a boolean condition which has the form:

(a) cond ≡ tag = value

(b) cond ≡ @att = value

(c) cond ≡ cond1 and cond2

(d) cond ≡ cond1 or cond2

(e) cond ≡ xpathexpr

The above expressions expri when 1 � i < n can only be chosen from the cases

(1) and (2). We consider only a subset of XPath w.r.t. the XPath specification (W3C

2007b) which can specify paths on XML trees and restricts boolean conditions to

express equalities to values connected with “and” and “or” logic connectives. This

restriction is enough to understand our proposed technique. More complex XPath

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 337

queries can be translated into logic programming following similar ideas. We have

implemented in our prototype a rich set of XPath queries including primitives “*”,

“//”, “/../” , “>”,“<”, etc.

The semantics of the previous XPath expressions is as follows. Given an XML

document, an XPath expression defines a subtree of the XML document. It can be

defined as the subtree obtained from the XML tree satisfying each simple expression

expr in the XPath expression. The semantics of XPath expressions could be defined

as a forest (i.e. a sequence of subtrees) instead of a tree. However, we have adopted

this definition in which an XPath expression defines a rooted document. The root

is the same as the input document and therefore describes a complete branch of the

input document. More concretely:

Given an XML document X and an XPath expression xpathexpr = /exprr . . .

/exprn the subtree of X defined by xpathexpr is denoted by subtree(X, xpathexpr)

and defined as:

(a) If X is a non terminal tagged element and has the form

< tag att1 = v1, . . . , attn = vn > elem1, . . . , elems < /tag >

then

(a.1):

subtree(X, /exprr/ . . . /exprn) =def

< tag att1 = v1, . . . , attn = vn >

subtree(elem1, /exprr+1/ . . . /exprn),

. . . ,

subtree(elems, /exprr+1/ . . . /exprn),

elemi1 ,

. . . ,

elemik

< /tag >

whenever r < n and X satisfies exprr; where elemi1 , . . . , elemik is the subsequence

of elem1, . . . , elems satisfying cond whenever exprr ≡ tag[cond];

(a.2):

subtree(X, /exprn) =def X
whenever r = n and X satisfies exprn; and

(a.3):

subtree(X, /exprr/ . . . /exprn) =def ε

otherwise.

(b) If X is a terminal tagged element then

(b.1):

subtree(X, /exprr/ . . . /exprn) =def X
whenever r = n and X satisfies exprr; and

(b.2):

subtree(X, /exprr/ . . . /exprn) =def ε

otherwise.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

338 J. M. Almendros-Jiménez et al.

(c) If X has a basic type then

(c.1):

subtree(X, /text()) =def X
and

(c.2):

subtree(X, xpathexpr) =def ε

whenever xpathexpr �≡ /text()

where ε denotes the empty sequence.

In addition, an XML document X satisfies a simple XPath expression expr in the

following cases:

(i) X ≡< tag att1 = v1, . . . , attn = vn > elem1, . . . , elems < /tag >

satisfies expr whenever:

(i.1) expr ≡ tag

(i.2) expr ≡ tag[cond] and X satisfies the condition cond, that is:

(i.2.1) cond ≡ tag′ = value and tag′ is a terminal tagged subelement of tag and

the value of tag′ is equal to value.

(i.2.2) cond ≡ @att = value, some atti 1 � i � n is equal to att, and vi is equal

to value.

(i.2.3) cond ≡ cond1 and cond2, X satisfies the condition cond1 and X satisfies

the condition cond2.

(i.2.4) cond ≡ cond1 or cond2, X satisfies the condition cond1 or X satisfies the

condition cond2.

(i.2.5) cond ≡ xpathexpr and subtree(X, /tag/xpathexpr) is a branch of X.

(i.3) expr ≡ @att and some atti 1 � i � n is equal to att

and

(ii) X has a basic type

satisfies expr whenever expr ≡ text().

For instance, w.r.t. the running example, the XPath expression /books/book [author

= “Suciu”]/title defines subtree(X, /books/book[author = “Suciu”]/title) which is

equal to:

<books >

subtree(X′ ,/book[author=“Suciu”]/title)

subtree(X′′ ,/book[author=“Suciu”]/title)

</books>

by case (a.1) of the definition, since there is no boolean conditions in books, where

X′ is:

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 339

<book year=“2003”>

<author>Abiteboul</author>

<author>Buneman</author>

<author>Suciu</author>

<title>Data on the Web</title>

<review>A fine book.</review>

</book>

and X′′ is:

<book year=“2002”>

<author>Buneman</author>

<title>XML in Scotland</title>

<review>The best ever!</review>

</book>

In addition, subtree(X′, /book[author = “Suciu”]/title) is equal to:

<book year=“2003”>

<author>Suciu</author>

subtree(X′′′ ,/title)

</book>

by case (a.1) of the definition, given that the boolean condition [author = “Suciu”]

is satisfied by < author > Suciu < /author >, by case (i.2.1) of definition, and is

not satisfied by < author > Abiteboul < /author > and < author > Buneman <

/author >. In addition, X′′′ is:

<title>XML in Scotland</title>

and subtree(X′′, /book[author = “Suciu”]/title) = ε, by case (a.3) of the definition.

Finally, subtree(X′′′, /title) is equal to:

<title>XML in Scotland</title>

by case (a.2) of the definition. Therefore subtree(X, /books/book[author = “Suciu”]/

title) is equal to:

<books>

<book year=“2003”>

<author>Suciu</author>

<title>XML in Scotland</title>

</book>

</books>

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

340 J. M. Almendros-Jiménez et al.

In other words, the subtree defined by an XPath expression can be seen as the

subtree of the input XML document which is traversed for answering the query.

In practice, the answer to an XPath query consists of the sequence of subtrees (i.e.

the forest) of the tree defined by the XPath expression, whose tag is equal to the

rightmost tag of the XPath query. For instance, in the above example, the answer

would be:

<title>XML in Scotland</title>

given that the rightmost tag of the XPath query is title.

4.2 Schema Rule Specialization

The first step of the program specialization consists of a predicate removing from the

schema rules.

With this aim, we need to map each XPath expression to a so-called free of

equalities XPath expression. Each XPath expression xpathexpr = /expr1 . . . /exprn
can be mapped into a free of equalities XPath expression as follows.

Each simple XPath expression expr can be mapped into a free of equalities simple

XPath expression denoted by FE(expr). Analogously, we need to define FE(cond)

which is a free of equalities boolean condition associated to a boolean condition cond.

They are defined as follows, distinguishing cases in the form of expr and cond.

1. expr ≡ tag: FE(expr) =def expr.

2. expr ≡ tag[cond]: FE(expr) =def tag[FE(cond)]

3. expr ≡ @att: FE(expr) =def @att

4. expr ≡ text(): FE(expr) =def text()

5. cond ≡ tag = value: FE(expr) =def tag

6. cond ≡ @att = value: FE(expr) =def @att

7. cond ≡ cond1 and cond2: FE(expr) =def FE(cond1) and FE(cond2)

8. cond ≡ cond1 or cond2: FE(expr) =def FE(cond1) or FE(cond2)

9. cond ≡ xpathexpr: FE(expr) =def FE(xpathexpr)

Now, given xpathexpr = /expr1/ . . . /exprn then FE(xpathexpr) =def /FE(expr1)/

. . . /FE(exprn). Free of equalities XPath expressions xpathfree are expressions

/fexpr1/ . . . /fexprn where each fexpri, 1 � i � n, has the form:

1. fexpr ≡ tag

2. fexpr ≡ tag[cond]

3. fexpr ≡ @att

4. fexpr ≡ text()

and cond is a free of equalities boolean condition which has the form:

(a) cond ≡ cond1 and cond2

(b) cond ≡ cond1 or cond2

(c) cond ≡ xpathfree

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 341

Free of equalities XPath expressions define a subtree of the XML document in

which some subpaths of the XML document must exist due to occurrences of free

of equalities boolean conditions.

