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SUMMARY
This paper presents studies of the coordination of human
upper body voluntary movement. A minimum-jerk 3D model
is used to obtain the desired path in Cartesian space, which
is widely used in the prediction of human reach movement.
Instead of inverse kinematics, a direct optimization approach
is used to predict each joint’s profile (a spline curve).
This optimization problem has four cost function terms: (1)
Joint displacement function that evaluates displacement of
each joint away from its neutral position; (2) Inconsistency
function, which is the joint rate change (first derivative)
and predicted overall trend from the initial target point to
the final target point; (3) The non-smoothness function of
the trajectory, which is the second derivative of the joint
trajectory; (4) The non-continuity function, which consists
of the amplitudes of joint angle rates at the initial and final
target points, in order to emphasize smooth starting and
ending conditions. This direct optimization technique can
be used for potentially any number of degrees of freedom
(DOF) system and it reduces the cost associated with certain
inverse kinematics approaches for resolving joint profiles.
This paper presents a high redundant upper-body modeling
with 15 DOFs. Illustrative examples are presented and an
interface is set up to visualize the results.

KEYWORDS: Planning trajectory; Biomechanics; Minimum jerk;
B-splines; Cartesian space; Joint space; Direct optimization-based
method.

1. INTRODUCTION
Trajectory planning of human upper-body movement is one
of the most challenging problems in digital human simula-
tion. Many tasks require the arm to move from its initial
position to a specified target position without any constraints,
or via a point for a curved path in case of obstacle avoidance.

Researchers have developed various trajectory planning
methods for robotic systems considering different kinematic
and dynamic criteria such as obstacle avoidance, singularity
avoidance, time minimization, torque optimization, energy
optimization, and other objective functions.1–7 For a
kinematically redundant system, the mapping between task–
space trajectory and the joint–space trajectory is not unique.
It admits an infinite number of joint–space solutions for a
given task–space trajectory.

∗ Corresponding authors. E-mail: amalek@engineering.uiowa.edu,
jyang@engineering.uiowa.edu

Flash and Hogan8 presented a mathematical model that
was shown to predict both the qualitative features and the
quantitative details observed experimentally in planar, multi-
joint arm movements. Uno et al.9 proposed a mathematical
model, which is formulated by defining an objective function,
square of the rate of change of torque integrated over the
entire movement. Kawato et al.10 studied the problems
of coordinate transformation from the desired trajectory
to the body coordinates and motor command generation.
This approach appears very attractive, but it lacks generali-
zability. Bobrow2 presented a path-planning technique,
which makes use of approximations of an initial feasible
trajectory in conjunction with an iterative, nonlinear
parameter optimization algorithm to produce time-optimal
motions for a manipulator with three degrees of freedom
in a workspace containing obstacles. A randomized planner
was introduced by,11 which was able to solve complex
path-planning problems for many-DOF robots by alternating
“down motions” to track the negated gradient of a potential
field and “random motions” to escape local minima.

The minimum jerk model8 is a mathematical model
that is shown to predict both the qualitative features and
the quantitative details observed experimentally in planar,
multi-joint arm movements. Coordination is modeled mathe-
matically by defining an objective function, a measure
of performance for any possible movement. The unique
trajectory that yields the best performance is determined
using dynamic optimization theory. The objective function
is the square of the magnitude of jerk (rate of change
of acceleration) of the hand integrated over the entire
movement. This is equivalent to assuming that a major goal
of motor coordination is the production of the smoothest
possible movement of the hand. This model is a well-known
one that is widely used in the prediction of human reach
movement.12–18

Yun and Xi19 used genetic algorithms for optimum motion
planning in joint space for robots. Similarly, Constantinescu
and Croft20 put forth a smooth and time-optimal trajectory
planning, which minimizes time under path constraints,
torque limits, and torque rate limits.

Saramago et al.21–23 have studied robot path planning
by taking into consideration dynamic system, with payload
constraints, and in the presence of moving obstacles.
Pugazhenthi et al.24 studied the optimal trajectory planning
for Stewart platform-based machine tools. Li and Ceglarek25

presented an optimal trajectory planning application for
material handling of compliant sheet metal parts in which
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they considered part permanent deformation, trajectory
smoothness, and static obstacle avoidance.

Alexander26 hypothesized that trajectories are chosen to
minimize metabolic energy costs. Ohtaet al.27 presented
a criterion minimizing the hand contact force change and
muscle force change of a movement over time.

