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This paper deals with the global existence for a class of Keller–Segel model with
signal-dependent motility and general logistic term under homogeneous Neumann
boundary conditions in a higher-dimensional smoothly bounded domain, which can
be written as

ut = Δ(γ(v)u) + ρu − μul, x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0.

It is shown that whenever ρ ∈ R, μ > 0 and

l > max

{
n + 2

2
, 2

}
,

then the considered system possesses a global classical solution for all sufficiently
smooth initial data. Furthermore, the solution converges to the equilibrium((

ρ+

μ

)1/(l−1)

,

(
ρ+

μ

)1/(l−1)
)

as t → ∞ under some extra hypotheses, where ρ+ = max{ρ, 0}.

Keywords: Global existence; Boundedness; Large time behaviour; Signal-dependent
motility
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1. Introduction and main results

Starting from the pioneering work of Keller and Segel [7] in 1970, the famous
chemotaxis model

ut = ∇ · (D(u, v)∇u) −∇ · (χ(u, v)∇v) + f(u),

vt = Δv − v + u,
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has been extensively studied by lots of mathematicians from various aspects due to
its important role not only in mathematics but also in biology and pharmacology.
The model describes the chemotaxis process (from the Greek Chemo=chemical,
taxis=arrangement), which may be defined as the influence of chemical substances
on the movement of mobile species. For a broad overview over various types
of chemotaxis processes, we refer the reader to the survey [4,5,15,16] and the
references therein.

The typical example of logistic source

f(u) = ρu− μul,

where ρ ∈ R, μ > 0 and l > 1. In biological phenomena, the reproduction or death
of the population plays an important role in its life. An interesting and challeng-
ing problem is to detect the generation of singularity of solutions, which has been
proved for two- and higher-dimensional cases [27,29,33]. It is well-known that
an appropriate logistic damping can prevent blow-up of solutions to the classical
Keller–Segel system. The parabolic–elliptic Keller–Segel simplification (where vt is
replaced by 0) is considered in [22] and it is shown that if l > 2, then the sys-
tem possesses a unique and uniformly bounded global classical solution. In [24],
the existence of weak solutions is proved under more general conditions. For the
parabolic–parabolic Keller–Segel system, in [26], it is shown that if l = 2, μ > 0
is sufficiently large then the problem possesses a unique and uniformly bounded
global-in-time classical solution. In [8], the global classical solution and large time
behaviour are considered with l = 2. In [35], the author shows the uniform-in-time
boundedness for the corresponding 2D Neumann initial-boundary value problem in
a large class of cell kinetics including sub-logistic sources. Besides, many authors
are interested in qualitative convergence of the solution [31,32] and large time
behaviour [3,30] for such kind of model.

Moreover, due to the complexity of biological phenomenon and situation, many
modified models have been constructed and considered by various authors.

Let us recall the chemotaxis system with signal-dependent motility

ut = Δ(γ(v)u), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where both the cell diffusion rate and the chemotactic sensitivity depend nonlinearly
on the signal concentration. Tao and Winkler [21] consider the model under the
condition that the motility function γ satisfies

γ ∈ C3([0,+∞))

and

K1 � γ(s) � K2
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for all s > 0 as well as

|γ′(s)| � K3

for all s > 0 with certain positive constants K1, K2 and K3 and they show the
global existence of bounded solutions for such kind of model. In addition, Yoon and
Kim [36] show the global existence of solutions for the model under the assumptions
that γ is a power law case

γ(s) =
c0
sk
, c0 > 0, k > 0 (1.1)

and the motility function γ decreases as the density of the chemical substance
increases, i.e.,

γ′(s) < 0

for all s > 0. In [6], the authors show the global existence of solutions for the model

ut = Δ(γ(v)u) + μu(1 − u), x ∈ Ω, t > 0,

vt = Δv + u− v, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

in the two-dimensional domain with some assumptions that μ > 0 and the motility
function γ satisfies

γ ∈ C3([0,+∞)), γ > 0, γ′ < 0 on [0,+∞) (1.2)

and

lim
s→∞

γ′(s)
γ(s)

exists. (1.3)

To extend this result to the higher dimensions, Wang and Wang [23] show the global
existence for such kind of the system using the method of approximation and Liu
and Xu [9] get the global existence and the large time behaviour for such kind of
model. For similar results on related systems involving superquadratic degradation
terms, we refer the reader to the papers [10–13].

In the paper, we consider the following signal-dependent motility model with
general logistic term:

ut = Δ(γ(v)u) + ρu− μul, x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.4)

where we assume the following:
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• Ω ⊂ R
n is a bounded domain with a smooth boundary ∂Ω and ν is an unit

outer normal vector of ∂Ω.