For instance, in the running example, FE (/books/book [author = “Suciu”]/title)

= /books/book [author] /title, and the subtree of the (type and node numbered)

XML document which corresponds with the XPath expression /books/book [author]

/title is as follows:

<books nodenumber=1, typenumber=1>

<book year=“2003”, nodenumber=1.1, typenumber=2>

<author nodenumber=1.1.1 typenumber=3>Abiteboul</author>

<author nodenumber=1.1.2 typenumber=3>Buneman</author>

<author nodenumber=1.1.3 typenumber=3>Suciu</author>

<title nodenumber=1.1.4 typenumber=3>Data on the Web</title>

</book>

<book year=“2002” nodenumber=1.2, typenumber=2>

<author nodenumber=1.2.1 typenumber=3>Buneman</author>

<title nodenumber=1.2.2 typenumber=3>XML in Scotland</title>

</book>

</books>

Let us remark that the boolean condition [author] forces to include each author

in the subtree represented by the free of equalities XPath expression /books/book

[author]/ title.

Now, given a type and node numbered XML document X and an XPath

expression xpathexpr then the specialized program Pxpathexpr obtained from P is

defined as the schema rules for the subtree of X defined by xpathfree, where

xpathfree is the free of equalities XPath expression obtained from xpathexpr,

together with the facts of P. In other words:

Pxpathexpr =def Rules(Prog(subtree(X, FE(xpathexpr)))) ∪ Facts(P)

For instance, with respect to the running example and /books/book [author =

“Suciu”]/title, P/books/book[author=“Suciu”]/title consists of the specialized schema rules:

books(bookstype(Books, []), NodeBooks,1):-

book(Book, [NodeBook|NodeBooks],2).

book(booktype(Author,Title,Review,[Year]),NodeBook,2) :-

author(Author,[NodeAuthor|NodeBook],3),

title(Title,[NodeTitle|NodeBook],3).

together with the set of facts of P.

Let us remark that in practice, the specialized schema rules can be obtained from

the schema rules by removing predicates; that is, removing the predicates in the

schema rules which are not tags in the (free of equalities) XPath expression.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

342 J. M. Almendros-Jiménez et al.

4.3 Generation of Goals

The second step of the specialization program consists of (1) to consider the equalities

removed from the original XPath expression when the free of equalities XPath

expression was generated, and (2) to generate a set of goals from these equalities.

With this aim, each XPath expression xpathexpr can be mapped into a set of

Prolog terms, denoted by PT (xpathexpr), denoting the set of patterns of the query.

These patterns are instances of the “elementname+type” patterns defined in our

translation.

In particular, each simple XPath expression expr can be mapped into a set of

patterns, denoted by PT (expr). This set can be defined as follows, distinguishing

cases in the form of expr:

1. expr ≡ tag: PT (expr) =def ∅.
2. expr ≡ tag[cond]:

(a) cond ≡ tagi = value: PT (expr) =def {tagtype(Tag, [Att]){Tagi → value}|
tagtype(Tag, [Att]) ∈ PT (tag)}.

(b) cond ≡ @atti = value: PT (expr) =def {tagtype(Tag, [Att]){Atti → value}|
tagtype(Tag, [Att]) ∈ PT (tag)}.

(c) cond ≡ cond1 and cond2. PT (expr) =def {tθ|θ = m.g.u.(t, t′), t ∈ PT (tag

[cond1]), t
′ ∈ PT (tag[cond2]))}

(d) cond ≡ cond1 or cond2. PT (expr) =def PT (tag [cond1]) ∪ PT (tag[cond2])

(e) cond ≡ xpathexpr: PT (expr) =def PT (xpathexpr)

3. expr ≡ @att: PT (expr) =def ∅
4. expr ≡ text(): PT (expr) =def ∅

Now,

PT (/expr1/ . . . /exprn) =def {t1θ|θ = m.g.u.(t1, . . . , tn), ti ∈ PT (expri), 1 � i � n}

Now, given a type and node numbered XML document and an XPath expression

xpathexpr then the set of specialized goals for xpathexpr is defined as the set:

Gxpathexpr =def

{tag(Pattern,Node, Type){Pattern → t, Type → r} |

t ∈ PT (xpathexpr), r ∈ TN(t)}
where tag is the leftmost tag in xpathexpr with a boolean condition. If there is no

boolean conditions, the set is defined as:

Gxpathexpr =def

{tag(Pattern,Node, Type){Type → r}|

t ∈ PT (tag), r ∈ TN(t)}
For instance, with respect to /books/book [author = “Suciu”]/title and the run-

ning example PT (/books/ book [author = “Suciu”]/title) = {booktype(′Suciu ′,Title,

Review, [Year])} and TN(booktype(′Suciu′, T itle, Review, [Year])) = {2}. Therefore

the (unique) goal is : −book (booktype(′Suciu ′,Title,Review , [Year]),Node, 2).

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 343

In summary, the handling of an XPath query involves the specialization of the

schema rules of the XML document and the generation of one or more goals. The

goals are obtained from the leftmost tag in the XPath expression with a boolean

condition, instantiated by mean of patterns obtained from the boolean equalities.

4.4 Reconstruction of the answer

In order to rebuild the answer, we have to reason as follows.

A logic program P obtained from an XML document X contains schema rules

and facts of the form att(value, i, r) and tag(value, i, r), and conversely, from this set

of facts and the schema rules we can rebuild the document X.

However, the same (and fragments of the) XML document X can be also obtained

from the schema rules and facts of the form att(value, i, r) and tag(t, i, r) whenever t’s

are Prolog terms of the form tagtype(s, j, k), –t’s are pattern instances– and tag(t, i, r)

belongs to the Herbrand model (with variables) of P.

For instance, from the following fact:

book(booktype(’Abiteboul’, Title, reviewtype(’A ’, fine, []),[’2003’]),[1,1],2).

and the schema rules of the running example, we can rebuild the XML document:

<books nodenumber=1, typenumber=1>

<book year=“2003”, nodenumber=1.1, typenumber=2>

<author nodenumber=1.1.1 typenumber=3>Abiteboul</author>

<review nodenumber=1.1.5 typenumber=3>

<unlabeled nodenumber=1.1.5.1 typenumber=4> A </ unlabeled>

<em nodenumber=1.1.5.2 typenumber=4>fine

</review>

</book>

</books>

Let us remark that the previous fact represents a fragment of the whole XML

document, where the type and node numbering together with the schema rules allow

us to rebuild this fragment of the XML document. In this fact the variable Title

represents a missing value in the XML document.

Therefore when a goal obtained from an XPath expression is called, each answer

of the goal represents a fragment of the XPath query answer.