Existing approaches are applied to trajectory planning of
manipulators, which normally have only two to three degrees
of freedom or up to six at most. On the other hand, for
realistic motion generation, human models normally have
more than 10 DOFs. Moreover, the criteria used for motion
planning will be quite different. For example, optimum time
is always selected for the manipulator trajectory planning
in application. But for human motion, this is not always
important; instead, humans tend to adopt the motion with
least discomfort and effort, and greatest smoothness. This
paper presents a methodology for predicting and simulating
the path generated by humans in a natural motion of the torso
and upper extremity, which entails two parts: Minimum jerk
model to define the path of human hand in Cartesian space
and direct optimization method to find the motion in joint
space that matches the desired Cartesian path.

2. HUMAN MODELING
To establish a systematic method for the biomechanical
human modeling, researchers have implemented conventions
for representing segmental links and joints. Perhaps the most
important element of a joint is its function, which may
vary according to the joint’s location and physiology. The
physiology becomes important when we discuss the loading
conditions of a joint. As for kinematics, we shall address the
function in terms of the number of DOFs associated with its
overall movement. Muscle action, ligaments, and tendons at
a joint are also important and contribute to the function.

For example, the elbow joint is considered a hinge or a one-
DOF rotational joint (e.g., the hinge of a door) because it al-
lows for flexibility and extension in the sagittal plane (Fig. 1)
as the radius and ulna rotate about the humerus. We shall re-
present this joint by a cylinder that rotates about one axis and
has no other motions (i.e., has one DOF). Therefore, we can
now say that the elbow is characterized by one DOF and
is represented as a cylindrical rotational joint also shown in
Fig. 1.

Our shoulder model takes into consideration the final gross
movement of the joint28,29 as abduction/adduction (about the
anteroposterior axis of the shoulder joint), flexion/extension,
and transverse flexion/extension (about the mediolateral axis

of the shoulder joint). Note that these motions provide for
three rotational DOFs, with their axes intersecting at one
point. This effectively gives rise to a spherical joint typically
associated with the shoulder joint (Fig. 2). In addition, the
upward/downward rotation of the scapula gives rise to two
substantial translational (i.e., sliding) DOFs for a total of
five DOFs in the shoulder complex. This model allows for
consideration of the coupling between some of the joints, as is
the case in the shoulder where muscles extend over more than
one segment. When muscles are used to lift the arm in a rota-
tional motion, a translational motion of the shoulder occurs
inadvertently. In Fig. 2, the global coordinate system x0y0z0

is located on the hip joint with three orthogonal anterior–
posterior, medial–lateral, and vertical axes. Two translational
DOFs are along x0 and z0, respectively. The rest three DOFs
are revolute joints with the axes perpendicular to each other.

The human upper body (torso, shoulder, and arm) is
modeled using a total of 15 DOFs (Fig. 3) as described later.
In Fig. 3, the global coordinate system is the same as Fig. 2;
the torso includes six DOFs, the clavicle has two DOFs, and
the arm entails seven DOFs. The two or three arrows such
as z10, x8, and x9 denote that these vectors have the same
direction. The thumb tip is the point of interest (end-effector).

Using Denavit–Hartenberg (D–H) method30 to define the
transformation matrix of one coordinate system with respect
to another coordinate system, the position and orientation of
each axis determine the four parameters θ i, di, ai, αi in Fig. 4,
and thus determine the resulting (4 × 4) transformation
matrix. To establish this matrix, one can observe that a vector
iv resolved in the ith coordinate system may be expressed
in the (i−1)th coordinate system (i−1v) by performing four
successive transformations as follows:

(a) A rotation about the zi−1 axis by an angle θ i to align the
xi−1 axis with the xi axis (as shown in Fig. 4, xi−1//xi and
pointing in the same direction).

(b) A translation xi−1 along zi−1 by a distance of di units to
make xi−1 and xi aligned.

(c) A translation along the xi axis by a distance of ai units to
make the two origins of the i and i−1 systems coincide
(xi and the xi−1 will also be aligned).

(d) A rotation about the xi axis by an angle αi to coincide
the two coordinate systems.