• u and v denote the density of the bacteria and the chemoattractant, respec-
tively. The initial data satisfies

u0 ∈ C0(Ω), v0 ∈W 1,∞(Ω),

u0 � 0 and v0 � C0 > 0,
(1.5)

where C0 is a positive constant.

• ρ ∈ R, μ > 0 and l > max{(n+ 2)/2, 2} are constants.

• we suppose that the motility function γ satisfies

γ ∈ C3((0,+∞)), γ > 0, γ′ < 0 on (0,+∞) and

γ′

γ
is bounded on [ε,+∞) for any ε > 0. (1.6)

There are many functions which satisfy the above conditions. For instance

γ(v) =
a

(1 + bv)m
, γ(v) = 1 − v√

1 + v2
, γ(v) = v−a,

where a, b,m are positive constants. In addition, we suppose a stronger
assumption that the motility function γ satisfies

γ ∈ C3([0,+∞)), γ > 0, γ′ < 0 on [0,+∞) and
γ′

γ
is bounded on [0,+∞),

(1.7)
when we study the large time behaviour of the system (1.4). Note that the
assumption (1.6) is weaker than the assumption (1.7) which means the assump-
tion (1.7) implies the assumption (1.6). But the inverse is not ture. The main
difference between the assumption (1.6) and (1.7) is that (1.6) contains a class
of functions such as the precise power-type example v−a which is of singular
behaviour at v = 0.

Main results
The goal of this paper is to study the global boundedness and large time

behaviour of the chemotaxis system (1.4). Our main results read as follows.

Theorem 1.1. Let Ω ⊂ R
n be a bounded domain with smooth boundary and the

motility function γ satisfies the condition (1.6). ρ ∈ R, μ > 0 and

l > max
{
n+ 2

2
, 2
}

are constants. If the initial value (u0, v0) satisfies (1.5), then there exists a pair
(u, v) of nonnegative functions

(u, v) ∈ [C0(Ω × [0,+∞)) ∩ C2,1(Ω × (0,+∞))
]2
,

which solves (1.4) in the classical sense.
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Remark 1.1. The assumption (1.6) on the motility function γ in theorem 1.1 is
weaker than (1.1) in [36] and (1.2), (1.3) in [6]. On one hand, the power law case
(1.1) satisfies the assumption (1.6), i.e., the motility function can be singular at
v = 0. On the other hand, the condition that

lim
v→∞

γ′(v)
γ(v)

exists in [6] can imply the assumption (1.6). But the vise is not true.

Remark 1.2. If we replace the assumption (1.6) with (1.7), i.e., we exclude the
singular at v = 0, then we can also get the global existence of the solution for such
kind of model by the same method. Moreover, the solution of (1.4) is bounded in
Ω × (0,+∞); namely, there exists a constant C > 0 such that

‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞ � C

for all t > 0.

Next, under the stronger assumption 1.7 on the motility function, we will give
the large time behaviour of the solution for system (1.4) when ρ � 0.

Theorem 1.2. Let Ω ⊂ R
n be a bounded domain with smooth boundary and the

motility function γ satisfies the condition (1.7). ρ � 0, μ > 0 and

l > max
{
n+ 2

2
, 2
}

are constants. Then the solution of (1.4) satisfies

‖u(·, t)‖L∞ → 0 (1.8)

and

‖v(·, t)‖L∞ → 0

as t→ +∞.

Finally, under the stronger assumption (1.7) on the motility function and an
extra condition on

K := sup
0�s<+∞

|γ′(s)|2
γ(s)

,

we also can show the large time behaviour of the solution for the system (1.4) when
ρ > 0.
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Theorem 1.3. Let Ω ⊂ R
n be a bounded domain with smooth boundary and the

motility function γ satisfies the condition (1.7). ρ > 0, μ > 0 and

l > max
{
n+ 2

2
, 2
}

are constants. Assume

K := sup
0�v<+∞

|γ′(v)|2
γ(v)

< 16μ
(
ρ

μ

)(l−3)/(l−1)

.

Then the solution of (1.4) satisfies∥∥∥∥∥u(·, t) −
(
ρ

μ

)1/(l−1)
∥∥∥∥∥

L∞

→ 0 (1.9)

and ∥∥∥∥∥v(·, t) −
(
ρ

μ

)1/(l−1)
∥∥∥∥∥

L∞

→ 0

as t→ +∞.

Plan of the paper
This paper is arranged as follows. Section (2) is devoted to the local existence of

solutions and extensibility of the chemotaxis system with signal-dependent motility
and generalized logistic source. In addition, we show some important estimates of
u and v. With the above paving, we can prove the global classical solution to the
system (1.4) in § (3). Finally, in §§ (4) and (5) we show the large time behaviour
of the solution for system (1.4) under the condition ρ � 0 and ρ > 0 respectively.