Given a type and node numbered XML document X, the logic program P
representing X, and an XPath expression xpathexpr, then we can build the XML

document representing the answer, denoted by Doc(xpathexpr,P), as follows:

Doc(xpathexpr,P) =def Doc(Rules(Pxpathexpr)∪
{tag(t, Node, r)θ|θ is an answer of tag(t, Node, r),

w.r.t. Pxpathexpr , tag(t, Node, r) ∈ Gxpathexpr })
Analogously, when the XPath expression xpathexpr has no boolean conditions:

Doc(xpathexpr,P) =def Doc(Rules(Pxpathexpr)∪
{tag(X,Node, r)θ|θ is an answer of tag(X,Node, r),

w.r.t. Pxpathexpr , tag(X,Node, r) ∈ Gxpathexpr })

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

344 J. M. Almendros-Jiménez et al.

Let remark us that our programs have finite answers and thus the previous

definition has sense. In addition, the previous definition defines the XML document

answer of an XPath expression as a complete branch of the input XML document.

For instance, w.r.t. the running example and the XPath expression /books/book

[author = “Suciu”]/title, the (unique) goal is : −book(booktype(′Suciu′, T itle, Review,

[Year], Node, 2), and the (unique) answer of the goal w.r.t. the following specialized

schema rule:

book(booktype(Author,Title,Review,[Year]),NodeBook,2) :-

author(Author,[NodeAuthor|NodeBook],3),

title(Title,[NodeTitle|NodeBook],3).

is θ = {Title / ′Data on the Web′, Node / [1,1] }. Now, from the goal instance

book(booktype(′Suciu′, ′Data on the Web′, Review, [Year], [1,1], 2) obtained from

θ, we can rebuild the answer:

<books nodenumber=1, typenumber=1>

<book nodenumber=1.1, typenumber=2>

<author nodenumber=1.1.1 typenumber=3>Suciu</author>

<title nodenumber=1.1.4 typenumber=3>Data on the Web</title>

</book>

</books>

Therefore, the XML document representing the answer of an XPath expression

is defined as the document obtained from the specialized schema rules and the goal

instances obtained from each answer of the goals.

4.5 Reordering

Finally, there is an optimization in our proposed technique which consists in the re-

ordering of predicates in the schema rules in order to follow a left-to-right evaluation

order of XPath expressions. The aim of such left-to-right evaluation order is to keep

the order of filtering that the user specifies by means of the boolean conditions.

For instance, in the case of the XPath expression /books/book [@year = 2002

and title = “Data on the Web”]/author , the user has required the authors of the

books published in the year 2002 with title “Data on the Web.” Following a left-to-

right evaluation order, firstly, the books are filtered by the year, and after by the

title.

This predicate reordering is as follows. Supposing the XPath expression /books

/book [@year = 2002 and title = “Data on the Web”]/author , the schema rule

specialization should correspond with:

book(booktype(Author, Title, Review, [Year]),NodeBook,2):-

author(Author, [NodeAuthor|NodeBook],3),

title(Title,[NodeTitle|NodeBook],3),

year(Year,NodeBook,3).

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 345

However, in order to follow a left-to-right evaluation order of the XPath expression,

we reorder the predicates in the body of the predicate book and we transform this

schema rule into:

book(booktype(Author, Title, Review, [Year]),NodeBook,2):-

year(Year,NodeBook,3),

title(Title,[NodeTitle|NodeBook],3),

author(Author, [NodeAuthor|NodeBook],3).

in which, firstly, the books are filtered by year, after the titles are obtained, and

finally, the authors are computed.

4.6 Examples

In this section we would like to show some examples of the proposed technique. In

each example, we will show the specialized schema rules, the set of generated goals,

the set of answers, and the answer in the form of an XML document obtained from

the goal instances.

Example 1

For instance, we can suppose an XPath query such as /books/book/author , requiring

the authors in the book database. In this case, we have to consider the unique goal

: −author(Author ,Node, 3), given that PT (author) = {authortype(Author, [])} and

TN(authortype(Author, [])) = {3}. The call of such a goal will compute the answers:

(1) Author/’Abiteboul’ Node/[1,1,1]

(2) Author/’Buneman’ Node/[2,1,1]

(3) Author/’Suciu’ Node/[3,1,1]

(4) Author/’Buneman’ Node/[1,2,1]

which correspond with the following set of goal instances and XML document:

author(’Abiteboul’, [1, 1, 1],3).

author(’Buneman’, [2, 1, 1],3).

author(’Suciu’, [3, 1, 1],3).

author(’Buneman’, [1, 2, 1],3).

<result>

<author>Abiteboul</author>

<author>Buneman</author>

<author>Suciu</author>

<author>Buneman</author>

</result>

Let us remark that answer is packed into a tag called result.

Example 2

Now, we can suppose the XPath expression /books/book . Now, the unique goal is:

−book (Book ,Node, 2), because PT (book) = {booktype(Author, T itle, Review, [Year

])} and TN(booktype(Author, T itle, Review, [Year])) = {2}. The call of the goal

book (Book, Node, 2) computes the following answers:

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

346 J. M. Almendros-Jiménez et al.

(1) Book/booktype(’Abiteboul’, ’Data on the Web’, reviewtype(’A’, ’fine’, []),[’2003’])

Node/[1, 1]

(2) Book/booktype(’Abiteboul’, ’Data on the Web’, reviewtype(’book.’, ’fine’, []), [’2003’])

Node/[1, 1]

(3) Book/booktype(’Buneman’, ’Data on the Web’, reviewtype(’A’, ’fine’, []), [’2003’])

Node/[1, 1]

(4) Book/booktype(’Buneman’, ’Data on the Web’, reviewtype(’book.’, ’fine’, []), [’2003’])

Node/[1, 1]

(5) Book/booktype(’Suciu’, ’Data on the Web’, reviewtype(’A’, ’fine’, []), [’2003’])

Node/[1, 1]

(6) Book/booktype(’Suciu’, ’Data on the Web’, reviewtype(’book.’, ’fine’, []), [’2003’])

Node/[1, 1]

(7) Book/booktype(’Buneman’, ’XML in Scotland’, reviewtype(emtype(’The’, ’best’, []), []), [’2002’])

Node/[2, 1]

(8) Book/booktype(’Buneman’, ’XML in Scotland’, reviewtype(emtype(’ever!’, ’best’, []), []), [’2002’])

Node/[2, 1]

which corresponds with the following document:

<result>

<book year=“2003”>

<author>Abiteboul</author>

<author>Buneman</author>

<author>Suciu</author>

<title>Data on the Web</title>

<review>

A fine book.

</review>

</book>

<book year=“2002”>

<author>Buneman</author>

<title>XML in Scotland</title>

<review>

 The best ever!

</review>

</book>

</result>

Example 3

Let us consider the XPath expression /books/book [author = “Suciu”]/title. In this

case, we have a condition in the form of author = “Suciu”.

Therefore we have to consider (a) the goal : −book (booktype(′Suciu ′,Title,Review ,

[Year]), Node, 2) given that PT (/books/book [author = “Suciu”]/title) = {booktype

(′Suciu′, T itle, Review, [Year])} and TN(booktype(′Suciu′, T itle, Review, [Year])) =

{2}; and we have to consider (b) the following specialized rule:

book(booktype(Author,Title,Review,[Year]),NodeBook,2) :-

author(Author,[NodeAuthor|NodeBook],3),

title(Title,[NodeTitle|NodeBook],3).

In the evaluation, the goal will firstly trigger the retrieval of the books for the

author ′Suciu .′ In particular, it will retrieve the node numbers of Suciu’s books.