Each step given above is expressed by a basic
homogeneous rotation or translation matrix. For example,
Tz,d denotes a translation matrix along z with d units.
The product of these four matrices results in a composite

Fig. 1. One-DOF elbow.
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homogeneous transformation matrix

i−1Ti = Tz,dTz,θTx,aTx,α =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

cos θi −sinθi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 cos αi −sinαi 0
0 sin αi cos αi 0
0 0 0 1

⎤
⎥⎦

i−1Ti =

⎡
⎢⎣

cos θi −cosαi sin θi sin αi sin θi ai cos θi

sin θi cos αi cos θi −sinαi cos θi ai sin θi

0 sin αi cos αi di

0 0 0 1

⎤
⎥⎦ ,

where d7 = q7, d8 = q8, and θ i = qi, i = 1, . . . , 6, 9, . . . ,15.

(1)

Fig. 2. Modeling of the shoulder complex as three revolute and two sliding DOFs.

Fig. 3. Modeling of the torso–shoulder–arm.
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Fig. 4. Establishing coordinate systems and the four D–H
parameters.

For any sequence of segmental links and joints, two
reference frames are represented by the multiplication
of the transformations between them. To relate the
coordinate frames m −1 and m + n, the multiplication of the
transformations is carried out as

m−1Tm
mTm+1 . . . .m+n−1Tm+n = m−1Tm+n. (2)

Equally, to relate the base frame usually denoted by zero,
and perhaps embedded in the shoulder, to the nth frame, we
multiply all transformation matrices such as

0Tn(q) =0 T1(q1)1T2(q2) . . .n−1 Tn(qn), (3)

where q = [q1, . . . , qn]T are joint angles. Subsequently, a
vector described in the hand coordinate system nx (local
coordinate system) can be resolved in the base coordinate
system (e.g., embedded in the shoulder) by pre-multiplying
the overall transformation matrix as[

x(q)
1

]
= 0Tn(q1, . . . , qn)

[
nx
1

]
, (4)

where the extended vector is necessary to allow for the (4 × 4)
matrix multiplication. The vector function x(q) characterizes
the xyz coordinates of the hand with respect to the shoulder
(Fig. 3). The joint limits for the 15 DOF human upper body
are obtained by experiments on human subjects, which are
−π /6 ≤ q1 ≤ π /6, −π /12 ≤ q2 ≤ π /12, −π /18 ≤ q3 ≤ π /16,
−π /18 ≤ q4 ≤ π /6, −π /18 ≤ q5 ≤ π /6, −π /18 ≤ q6 ≤ π /6,
−3.81 ≤ q7 ≤ 3.81, −3.81 ≤ q8 ≤ 3.81, −π /2 ≤ q9 ≤ π /2,
−2π /3 ≤ q10 ≤ 11π /18, −π /3 ≤ q11 ≤ 2π /3, −5π /6 ≤ q12 ≤
0, −π ≤ q13 ≤ 0, −π /3 ≤ q14 ≤ π /3, and −π /9 ≤ q15 ≤ π /9.
q7 and q8 are translational joints and they are in centimeters;
other joints are in radians.

3. PATH IN CARTESIAN SPACE (MINIMUM-JERK
3D MODEL)
First, we will extend the concept of 2D minimum jerk8 to
3D in Cartesian space. This minimum-jerk 3D model is
developed and used as the path of human upper-body reach
movement. This model entails unconstrained point-to-point
movement and curved point-to-point (via point) movement.

3.1 Unconstrained point-to-point movement
Given a path trajectory as a parametric curve in space such
as

x(t) = [x(t) y(t) z(t)]T (5)

the first derivative is the velocity and the second derivative
is the acceleration. The third derivative, introduced by Flash
and Hogan,8 is the jerk along a path and is best measured by
an integration over the motion time along the path, such that

C = 1

2

∫ tf

0

((
d3x

dt3

)2

+
(

d3y

dt3

)2

+
(

d3z

dt3

)2)
dt . (6)

In order to include the concept of minimum jerk as
a driving function in the design (or prediction) of a
path trajectory, we will adapt some mathematics for the
calculation of minima and maxima. Generally, for any
function x(t), which is sufficiently differentiable in the
interval 0 ≤ t ≤ tf, and for any performance index
L[t, x, ẋ, ẍ, . . . , dnx/dtn], which is integrable over the same
interval, the unconstrained cost function

C(x(t)) =
∫ tf

0
L

[
t, x, ẋ, ẍ, . . . ,

dnx

dtn

]
dt (7)

assumes an extremum when x(t) is the solution of Euler–
Poisson equation

∂L

∂x
− d

dt

(
∂L

∂x

)
· · · + (−1)n

dn

dtn

∂L

∂(xn)
= 0. (8)