2. Preliminaries: local existence and some inequalities

Firstly, we give the existence of local solutions of (1.4). The proof, refer to [17],
is based on the Schauder fixed point theorem. Alternatively, the existence of local
solutions could also have been obtained by applying the abstract theory [2]. Here
we omit the proof of the following lemma due to the standard method.

Lemma 2.1 Local existence. Let Ω ⊂ R
n be a bounded domain with smooth boundary

and the motility function γ satisfies the condition (1.6). ρ ∈ R, μ > 0 and

l > max
{
n+ 2

2
, 2
}

are constants. If the initial data satisfies the condition (1.5), then there exist Tmax ∈
(0,∞] and a pair (u, v) of nonnegative functions

(u, v) ∈ [C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax))
]2
,
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which solves (1.4) in the classical sense in Ω × (0, Tmax). Moreover, we have

either Tmax = ∞ or lim sup
t↗Tmax

(‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞) = ∞.

Now, we prove some basic properties of solutions to the system (1.4).

2.1. Boundedness of u

We have the following basic boundedness information on the solution u.

Lemma 2.2. If ρ ∈ R, μ > 0 and l > 1 are constants, then there exists C > 0 such
that ∫

Ω

u � C (2.1)

for all t ∈ (0, Tmax).

Proof. Integrating the first equation in (1.4) over Ω and using the condition
∂u/∂ν = 0, we have

d
dt

∫
Ω

u = ρ

∫
Ω

u− μ

∫
Ω

ul (2.2)

for all t ∈ (0, Tmax). In addition, based on Hölder’s inequality, we conclude the fact

∫
Ω

ul � 1
|Ω|l−1

(∫
Ω

u

)l

for all t ∈ (0, Tmax) which implies

d
dt

∫
Ω

u � ρ+

∫
Ω

u− μ

|Ω|l−1

(∫
Ω

u

)l

for all t ∈ (0, Tmax). Solving this ODI and noticing the positivity of u, we get (2.1).
�

Lemma 2.3. If ρ ∈ R, μ > 0 and l > 1 are constants, then for each a > 0, there
exists C > 0 such that

∫ t

0

e−a(t−s)

∫
Ω

ul � C (2.3)

for all t ∈ (0, Tmax).
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Proof. According to lemma 2.2, there exists C1 > 0 such that∫
Ω

u � C1

for all t ∈ (0, Tmax). Multiplying (2.2) by eas and integrating in time s ∈ (0, t), we
have

μ

∫ t

0

eas

∫
Ω

ul = −
∫ t

0

eas d
ds

∫
Ω

u+ ρ

∫ t

0

eas

∫
Ω

u

�
∫

Ω

u0 + (a+ ρ+)
∫ t

0

eas

∫
Ω

u

� C1

(
1 +

a+ ρ+

a

)
eat

for all t ∈ (0, Tmax) which implies (2.3). Hence, we finish the proof of the lemma. �

2.2. Boundedness of v

As a preparation for deriving the global existence of solutions, the following
important estimates for the solution v [28] are essential.

Lemma 2.4. If Tmax < +∞, then there exists a lower bound v > 0 such that

inf
x∈Ω

v(x, t) � v

for all t ∈ (0, Tmax).

Proof. By the comparison principle with the positivity of u, we know from the
second equation of (1.4) that

v(x, t) � e−t inf
y∈Ω

v0(y)

for all (x, t) ∈ Ω × (0, Tmax) which implies

v(x, t) � e−Tmax inf
y∈Ω

v0(y)

for all (x, t) ∈ Ω × (0, Tmax). �

Lemma 2.5. Assume λ > 0 is the first nonzero eigenvalue of −Δ in Ω ⊂ R
n with

the Neumann boundary condition and q > 2. If u ∈ C0(Ω × (0, Tmax)) satisfies

sup
t∈(0,Tmax)

∫ t

0

e−(λ+1)(t−s)‖u(s)‖q
Lq ds < +∞, (2.4)

then for each

r ∈
{

[1, nq
n+2−q ), q � n+ 2,

[1,∞], q > n+ 2,

https://doi.org/10.1017/prm.2020.38 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.38


An n-dimensional chemotaxis system with signal-dependent motility 829

and the solution v ∈ L∞((0, Tmax);W 1,r(Ω)) which satisfies

vt = Δv − v + u, x ∈ Ω, t ∈ (0,∞),
∂v

∂ν
= 0, x ∈ ∂Ω, t ∈ (0,∞),

v(0) = v0(x), x ∈ Ω.

then there exists a constant C > 0 such that

‖v(·, t)‖W 1,r � C

for all t ∈ (0, Tmax).