It is achieved due to the instantiation of the corresponding argument in the goal.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 347

Afterward, it allows us the retrieval of Suciu ′s book titles, ensuring that Suciu’s

book titles are the only computed ones.

The use of author(Author , [NodeAuthor |NodeBook], 3) is vital for the efficient

retrieval of such titles, given that the node number has been instantiated in this

predicate in the first step. In this case, the first used fact is author(′Suciu ,′ [3 , 1 , 1], 3)

with the node number [3 , 1 , 1] and this node number is used for retrieving the fact

title(′Data on the Web,′ [4 , 1 , 1], 3). Next, we show the (unique) computed answer

by means of the evaluation as well as the XML document represented by the goal

instance:

Title/’Data on the Web’

Review/Review’

Year/Year’

Node/[1, 1]

<result>

<title>Data on the Web</title>

</result>

Let us remark that in the position of year and review , which are not required in

the XPath expression, the goal returns variables (i.e. Review ′, Year ′). That is, the

evaluation does not use the facts for these elements. This is the main effect of our

specialization technique.

Example 4

Now, let us consider the XPath query /books/book [@year = 2002 and title =

“Data on the Web”]/author. In this case, the goal is : −book (booktype(Author ,′ Data

on the Web ′,Review , [′2002 ′]), Node, 2), and the specialized schema rule is:

book(booktype(Author, Title, Review, [Year]),NodeBook,2):-

year(Year,NodeBook,3),

title(Title,[NodeTitle|NodeBook],3),

author(Author, [NodeAuthor|NodeBook],3).

In this specialized schema rule, we can see that the call to review has been removed

from the original schema rule, and the predicates have been reordered with the

aim of following the same order as the XPath expression. That is, the boolean

conditions are checked from left to right (firstly, @year = 2002 and after title =

“Data on the Web”), and finally, the authors are computed. In other words, starting

from the goal book (booktype (Author,′ Data on the Web′, Review , [′2002 ′]),Node, 2),

firstly the retrieval of the books for the year 2002 is triggered. Afterward, the retrieval

of titles for this year (using the node number instantiated in the previous step) is

triggered; concretely the book titled “Data on the Web”. Finally, the authors of

such books are retrieved using node numbers instantiated in the previous steps.

In the case of an “or” connective, that is, /books/book [@year = 2002 or title =

“Data on the Web”]/author, we would have two goals and patterns: : −book (booktype

(Author,′ Data on the Web′, Review , [Year]),Node, 2) and : −book (booktype (Author,

T itle, Review , [′2002 ′]),Node, 2).

Example 5

Let us consider the XPath query /books/book [@year = 2002]/author [name =

“Serge”] with respect to the following XML document:

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

348 J. M. Almendros-Jiménez et al.

<books>

<book year=“2003”>

<author>Abiteboul<name>Serge</name></author>

<title>Data on the Web</title>

<review>A fine book.</review>

</book>

<book year=“2002”>

<author>Buneman <name>Peter</name></author>

<title>XML in Scotland</title>

</book>

</books>

In this case, we have two goals: : −book (booktype (authortype(Unlabeled , ′Serge′, []),

Title, Review, [′2002′]), Node, 2) and : −book (booktype (authortype(Unlabeled ,′Ser-

ge′, []), Title, [′2002′]), Node, 3). There are two goals because there are two weakly

distinct records for the tag book: the first one has the subelement review but not the

second one.

In this case, there are two patterns for the query, that is, PT (/books/book[@year =

2002]/author [name = “Serge”]) = {booktype (authortype(Unlabeled , ′Serge′, []),

Title, Review, [′2002′]), booktype (authortype(Unlabeled, ′Serge′, []), T itle, [′2002′])}.
In addition, there are two type numbers, one for each pattern TN(booktype

(authortype(Unlabeled , ′Serge′, []), Title, Review, [′2002′])) = {2} and TN(booktype

(authortype(Unlabeled, ′Serge′, []), T itle, [′2002′])) = {3}. Now, the specialized

schema rules are:

book(booktype(Author, Title, Review, [Year]),NodeBook,2):-

author(Author, [NodeAuthor|NodeBook],3),

year(Year,NodeBook,3).

book(booktype(Author, Title, [Year]),NodeBook,3):-

author(Author, [NodeAuthor|NodeBook],4),

year(Year,NodeBook,4).

author(authortype(Unlabeled,Name,[]),NodeAuthor,3):-

name(Name,[NodeName|NodeAuthor],4),

unlabeled(Unlabeled,[NodeUnlabeled|NodeAuthor],4).

author(authortype(Unlabaled,Name,[]),NodeAuthor,4):-

name(Name,[NodeName|NodeAuthor],5),

unlabeled(Unlabeled,[NodeUnlabeled|NodeAuthor],5).

5 Theoretical Results

In this section, we will prove the correctness of the proposed technique. Our technique

is correct in the sense that given a type and node numbered XML document X,

the logic program P represented by X, and an XPath expression xpathexpr then

subtree(X, xpathexpr) = Doc(xpathexpr,P). In other words, the subtree of an XML

document defined by means of an XPath expression is the same as the fragment of

XML document build from the answers (w.r.t. the specialized schema rules) of the

set of goal instances obtained from the same XPath expression.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 349

Theorem 1 (Correctness)

Given a type and node numbered XML document X, the logic program P
represented by X, and an XPath expression xpathexpr, then subtree(X, xpathexpr) =

Doc(xpathexpr,P).

Proof

Let xpathexpr be the XPath expression and let xpathfree = FE(xpathexpr) be the

free of equalities XPath expression associated to xpathexpr. Now, we have (1):

Doc(xpathexpr,P) =

Doc(Rules(Pxpathexpr) ∪ {tag(t, Node, r)θ|tag(t, Node, r) ∈ Gxpathexpr})
by definition, where the θ’s are answers w.r.t. Pxpathexpr and t is a variable whenever

xpathexpr has no boolean conditions. Moreover, (2):

Pxpathexpr = Rules(Prog(subtree(X, xpathfree))) ∪ Facts(P)

by definition. Let F be the set of facts used in the answers θ of tag(t, Node, r):

F =def {fθ|f ∈ Facts(P), f is a subgoal of tag(t ,Node, r) in the branch of θ,

tag(t, Node, r) ∈ Gxpathexpr}
Therefore, from (1) and (2), we have (3):

Doc(xpathexpr,P) = Doc(Rules(Pxpathexpr) ∪ F)

Now, we have to prove that (4):

Doc(Rules(Pxpathexpr) ∪ F) = Doc(Rules(Prog(subtree(X, xpathexpr)))

∪Facts(Prog(subtree(X, xpathexpr))))

To prove (4) we have to reason that (5):

X′ =< tag′ att1 = v1, . . . , attn = vn, nodenumber = i, typenumber = k >

elem1, . . . , elems < /tag >

is a non terminal tagged subelement in subtree(X, xpathexpr) iff the schema rule

tag′(tagtype′(Tag, [Att]), Node, k) : −C ∈ Rules(Prog(subtree(X, xpathexpr)))

where C is built from the tags of elem1, . . . , elems and att1, . . . , attn; and X′ satisfies

exprr where xpathexpr = /expr1 . . . /exprr/ . . . /exprm; and, in addition, (6):

X′ =< tag′ nodenumber = i, typenumber = k > elem < /tag >

is a terminal tagged element in subtree(X, xpathexpr) iff

tag′(elem, i, k) ∈ F

(5) is obvious by definition. Let us prove (6). We have to reason that if f

is a subgoal of tag(t, Node, r) and θ is the answer of the branch including f as

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

350 J. M. Almendros-Jiménez et al.

subgoal, then if fθ is a fact we can map fθ into a terminal tagged subelement of

subtree(X, xpathexpr). It follows from the specialization of the schema rules of P
and the choice of the patterns for tag.

Now, from (5) and (6) we can conclude (4) because if X′ satisfies exprr then X′

satisfies FE(exprr) by the definition of satisfiability, and therefore also:

tag′(tagtype′(Tag, [Att]), Node, k) : −C ∈ Rules(Prog(subtree(X, xpathfree)))

and by (1):

Rules(Pxpathexpr) = Rules(Prog(subtree(X, xpathfree)))

Now, from (3) and (4), and taking into account that:

subtree(X, xpathexpr) = Doc(Rules(Prog(subtree(X, xpathexpr)))

∪Facts(Prog(subtree(X, xpathexpr))))

which is trivially true, then we can conclude that:

subtree(X, xpathexpr) = Doc(xpathexpr,P)

6 Indexing

In this section, we will describe how to index XML documents represented by

means of a logic program. In addition, we will show how to combine indexing and

top-down evaluation. The aim of the indexing is to improve the retrieval of facts

from secondary memory and therefore the execution of XPath queries.

In summary, the storing model in our approach is as follows:

• We use main memory for the storing of schema rules.

• We use secondary memory (i.e. files) for the storing of facts.

• We index facts in secondary memory.

• We have two kinds of indexes: one for indexing predicate names, and other one

for indexing group of facts.

The use of main memory for storing the schema rules is justified due to in most

of cases the number of schema rules is small. The use of secondary memory for

storing facts is justified since XML documents can be too big in order to be stored

in main memory.

Fact indexing is justified for efficiency reasons. Firstly, our approach requires

to recover facts for a given predicate; in this case we use the first kind of index.

Secondly, our approach requires to retrieve the elements grouped in the same XML

record (i.e. groups of facts refereed to the same XML record); in this case we use

the second kind of index.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 351

For instance, w.r.t. the running example, we generate the following set of indexes:

first index second index group identifier facts

author

pos(1, 0).

pos(2, 0).

pos(3, 0).

pos(9, 8).

[1 , 1]

(0) year(’2003’, [1, 1], 3).

(1) author(’Abiteboul’, [1, 1, 1], 3).

(2) author(’Buneman’, [2, 1, 1], 3).

(3) author(’Suciu’, [3, 1, 1], 3).

(4) title(’Data on the Web’, [4, 1, 1], 3).

em
pos(6,5).

pos(12,11).
[5 , 1 , 1]

(5) unlabeled(’A ’, [1, 5, 1, 1], 4).

(6) em(fine, [2, 5, 1, 1], 4).

(7) unlabeled(’ book.’, [3, 5, 1, 1], 4).

title
pos(4, 0).

pos(10, 8).
[2 , 1]

(8) year(’2002’, [2, 1], 3).

(9) author(’Buneman’, [1, 2, 1], 3).

(10) title(’XML in Scotland’, [2, 2, 1], 3).

unlabeled

pos(5, 5).

pos(7, 5).

pos(11, 11).

pos(13, 11).

[1 , 3 , 2 , 1]

(11) unlabeled(’The ’, [1, 1, 3, 2, 1], 6).

(12) em(best, [2, 1, 3, 2, 1], 6).

(13) unlabeled(’ ever!’, [3, 1, 3, 2, 1], 6).

year
pos(0, 0).

pos(8, 8).

The first index allows the retrieval of facts by means of the predicate name:

author , year , and so on. Therefore, the first index key is the name of the predicate

and the first index value is the set of relative positions in the file of the facts for the

predicate.

The second index allows to recover the relative position in the file of the group

in which a fact is included. Therefore the second index key is the relative position of

the fact in the file and the second index value is the relative position in the file of the

group in which the fact is included.

With this aim the first index stores for each predicate name annotations of the

form pos(n ,m), in which n denotes the relative position in the file of a fact for the

predicate and m the relative position in the file of the group of this fact (therefore

the second index is a secondary index).

For instance, author facts are stored in positions 1 , 2 , 3 and 9 , given by the

annotation pos(1, 0), pos(2, 0), pos(3, 0), pos(9, 8), and the group of each author,

that is, the XML record in which the author is included, starts at positions 0 , 0 , 0

and 8 , respectively, given by the annotations pos(1 , 0), pos(2 , 0), pos(3 , 0), pos(9 , 8).

Each “group of facts” shares the node number of the record, which can be considered

as the identifier of the group.

For instance, w.r.t. the running example, the first group can be identified by [1 , 1],

and contains facts numbered as [1 , 1], [1 , 1 , 1], [2 , 1 , 1], [3 , 1 , 1] and [4 , 1 , 1]. The

second group is [5 , 1 , 1], and so on. The reason for this grouping criteria is that each

group of facts will be retrieved by means of the same schema rule. For instance, in

the running example, the schema rule:

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

352 J. M. Almendros-Jiménez et al.

book(booktype(Author, Title, Review, [Year]), NodeBook ,2) :-

author(Author, [NodeAuthor|NodeBook],3),

title(Title, [NodeTitle|NodeBook],3),

review(Review, [NodeReview|NodeBook],3),

year(Year, NodeBook,3).

will retrieve the groups of facts [1, 1] and [2, 1].

Now, we will explain how the indexing technique is combined with the top-

down evaluation of the goals. For instance, let us suppose the following XPath

query: /books/book [@year = 2002 and author = “Buneman”]/review w.r.t. the

running example. Now, the specialized schema rules and facts used in the evaluation

are:

(a) book(booktype(Author, Title, Review, [Year]), NodeBook ,2) :-

year(Year, NodeBook,3),

author(Author, [NodeAuthor|NodeBook],3),

review(Review, [NodeReview|NodeBook],3).

(b) review(reviewtype(Unlabeled,Em,[]),NodeReview,3):-

unlabeled(Unlabeled,[NodeUnlabeled|NodeReview],4),

em(Em,[NodeEm|NodeReview],4).

(c) review(reviewtype(Em,[]),NodeReview,3):-

em(Em,[NodeEm|NodeReview],5).

(d) em(emtype(Unlabeled,Em,[]),NodeEms,5) :-

unlabeled(Unlabeled,[NodeUnlabeled|NodeEms],6),

em(Em, [NodeEm|NodeEms],6).

(0) year(’2003’, [1, 1], 3).

(1) author(’Abiteboul’, [1, 1, 1], 3).

(2) author(’Buneman’, [2,1, 1], 3).

(3) author(’Suciu’, [3,1,1], 3).

(4) title(’Data on the Web’, [4, 1, 1], 3).

(5) unlabeled(’A’, [1, 5, 1, 1], 4).

(6) em(’fine’, [2, 5, 1, 1], 4).

(7) unlabeled(’book.’, [3, 5, 1, 1], 4).

(8) year(’2002’, [2, 1], 3).

(9) author(’Buneman’, [1, 2, 1], 3).

(10) title(’XML in Scotland’, [2, 2, 1], 3).

(11) unlabeled(’The’, [1, 1, 3, 2, 1], 6).