Proof. By the variation-of-constants formula, we get

v = et(Δ−1)v0 +
∫ t

0

e(t−s)(Δ−1)u(s) ds (2.5)

for all t ∈ (0, Tmax). By the well-known smoothing estimates for the Neumann
Laplace semigroup[25] and Hölder’s inequality, there exist C1, C2, λ > 0 such that

‖∇etΔϕ‖Lr � C1

(
1 + t

−(1/2)−(n/2)( 1
l − 1

r )+

)
e−λt‖ϕ‖Ll

for all ϕ ∈ Ll(Ω) and all t > 0 and

‖∇etΔϕ‖Lr � C2‖∇ϕ‖L∞

for all ϕ ∈ L∞(Ω) and all t > 0. Let q′ satisfies

1
q

+
1
q′

= 1.

Therefore, using (2.5) and Hölder’s inequality, we conclude

‖∇v‖Lr � C2‖∇v0‖L∞ +
∫ t

0

e−(t−s)‖∇e(t−s)Δu(s)‖Lr ds

� C2‖∇v0‖L∞ + C1

∫ t

0

e−(λ+1)(t−s)

×
(
1 + (t− s)−(1/2)−(n/2)(1/q−(1/r))+

)
‖u(s)‖Lq ds

� C2‖∇v0‖L∞ + C1

(∫ t

0

e−(λ+1)(t−s)‖u(s)‖q
Lq ds

)1/q

(∫ t

0

e−(λ+1)(t−s)
(
1 + (t− s)−(1/2)−(n/2)(1/q−(1/r))+

)q′

ds
)1/q′

(2.6)
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for all t ∈ (0, Tmax). For q � n+ 2, we have

−
[

1
2

+
n

2

(
1
q
− 1
r

)
+

]
q′

>−
[
1
2

+
n

2

(
1
q
− n+ 2 − q

nq

)]
q

q − 1

= − 1. (2.7)

For q > n+ 2, we have

−
[

1
2

+
n

2

(
1
q
− 1
r

)
+

]
q′

� −
[
1
2

+
n

2q

]
q

q − 1

> −1. (2.8)

Simple calculus shows∫ t

0

e−(λ+1)(t−s)
(
1 + (t− s)−(1/2)−(n/2)(1/q−(1/r))+

)q′

ds

=
1

λ+ 1

∫ (λ+1)t

0

e−y

(
1 +

(
1

λ+ 1
y

)−(1/2)−(n/2)(1/q−(1/r))+
)q′

dy

� 2q′

λ+ 1

∫ +∞

0

e−y

(
1 +

(
1

λ+ 1
y

)−[1/2+n/2(1/q−(1/r))+]q′)
dy

for all t ∈ (0, Tmax). By (2.7) and (2.8), there exists C3 > 0 such that∫ t

0

e−(λ+1)(t−s)
(
1 + (t− s)−(1/2)−(n/2)(1/q−(1/r))+

)q′

ds � C3 (2.9)

for all t ∈ (0, Tmax). Combining (2.4), (2.6) and (2.9), we can easily get the desired
conclusion. �

Lemma 2.6. If l > n+ 2, then there exists C > 0 such that

‖v(·, t)‖W 1,∞ � C

for all t ∈ (0, Tmax). If max{(n+ 2)/2, 2} < l � n+ 2, then for any sufficient small
ε > 0, there exists C > 0 such that

‖v(·, t)‖
W

1, nl
n+2−l

−ε � C

for all t ∈ (0, Tmax).

Proof. Combining lemma 2.3 and lemma 2.5, we can easily draw the conclusion of
the lemma. �
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2.3. Lp estimate of u

Now, we derive the Lp boundedness of u. Combining the hypothesis (1.6),
lemma 2.2, lemma 2.4, lemma 2.6 and some important inequalities, we achieve
the boundedness of u in L∞((0, Tmax);Lp(Ω)) for arbitrary p � 2.

Lemma 2.7. If ρ ∈ R, μ > 0 and

l > max
{
n+ 2

2
, 2
}

are constants, Tmax < +∞ and the hypothesis (1.6) holds, then for any p � 2, there
exists C > 0 such that ∫

Ω

up � C

for all t ∈ (0, Tmax).