(12) em(’best’, [2, 1, 3, 2, 1], 6).

(13) unlabeled(’ever!’, [3, 1, 3, 2, 1], 6).

The combination of indexing and top-down evaluation can be summarized as

follows. In general, the evaluation will generate (sub)goals which have the form:

tag(, [Var1 , . . . ,Varn ,N1 , . . . ,Nm],), where tag is a tag of the XML document.

The second argument of such (sub)goals is a list of the form [Var1 , . . . ,Varn , N1 ,

. . . , Nm] representing a partially instantiated node number, in which Var1 , . . . , Varn
are variables and N1 , . . . ,Nm are natural numbers. There is a particular case of goals

of the form tag(,Var ,), in which there is a variable in the second argument instead

of a list. This particular case corresponds with the main goal.

In addition, each time a fact is recovered, the system stores, together with the

identifier of its group, the relative position in the file of its group. For instance,

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 353

w.r.t. the running example, whenever author(′Buneman ′, [2 , 1 , 1], 3) is recovered, the

system stores that the group [1 , 1] is at position 0 in the file.

Now, the index accessing can be summarized as follows. Each time a subgoal

tag(, [Var1 , . . . ,Varn , N1 , . . . ,Nm],) is called and does not unify with an schema

rule then:

(a) Whenever [Var2 , . . . ,Varn , N1 , . . . ,Nm] matches to a previously stored group

identifier, the system uses the relative position of the matched group for the

retrieval of facts for tag . Therefore the second index is used for the retrieval

of the facts.

(b) Whenever the stored group identifiers do not match to [Var2 , . . . , Varn, N1 , . . . ,

Nm], the system uses the first index for the retrieval of the elements of tag .

In the case of the main goal tag(,Var ,), the first index will be ever used.

Now, we show the trace of the execution of the XPath query /books/book [@year =

2002 and author = “Buneman”]/review with respect to the above indexing

structure.

1. call of book (booktype(Buneman , G12073 , G12074 , [2002]), G12078 , 2) (Rule a)
2. call of year(2002 , G12128 , 3) (Rule a)
3. first index accessing to position 0 due to year(2002 , G12128 , 3); recovering year(2003 , [1 , 1], 3); fail.
4. first index accessing to position 8 due to year(2002 , G12128 , 3); recovering year(2002 , [2 , 1], 3); storing that the

position of group [2 , 1] is 8 ; success.
5. call of author(Buneman, [G12100, 2, 1], 3) (Rule a)
6. second index accessing to position 8 due to the position of group [2 , 1] is 8 ; recovering author(Buneman,

[1 , 2 , 1], 3); success
7. call of review (G12151 , [G12148 , 2 , 1], 3) (Rule a)
8. call of unlabeled (G12190 , [G12187 , G12212 , 2 , 1], 4) (Rule b)
9. first index accessing to position 11 due to unlabeled (G12243 , [G12240 , G12265 , G12268 , 2 , 1], 6); recovering

unlabeled (The, [1 , 1 , 3 , 2 , 1], 6); storing that the position of group [1 , 3 , 2 , 1] is 11 ; success.
10. first index accessing to position 13 due to unlabeled (G12243 , [G12240 , G12265 , G12268 , 2 , 1], 6); recovering

unlabeled (ever!, [3 , 1 , 3 , 2 , 1], 6); storing that position of group [1 , 3 , 2 , 1] is 11 ; success
11. call of em(G12261 , [G12258 , G12283 , G12286 , 2 , 1], 6) (Rule c)
12. second index accessing to position 11 due to em(G12261 , [G12258 , G12283 , G12286 , 2 , 1], 6) and that position

of group [1 , 3 , 2 , 1] is 11 ; recovering em(best , [2 , 1 , 3 , 2 , 1], 6); success
13. em(emtype(The, best , []), [1 , 3 , 2 , 1], 5) success
14. em(emtype(ever!, best , []), [1 , 3 , 2 , 1], 5) success
15. review (reviewtype(emtype(The, best , []), []), [3 , 2 , 1], 3) success
16. review (reviewtype(emtype(ever!, best , []), []), [3 , 2 , 1], 3) success
17. book (booktype(Buneman , G12316 , reviewtype(emtype(The, best , []), []), [2002]), [2 , 1], 2) success
18. book (booktype(Buneman , G12316 , reviewtype(emtype(ever!, best , []), []), [2002]), [2 , 1], 2) success

7 Prototype

Now, we will show our prototype, named XIndalog. This prototype implements the

technique presented in this paper. In addition, we have implemented a rich set of

XPath queries including XPath constructions like “//”, “/../”.“*”, etc. The prototype

has been developed under SWI-Prolog (Wielemaker 2005) and hosted in a Web site

at http://indalog.ual.es/Xindalog. This Web site has been developed by using

a CGI (Common Gateway Interface) application, in order to link the Web site with

the prototype. From the main page of the prototype (see Figure 2), we can access

to a basic description of XIndalog, XML, XPath, as well as the demo.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

354 J. M. Almendros-Jiménez et al.

Fig. 2. http://indalog.ual.es/Xindalog.

Fig. 3. Top-Down demo.

We have implemented two releases of the prototype: a top-down and bottom-up

release (details about the later can be found in (Almendros-Jiménez et al. 2006)).

In the Web site, there are some built-in examples which can be tested and new

examples can also be typed.

Fig. 4. Query example.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 355

Fig. 5. Query result.

7.1 Benchmarks

We have tested our prototype by means of not enough structured XML documents

and by means of XML documents of big size. Firstly, we have tested our prototype

with a small but not enough structure XML document, shown in Table 1. Now and

w.r.t. this document, we have considered the following set of XPath queries.

XPath Query Meaning

	 /books/book[@year and @pages]/* To obtain the books which have
publishing year and number of pages

	 /books/book/author/@* To obtain all the attributes of the authors
	 //book To obtain all the books

included in the XML document

XPath Query Meaning

	 //book[review=“Very good”]/author To obtain all the authors
of books with a very good review

	 //@year To obtain all the years occurring in
the XML document

	 /books/*/author To obtain all the authors
inside book records

XPath Query Meaning

	 /books/book[review=“Good”]/ To obtain all the author information
author[name=“John Durant”] whose name is John Durant and the review is good

	 /books[book=“The first book”]/book To obtain the books
[@year=2003 and review=“Good”] of the year 2003 and good review
/author[name=“Benz”]/../.. whose author is Benz

	 /books/book/text() To obtain the books with textual information
	 /books/book[author/name]/title To obtain the book titles whenever

the books have author name
	 /books/(book | book2)/(review2 | review) To obtain the reviews

of the two kinds of books
	 /books/book/(author | title) To obtain the book authors and titles
	 /books/(book | book2)//text() To obtain the textual information

from the two kinds of books
	 //@* To obtain all the attributes of the document
	 /*/*/title To obtain the titles that are at 3rd level
	 /*/*//* To obtain all the elements and their nested

from the 3rd level
	 /*/book2/* To obtain all information from book2 at 2nd level
	 //*//author/.. To obtain the records containing

author information from the 1st level

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

356 J. M. Almendros-Jiménez et al.

Table 1. A small XML document

<books year=“2006”>
A book collection
<book>empty</book>
<book year=“2003” pages=“984”>