Proof. Using up−1 with p � 2 as a test function for the first equation in (1.4),
integrating the resulting equation by parts and using Young’s inequality, we obtain

1
p

d
dt

∫
Ω

up + (p− 1)
∫

Ω

γ(v)up−2|∇u|2 + μ

∫
Ω

up+l−1

= −(p− 1)
∫

Ω

γ′(v)up−1∇u · ∇v + ρ

∫
Ω

up

� p− 1
2

∫
Ω

γ(v)up−2|∇u|2 +
p− 1

2

∫
Ω

|γ′(v)|2
γ(v)

up|∇v|2 + ρ

∫
Ω

up

for all t ∈ (0, Tmax). In view of Young’s inequality, we get that there exists C1 > 0
such that

(ρ+ 1)
∫

Ω

up � μ

2

∫
Ω

up+l−1 + C1

for all t ∈ (0, Tmax). Hence, we can easily get

d
dt

∫
Ω

up +
p(p− 1)

2

∫
Ω

γ(v)up−2|∇u|2 + p

∫
Ω

up +
μp

2

∫
Ω

up+l−1

� p(p− 1)
2

∫
Ω

|γ′(v)|2
γ(v)

up|∇v|2 + C1p (2.10)

for all t ∈ (0, Tmax) where v is positive in Ω × [0, Tmax).
Now, we estimate the first term of the right-hand side of above inequality (2.10).

In order to use lemma 2.6, we need to compute it in two cases.
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The case l > n+ 2. In view of the hypothesis 1.6 and lemma 2.4, we can find a
constant C2 > 0 such that

|γ′(v)|
γ(v)

� C2 (2.11)

for all t ∈ (0, Tmax). Here we use Young’s inequality, the hypothesis 1.6, lemma 2.4,
lemma 2.6 and (2.11) to find C3 > 0 such that

p(p− 1)
2

∫
Ω

|γ′(v)|2
γ(v)

up|∇v|2 � p(p− 1)
2

C2
2γ(v)‖∇v‖2

L∞

∫
Ω

up

� μp

4

∫
Ω

up+l−1 + C3

for all t ∈ (0, Tmax) which combined with (2.10) implies

d
dt

∫
Ω

up + p

∫
Ω

up +
p(p− 1)

2

∫
Ω

γ(v)up−2|∇u|2 +
μp

4

∫
Ω

up+l−1 � C1p+ C3

for all t ∈ (0, Tmax) and thereby concludes the proof.
The case max{(n+ 2)/2, 2} < l � n+ 2. Using inequality |X − Y |2 � 1/2|X|2 −

|Y |2 for X,Y ∈ R
n, we get∫

Ω

γ(v)up−2|∇u|2 =
4
p2

∫
Ω

∣∣∣γ1/2(v)∇up/2
∣∣∣2

=
4
p2

∫
Ω

∣∣∣∣∇(γ1/2(v)up/2
)
− γ′(v)

2γ1/2(v)
up/2∇v

∣∣∣∣
2

� 2
p2

∫
Ω

∣∣∣∇(γ1/2(v)up/2
)∣∣∣2 − 1

p2

∫
Ω

|γ′(v)|2
γ(v)

up|∇v|2

for all t ∈ (0, Tmax) which combining with (2.10) implies

d
dt

∫
Ω

up + p

∫
Ω

up +
p− 1
p

∫
Ω

∣∣∣∇(γ1/2(v)up/2
)∣∣∣2 +

μp

2

∫
Ω

up+l−1

� (p− 1)(p2 + 1)
2p

∫
Ω

|γ′(v)|2
γ(v)

up|∇v|2 + C1p (2.12)

for all t ∈ (0, Tmax). Noticing the condition max{(n+ 2)/2, 2} < l � n+ 2 which
implies nl/(n+ 2 − l) > max{2, n}, we can choose ε sufficiently small such that
nl/(n+ 2 − l) − ε > max{2, n}. By lemma 2.6, there exists C4 > 0 such that

(∫
Ω

|∇v|nl/(n+2−l)−ε

) 1
nl

n+2−l
−ε

� C4 (2.13)

for all t ∈ (0, Tmax). Let

a =
nl − ε(n+ 2 − l)

nl − (ε+ 2)(n+ 2 − l)
.
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Owing to Hölder’s inequality, (2.11) and (2.13), we get

∫
Ω

|γ′(v)|2
γ(v)

up|∇v|2

� C2
2

(∫
Ω

γa(v)uap

)1/a(∫
Ω

|∇v|nl/(n+2−l)−ε

) 2
nl

n+2−l
−ε

� C2
2C

2
4

∥∥∥γ1/2(v)up/2
∥∥∥2

L2a
(2.14)

for all t ∈ (0, Tmax). Using Gagliardo–Nirenberg inequality thus entails the existence
of C5 > 0 such that