The first book
<author english=“yes” spanish=“yes”>

Benz
<name>Brian</name>

</author>
<author>John Durant</author>
<author>John Durant</author>
<title>XML Programming Bible</title>
<review>Good</review>

</book>
<book year=“2002”>

The second book
<author>Dino Esposito</author>
<title>Applied XML Programming for Microsoft .NET</title>
<review>Good</review>

</book>
<book>
The third book

<author>Apt, Krzystof R.</author>
<title>The Logic Programming Paradigm and Prolog</title>
<review>Very good</review>

</book>
<book year=“1994” pages=“560”>

The fourth book
<author english=“yes” spanish=“no”>

Leon Sterling
</author>
<author>Ehud Shapiro</author>
<title>The Art of Prolog</title>
<review>Very good</review>

</book>
<book2 year=“2001”>

The fifth book
<author english=“yes”>

Elliotte Rusty Harold
</author>
<title>XML Bible</title>
<review2>Good</review2>

</book2>
<book year=“2003” pages=“984”>

The first book
<author english=“yes” spanish=“yes”>

Benz
<name2>Brian</name2>
<firstname>
Brian
<lastname>Benz</lastname>
<others>no more</others>
</firstname>

</author>
<author>John Durant</author>
<author>John Durant</author>
<title>XML Programming Bible</title>
<review>Very good 2</review>

</book>
</books>

Secondly, we have tested our prototype with XML documents of big size in order

to get benchmarks, considering the following file sizes:

• 64KB; 516 elements were included into the file;

• 128KB; 1032 elements were included into the file;

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 357

• 256KB; 2064 elements were included into the file;

• 512KB; 4128 elements were included into the file; and finally,

• 1024KB; 8256 elements.

For each file size, we have computed the following answer times:

• Translation time;

It represents the time needed for translating a XML document into Prolog

facts and rules;

• Evaluation time;

It represents the time of the top-down evaluation of the (specialized) program

w.r.t. an XPath query;

• Browsing time;

It represents the time needed for formatting and browsing the query result.

Next, we will show three XPath queries with their corresponding times for each

considered file size.

XPath Query: /books

File size Translation Evaluation Browsing Total time

64KB 1,063sg 2,062sg 0,063sg 3,188sg

128KB 3,375sg 7,717sg 0,125sg 11,2171sg

256KB 11,860sg 31,296sg 0,312sg 43,4681sg

512KB 42,812sg 2min 11,110sg 0,578sg 2min 54,500sg

XPath Query: /books/book/title

File size Translation Evaluation Browsing Total time

64KB 1,030sg 0,204sg 0,030sg 1,264sg

128KB 3,343sg 0,673sg 0,047sg 4,063sg

256KB 11,546sg 2,484sg 0,048sg 14,078sg

512KB 42,813sg 9,562sg 0,188sg 52,563sg

XPath Query: /books/book[review=“very good”]/title

File size Translation Evaluation Browsing Total time

64KB 1,046sg 0,032sg 0,0sg 1,078sg

128KB 3,359sg 0,063sg 0,0sg 3,422sg

256KB 11,579sg 0,108sg 0,0sg 11,687sg

512KB 42,796sg 0,188sg 0,0sg 42,984sg

The following tables show the benchmarks of the query /books/book[review=“good”]

/title with and without our program specialization technique. From these tables,

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

358 J. M. Almendros-Jiménez et al.

we can conclude that our specialization technique significantly improves the answer

times.

XPath Query: /books/book[review=“good”]/title

Without Program Specialization

File size Translation Evaluation Browsing Total time

64KB 0,750sg 1,562sg 0,046sg 2,358sg

128KB 2,095sg 5,202sg 0,095sg 7,392sg

256KB 6,579sg 19,407sg 0,187sg 26,173sg

512KB 22,530sg 1min 21,172sg 0,500sg 1min 44,202sg

1024KB 1min 22sg 5min 32,843sg 0,921sg 6min 55,764sg

With Program Specialization

File size Translation Evaluation Browsing Total time

64KB 0,750sg 0,172sg 0,015sg 0,937sg

128KB 2,079sg 0,546sg 0,0165sg 2,641sg

256KB 6,484sg 2sg 0,048sg 8,532sg

512KB 22,298sg 7,656sg 0,094sg 30,048sg

1024KB 1min 21,546sg 30,296sg 0,188sg 1min 52,030sg

8 Conclusions and Future Work

In this paper, we have presented how to represent and index XML documents by

means of logic programming. Moreover, we have studied how to specialize a logic

program, and how to generate goals in order to solve XPath queries. We have

described how to use the indexing of the XML documents in order to obtain a more

efficient top-down evaluation and query solving. Finally, we have shown benchmarks

of our prototype developed with the proposed technique. Our approach opens two

promising research lines:

• The first one, the extension of XPath to a more powerful query language

such as XQuery, that is, the study of the implementation of XQuery in logic

programming.

We have developed an extension to XQuery in a recent paper (Almendros-

Jiménez et al. 2007), which uses as basis the specialization technique studied

here for XPath queries. XQuery enriches our proposal since in XQuery the

queries can involve more than one XML document. In addition, XQuery

allows us to express more complex queries w.r.t. a sole document. Now, we are

developing the implementation of our new proposal.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 359

• The second one, the use of logic programming as inference engine for the so-

called “Semantic Web”, by introducing RDF documents or OWL specifications.

In this line we are interested in the representation in logic programming of

ontologies.

There are some recent works (Wolz 2004; Grosof et al. 2003; Horrocks and

Patel-Schneider 2004) interested in the identification of the intersection of logic

programming and the so-called Description Logic (DL) (Borgida 1996), the

basis of most ontology languages. The quoted proposals translate restricted

forms of ontologies (i.e. restricted forms of OWL and therefore fragments of

DL) into logic programming. Our work can be integrated in this framework by

combining our logic programming based transformation of XML documents

and the transformation of ontologies into logic programming.

The interest of such integration is to provide semantic information about XML

documents, the use of such semantic information in order to inferring new

information, and thus to improve the answers to XPath and XQuery queries.

References

Abiteboul, S., Buneman, P. and Suciu, D. 2000. Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA.

Almendros-Jiménez, J. M., Becerra-Terón, A. and Enciso-Baños, F. J. 2006. Magic sets

for the XPath language. Journal of Universal Computer Science 12, 11, 1651–1678.

Almendros-Jiménez, J. M., Becerra-Terón, A. and Enciso-Baños, F. J. 2007. Integrating

XQuery and logic programming. In Proceedings of the Workshop on Logic Programming,

University of Würzburg, Würzburg, Germany, 12 pages.

Apt, K. R. 1990. Logic programming. In Handbook of Theoretical Computer Science, Vol. B:

Formal Models and Semantics, J. van Leewen, Ed. MIT Press, Massachusetts Institute of

Technology, USA, Chapter 10, 493–574.

Atanassow, F., Clarke, D. and Jeuring, J. 2004. UUXML: A type-preserving XML schema

haskell data binding. In Proc. of Practical Aspects of Declarative Languages. LNCS 3057.

Heidelberg, Germany, 71–85.

Bailey, J., Bry, F., Furche, T. and Schaffert, S. 2005. Web and semantic web query

languages: A survey. In Proc. of Reasoning Web, First International Summer School, LNCS

3564. Heidelberg, Germany, 35–133.

Baumgartner, R., Flesca, S. and Gottlob, G. 2001. The elog web extraction language.