∥∥∥γ1/2(v)up/2
∥∥∥2

L2a
� C5

(∥∥∥∇(γ1/2(v)up/2
)∥∥∥((a−1)n)/a

L2

× ‖γ1/2(v)up/2‖(2a−(a−1)n)/a
L2 + ‖γ1/2(v)up/2‖2

L2/p

)
(2.15)

for all t ∈ (0, Tmax). Combining (2.14) with (2.15) by means of Young’s inequality
provides C6 > 0 such that

(p− 1)(p2 + 1)
2p

∫
Ω

|γ′(v)|2
γ(v)

up|∇v|2

� (p− 1)(p2 + 1)
2p

C2
2C

2
4

∥∥∥γ1/2(v)up/2
∥∥∥2

L2a

� (p− 1)(p2 + 1)
2p

C2
2C

2
4C5

(∥∥∥∇(γ1/2(v)up/2
)∥∥∥(a−1)n/a

L2

× ‖γ1/2(v)up/2‖2a−(a−1)n/a
L2 + ‖γ1/2(v)up/2‖2

L2/p

)
� p− 1

2p

∫
Ω

∣∣∣∇(γ1/2(v)up/2
)∣∣∣2 +

μp

4

∫
Ω

up+l−1 + C6

for all t ∈ (0, Tmax) which combining with (2.12) implies

d
dt

∫
Ω

up + p

∫
Ω

up +
p− 1
2p

∫
Ω

∣∣∣∇(γ1/2(v)up/2
)∣∣∣2 +

μp

4

∫
Ω

up+l−1 � C1p+ C6

for all t ∈ (0, Tmax) and thereby concludes the proof. �

3. Global existence

In this section, we aim to show the unique global-in-time solution of the system (1.4)
by using lemma 2.1 and lemma 2.7. Our main method is the standard Alikakos–
Moser iteration. The details are as follows.
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The proof of theorem 1.1. Suppose that Tmax < +∞, then thanks to lemma 2.7, we
get that for any p > n, there exists C1 > 0 such that∫

Ω

up � C1

for all t ∈ (0, Tmax). Thus using well-known theorem to the second equation of (1.4),
we can easily conclude that there exists C2 > 0 such that

‖v(·, t)‖W 1,∞ � C2 (3.1)

for all t ∈ (0, Tmax). Employing a standard Alikakos–Moser iteration [1], we infer
that there exists C3 > 0 such that

‖u(·, t)‖L∞ � C3 (3.2)

for all t ∈ (0, Tmax). For a statement precisely covering the present situation we refer
to [18]. Hence, the theorem 1.1 is proved due to (3.1), (3.2) and the extensibility
criterion lemma 2.1. �

4. Large time behaviour: the case ρ � 0

Based on [20,34], the large time behaviour of the solution in the case ρ � 0 can be
obtained by the quantitative decay estimate with respect to the norm in L1.

Lemma 4.1. If ρ � 0, μ > 0 are constants and

l > max
{
n+ 2

2
, 2
}
,

then there exists C > 0 such that∫
Ω

u � C (1 + t)−(1/l−1)

and ∫
Ω

v � C (1 + t)−(1/l−1)

for all t ∈ (0,+∞).

Proof. Integrating the first equation in (1.4) over Ω, using Hölder’s inequality and
solving a simple ODE inequality, we have

∫
Ω

u �
((∫

Ω

u0

)−(l−1)

+
μ(l − 1)
|Ω|l−1

t

)−(1/l−1)

� max
{∫

Ω

u0, |Ω|μ−(1/l−1)(l − 1)−(1/l−1)

}
(1 + t)−(1/l−1)

:= C1 (1 + t)−(1/l−1)

for all t ∈ (0,+∞) which yields the L1 norm of u.
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Next, integrating the second equation of (1.4) over Ω, we see that

y(t) :=
∫

Ω

v

satisfies

y′(t) = −y(t) +
∫

Ω

u

� −y(t) + C1 (1 + t)−(1/l−1)

for all t ∈ (0,+∞). Let

M := max

{(
1 +

2
l − 1

)1

/(l − 1)
∫

Ω

v0, 2C1

(
1 +

2
l − 1

)1

/(l − 1)

}

and

ȳ(t) = M

(
1 +

2
l − 1

+ t

)−(1/l−1)

for all t ∈ (0,+∞). We infer that

ȳ(0) = M

(
1 +

2
l − 1

)−(1/l−1)

�
∫

Ω

v0 = y(0)

and

ȳ′(t) + ȳ(t) − C1 (1 + t)−(1/l−1)

= − M

l − 1

(
1 +

2
l − 1

+ t

)−(1/l−1)−1

+M

(
1 +

2
l − 1

+ t

)−(1/l−1)

− C1 (1 + t)−(1/l−1)