In Proc. of International Conference on Logic for Programming, Artificial Intelligence, and

Reasoning, LNCS 2250. Heidelberg, Germany, 548–560.

Benzaken, V., Castagna, G. and Frish, A. 2005. CDuce: An XML-centric general-

purpose language. In Proc. of the ACM SIGPLAN International Conference on Functional

Programming. ACM Press, New York, USA, 51–63.

Berners-Lee, T., Hendler, J. and Lassila, O. 2001. The semantic web – A new form of

Web content that is meaningful to computers will unleash a revolution of new possibilities.

Scientic American May, 36 pages.

Boley, H. 2000a. Relationships between logic programming and RDF. In Proc. of Advances

in Artificial Intelligence, LNCS 2112. Heidelberg, Germany, 201–218.

Boley, H. 2000b. Relationships between logic programming and XML. In Proc. of the

Workshop on Logic Programming, GMD Report 90. Würzburg, Germany, 19–34.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

360 J. M. Almendros-Jiménez et al.

Boley, H. 2001. The rule markup language: RDF-XML data model, XML schema hierarchy,

and XSL transformations. In Proc. of International Conference on Applications of Prolog.

Prolog Association of Japan, Tokyo, Japan, 124–139.

Boncz, P. A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J. and Teubner, J.

2005. Pathfinder: XQuery - the relational way. In Proc. of the International Conference on

Very Large Databases. ACM Press, New York, USA, 1322–1325.

Borgida, A. 1996. On the relative expressiveness of description logics and predicate logics.

Artificial Intelligence 82, 1-2, 353–367.

Bry, F. and Schaffert, S. 2002a. The XML query language Xcerpt: Design principles,

examples, and semantics. In Proc. of Web, Web-Services, and Database Systems, LNCS

2593. Heidelberg, Germany, 295–310.

Bry, F. and Schaffert, S. 2002b. Towards a declarative query and transformation language

for XML and semistructured data: Simulation unification. In Proc. of International

Conference on Logic Programming, LNCS 2401. Heidelberg, Germany, 255–270.

Cabeza, D. and Hermenegildo, M. 2001. Distributed WWW Programming using (Ciao-)

prolog and the PiLLoW library. Theory and Practice of Logic Programming 1, 3, 251–282.

Chamberlin, D. 2002. XQuery: An XML query language. IBM Systems Journal 41, 4, 597–

615.

Chamberlin, D., Draper, D., Fernández, M., Kay, M., Robie, J., Rys, M., Simeon, J., Tivy,

J. and Wadler, P. 2004. XQuery from the experts. Addison Wesley, Boston, USA.

Coelho, J. and Florido, M. 2003. Type-based XML processing in logic programming. In

Proc. of the International Symposium on Practical Aspects of Declarative Languages, LNCS

2562. Heidelberg, Germany, 273–285.

Coelho, J. and Florido, M. 2004. CLP(Flex): Constraint logic programming applied to

XML processing. In Proceedings of the CoopIS/DOA/ODBASE, LNCS 3291. Heidelberg,

Germany, 1098–1112.

Decker, S., Melnik, S., Harmelen, F. V., Fensel, D., Klein, M. C. A., Broekstra, J.,

Erdmann, M. and Horrocks, I. 2000. The Semantic Web: The Roles of XML and RDF.

IEEE Internet Computing 4, 5, 63–74.

Fernández, M. and Simeon, J. 2003. Growing XQuery. In Proc. of the Object-Oriented

Programming, European Conference, LNCS 2743. Heidelberg, Germany, 405–430.

Fernández, M., Simeon, J. and Wadler, P. 2000. An algebra for XML query. In Proc.

of Foundation of Software Technology and Theoretical Computer Science, LNCS 1974.

Heidelberg, Germany, 11–45.

Grosof, B. N., Horrocks, I., Volz, R. and Decker, S. 2003. Description logic programs:

Combining logic programs with description logic. In Proc. of the International Conference

on World Wide Web. ACM Press, USA, 48–57.

Horrocks, I. and Patel-Schneider, P. F. 2004. A Proposal for an OWL rules language.

In Proc. of International Conference on World Wide Web. ACM Press, New York, USA,

723–731.

Hosoya, H. and Pierce, B. C. 2003. XDuce: A statically typed XML processing language.

ACM Transactions on Internet Technology 3, 2, 117–148.

Marian, A. and Simeon, J. 2003. Projecting XML documents. In Proc. of International

Conference on Very Large Databases. Morgan Kaufmann, Burlington, USA, 213–224.

May, W. 2004. XPath-Logic and XPathLog: A logic-programming style XML data

manipulation language. Theory and Practice of Logic Programming 4, 3, 239–287.

O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G. and Westbury, N. 2004. OrdPaths:

Insert-friendly XML node labels. In Proc. of the ACM SIGMOD Conference. ACM Press,

New York, USA, 903–908.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

Querying XML documents in logic programming 361

Rémy, D. 2002. Applied Semantics: Advanced Lectures, LNCS 2395. Heidelberg, Germany.

Chapter Using, Understanding, and Unraveling the OCaml Language. From Practice to

Theory and Vice Versa, 115–137.

Schaffert, S. and Bry, F. 2002. A gentle introduction to Xcerpt, a rule-based query and

transformation language for XML. In Proc. of International Workshop on Rule Markup

Languages for Business Rules on the Semantic Web. CEUR Workshop Proceedings 60,

Aachen, Germany, 22 pages.

Seipel, D. 2002. Processing XML-documents in Prolog. In Procs. of the Workshop on Logic

Programming 2002. Technische Universität Dresden, Dresden, Germany, 15 pages.

Simeon, J. and Wadler, P. 2003. The essence of XML. In Proc. of SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM Press, New York, USA, 1–13.

Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram, J., Shekita, E. and Zhang, C.

2002. Storing and querying ordered XML using a relational database system. In Proc. of

the ACM SIGMOD Conference. ACM Press, New York, USA, 204–215.

Thiemann, P. 2002. A typed representation for HTML and XML documents in Haskell.

Journal of Functional Programming 12, 4&5, 435–468.

W3C. 2001. XML Schema 1.0. Tech. rep., www.w3.org.

W3C. 2004a. OWL Ontology Web Language. Tech. rep., www.w3.org.

W3C. 2004b. Resource Description Framework (RDF). Tech. rep., www.w3.org.

W3C. 2007a. Extensible Markup Language (XML). Tech. rep., www.w3c.org.

W3C. 2007b. XML Path Language (XPath) 2.0. Tech. rep., www.w3.org.

W3C. 2007c. XML Query Working Group and XSL Working Group, XQuery 1.0: An XML

Query Language. Tech. rep., www.w3.org.

Wadler, P. 2002. XQuery: A typed functional language for querying XML. In Advanced

Functional Programming, International School, LNCS 2638. Heidelberg, Germany, 188–212.

Wallace, M. and Runciman, C. 1999. Haskell and XML: Generic combinators or type-based

translation? In Proceedings of the International Conference on Functional Programming.

ACM Press, New York, USA, 148–159.

Wielemaker, J. 2005. SWI-Prolog SGML/XML Parser, Version 2.0.5. Tech. rep., Human

Computer-Studies (HCS), University of Amsterdam. March.

Wolz, R. 2004. Web Ontology Reasoning with Logic Databases. Ph.D. thesis, Universität

Fridericiana zu Karlsruhe.

https://doi.org/10.1017/S1471068407003183 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068407003183