= M

(
1 +

2
l − 1

+ t

)−(1/l−1)−1(
− 1
l − 1

+
1
2

(
1 +

2
l − 1

+ t

))

+ (1 + t)−(1/l−1)

⎛
⎝M

2

(
1 + 2

l−1 + t

1 + t

)−(1/l−1)

− C1

⎞
⎠

� M

(
1 +

2
l − 1

+ t

)−(1/l−1)−1(
− 1
l − 1

+
1
2

2
l − 1

)

+ (1 + t)−(1/l−1)

(
M

2

(
1 +

2
l − 1

)−(1/l−1)

− C1

)

� 0

for all t ∈ (0,+∞). By the comparison principle of ODE, we get y(t) � ȳ(t) for all
t ∈ (0,+∞) which directly implies the estimate of the L1 norm of v. �
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Proof of theorem 1.2. Let ψ0 = Cγ′2(v)|∇v|2, ψ1 = γ′(v)∇v and ψ2 = λ+u+ μul

in conditions (A1), (A2), (A3) of [14]. With an application of [14] to the solution
of the first equation of (1.4) and the boundedness of v, we get that there exist
θ1 ∈ (0, 1) and C1 > 0 such that

‖u‖
Cθ1,

θ1
2 (Ω×[t,t+1])

� C1. (4.1)

Due to the well-known Hölder regularity in scalar parabolic equation, we get that
there exist θ2 ∈ (0, 1) and C2 > 0 such that

‖v‖
Cθ2,

θ2
2 (Ω×[t,t+1])

� C2

for all t > 1.
Supposing that (1.8) is false, we can find C3 > 0 and {tj}j∈N such that

tj → +∞ as j → +∞
and

‖u(·, tj)‖L∞ � C3 for all j ∈ N. (4.2)

Since {u(·, tj)}j∈N is relatively compact in C0(Ω) according to (4.1) and the Arzelà–
Ascoli theorem, we may assume that

u(·, tj) → u in L∞(Ω)

as j → +∞ with some nonnegative u ∈ C0(Ω). But from lemma 4.1 we already
know that

u(·, t) → 0 in L1(Ω)

as t→ +∞. Hence, it holds that u = 0 which is incompatible with (4.2) and
therefore we prove

u(·, t) → 0 in L∞(Ω).

In quite a similar manner, the convergence results on v can be obtained. �

5. Large time behaviour: the case ρ > 0

In this section, the large time behaviour of the solution in the case ρ > 0 can be
obtained by constructing a Lyapunov function of system (1.4). Our idea comes
from the references [19,34]. Moreover, we show that the solution of system (1.4)
will converge to the spatially homogeneous equilibrium((

ρ+

μ

)1/(l−1)

,

(
ρ+

μ

)1/(l−1)
)
.

Given a positive number u∗, we let ϕu∗ : (0,∞) → R be defined by

ϕu∗(x) := x− u∗ − u∗ ln
x

u∗
, x > 0.

Then ϕu∗ is convex with ϕu∗(u∗) = ϕ′
u∗(u∗) = 0, so that ϕu∗(x) � 0 for all x > 0.

Define an energy functional for the system (1.4) as follows, for B > 0 and any
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nonnegative continuous u : Ω → (0,∞) and v : Ω → (0,∞),

Fu∗,B(u, v) :=
∫

Ω

ϕu∗(u) +
B

2

∫
Ω

(v − u∗)
2
. (5.1)

It satisfies Fu∗,B(u∗, u∗) = 0.

Lemma 5.1. Assume ρ > 0, μ > 0 and

l > max
{
n+ 2

2
, 2
}

are constants. If

K := sup
0�v�+∞

|γ′(v)|2
γ(v)

< 16μ
(
ρ

μ

)(l−3)/(l−1)

, (5.2)

then there exist B > 0 and C > 0 such that

d
dt

Fu∗,B(u, v) + C

{∫
Ω

γ(v)
|∇u|2
u2

+
∫

Ω

|∇v|2 +
∫

Ω

(v − u∗)2 +
∫

Ω

(u− u∗)2
}

� 0

for all t > 0, where u∗ = (ρ/μ)1/(l−1) and Fu∗,B defined as in (5.1). Moreover, we
have

Fu∗,B(u(t), v(t)) � Fu∗,B(u(t0), v(t0))

whenever 0 � t0 � t and there exists C > 0 such that∫ +∞

0

∫
Ω

(v − u∗)
2 +

∫ +∞

0

∫
Ω

(u− u∗)
2 � C.

Proof. According to the condition (5.2), we have

u∗K
4

< 4μul−2
∗ .

Hence there exists a suitably small η ∈ (0, 1) such that

u∗K
4(1 − η)

< 4μul−2
∗ ,

this implies the existence of B > 0 fulfilling

u∗K
4(1 − η)

< B < 4μul−2
∗ .

So

B >
u∗K

4(1 − η)
(5.3)

and
B

4
< μul−2

∗ ,
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which ensure that there exists some suitably small θ ∈ (0, 1) such that

B

4(1 − θ)
< μul−2

∗ . (5.4)

With the above chosen B, we use the system (1.4) to get

d
dt

Fu∗,B(u, v)

=
∫

Ω

ut − u∗
∫

Ω

ut

u
+B

∫
Ω

(v − u∗)vt

= ρ

∫
Ω

u− μ

∫
Ω

ul − u∗
∫

Ω

1
u

(
Δ(γ(v)u) + ρu− μul

)
+B

∫
Ω

(v − u∗) (Δv − v + u)

= ρ

∫
Ω

u− μ

∫
Ω

ul − ρu∗|Ω| + μu∗
∫

Ω

ul−1 − u∗
∫

Ω

γ(v)
|∇u|2
u2

− u∗
∫

Ω

γ′(v)
∇u · ∇v

u

−B

∫
Ω

|∇v|2 −B

∫
Ω

(v − u∗)2 +B

∫
Ω

(v − u∗)(u− u∗) (5.5)

for all t > 0. Applying Young’s inequality, we get

− u∗
∫

Ω

γ′(v)
∇u · ∇v

u

� (1 − η)u∗
∫

Ω

γ(v)
|∇u|2
u2

+
u∗

4(1 − η)

∫
Ω

|γ′(v)|2
γ(v)

|∇v|2

� (1 − η)u∗
∫

Ω

γ(v)
|∇u|2
u2

+
u∗K

4(1 − η)

∫
Ω

|∇v|2 (5.6)

and

B

∫
Ω

(v − u∗)(u− u∗)

� (1 − θ)B
∫

Ω

(v − u∗)2 +
B

4(1 − θ)

∫
Ω

(u− u∗)2 (5.7)

for all t > 0. Simple calculus implies

ρ

∫
Ω

u− μ

∫
Ω

ul − ρu∗|Ω| + μu∗
∫

Ω

ul−1

= −μ
∫

Ω

(u− u∗)(ul−1 − ul−1
∗ )

� −μ
∫

Ω

(u− u∗)2ul−2
∗ (5.8)
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for all t > 0 where we have used the elementary inequality: If m � 1, then for all
x � 0, y � 0 with x 
= y we have

xm − ym

x− y
� ym−1.

Collecting (5.5), (5.6), (5.7) and (5.8), we thus infer that

d
dt

Fu∗,B(u, v)

� −ηu∗
∫

Ω

γ(v)
|∇u|2
u2

−
(
B − u∗K

4(1 − η)

)∫
Ω

|∇v|2

− θB

∫
Ω

(v − u∗)2 −
(
μul−2

∗ − B

4(1 − θ)

)∫
Ω

(u− u∗)
2

for all t > 0. As (5.3) and (5.4) ensure that B − u∗K/4(1 − η) and μul−2
∗ −

B/4(1 − θ) are positive, this concludes the result easily. �

Proof of theorem 1.3. We use the contradiction method to prove the theorem as
before. Supposing that (1.9) is false, we can find C1 > 0, some sequences {tj}j∈N ⊂
(1,+∞) and {xj}j∈N ⊂ Ω such that tj → +∞ and

|u(xj , tj) − u∗| � C1

for all j ∈ N. (4.1) implies u is uniformly continuous in Ω × (1,+∞). Therefore,
there exists r > 0 such that for any j ∈ N,

|u(x, t) − u∗| � C1

2

for all x ∈ Br(xj) ∩ Ω and t ∈ (tj , tj + 1). Owing to the smoothness of ∂Ω, we can
find C2 > 0 which satisfies

|Br(xj) ∩ Ω| � C2

for all xj ∈ Ω. Then we infer that for all j ∈ N,∫ tj+1

tj

∫
Ω

|u(x, t) − u∗|2 �
∫ tj+1

tj

∫
Br(xj)∩Ω

|u(x, t) − u∗|2

�
∫ tj+1

tj

|Br(xj) ∩ Ω|
(
C1

2

)2

�
(
C1

2

)2

C2. (5.9)

From lemma 5.1, we derive∫ tj+T

tj

∫
Ω

|u(x, t) − u∗|2 �
∫ +∞

tj

∫
Ω

|u(x, t) − u∗|2 → 0

as j → +∞ which contradicts (5.9). Hence, (1.9) is verified.
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The properties on v can be derived similarly. �
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