In our case,

L = 1
2 ((¨ẋ)2 + (¨ẏ)2 + (¨ż)2) (9)

and the Euler–Poisson equation

d3

dt3

(
∂¨ẋ2

∂¨ẋ

)
= d3

dt3

(
∂¨ẏ2

∂¨ẏ

)
= d3

dt3

(
∂¨ż2

∂¨ż

)
= 0 (10)

we can get

d6x

dt6
= 0;

d6y

dt6
= 0;

d6z

dt6
= 0. (11)

If we assume the movement to start and end with zero
velocity and acceleration, then we have

x(t) = x0 + (x0 − xf)(15τ 4 − 6τ 5 − 10τ 3),
y(t) = y0 + (y0 − yf)(15τ 4 − 6τ 5 − 10τ 3),
z(t) = z0 + (z0 − zf)(15τ 4 − 6τ 5 − 10τ 3),

(12)

where τ = t/tf, x0, y0, z0 are the initial hand-position
coordinates at t = 0, and xf , yf , zf are the final hand-position
coordinates at t = tf .
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3.2 Curved point-to-point movement
Consider motion along a curve, where the hand has to traverse
a specified point (called a via point) during its motion. Study
of such movements will provide a way to model obstacle-
avoidance motions. For example, if there is an obstacle in
the path between two end points, by examining the largest
diameter of the obstacle, an artificial intelligence engine
can determine and introduce a via point to pass through
for going around the obstacle. The objective is to generate
the smoothest motion to bring the hand from the initial
position to the final position at a given time, while the hand
must move to the final position through a via point at an
unspecified time. The requirement that the hand should move
through a specified via point defines equality constraints on
the hand-position coordinates x(t) = [x(t), y(t), z(t)]T; i.e.,
if the location of the via point with respect to a Cartesian
coordinate system is given by x1 = [x1, y1, z1]T, the equality
constraints are

x(t1) = x1, (13)

where the time t1 at which the hand has to pass through the
via point is not specified a priori, but rather is derived from
the optimization procedure to minimize the jerk function.
Problems of this kind are known as dynamic optimization
problems with interior point equality constraints, and
techniques have been established for their solution.31

We will now introduce the dynamic optimization method.
Generally, optimization problems similar to the one solved
here involve a system that can be described by a set of
nonlinear differential equations

ṡ = f[s(t), u(t), t], (14)

where s(t) is an n vector function of state variables and u(t)
is an m vector control function. The problem is to find the
control u(t), such that carrying the system from an initial
state s(0) to a final state s(tf) optimizes the cost function C(t).
C(t) is defined as

C(t) =
∫ tf

0
L[s(t), u(t), t] dt, (15)

where L[s(t), u(t), t] is the performance index. This problem
can be solved using the Pontryagin method.32 One defines an
n component co-state (Lagrange multipliers) vector λ(t) and
a scalar Hamiltonian

H [s(t), u(t), t)] = L[s(t), u(t), t] + λT (t)f[s(t), u(t), t].

(16)

The following differential equations define the necessary
conditions for a minimum to exist

ṡ = f[s(t), u(t), t] (17a)

λ̇(t) = −∂H

∂s
(17b)

∂H

∂u
= 0. (17c)

For optimal control problems with interior point equality
constraints, there is a set of constraints at some time t1

�(s(t1), t1) = 0, (18)

where � is a ρ-component vector function. These interior
point constraints can augment the cost function by a Lagrange
multiplier vector κ so that the new cost function is

C = κT � +
∫ tf

0
L[s(t), u(t), t] dt . (19)

The solution is obtained by allowing discontinuities in
the co-state variables (Lagrange coefficients) λ(t)s and in
the Hamiltonian H[t, λ(t), s(t)]. One can define a vector of
Lagrange coefficients λ+(t) and Hamiltonian H+(t) for t ≥ t1
and a vector λ−(t) and Hamiltonian H−(t) for t ≤ t1. At time
t1, these variables satisfy the equations

λ−(t1) = λ+(t1) + κT ∂�

∂s(t1)
(20)

and

H−(t1) = H+(t1) − κT ∂�

∂t1
. (21)

The ρ components of κ are determined by the constraint
Eq. (18), while time t1 is fully determined by Eq. (21).

For our problem, we define a state vector s(t) = [x, y, z,
u, v, w, a, b, c]T and a control vector u(t) = [δ, γ , η]T, and
the components of these vectors are defined by the system
equations

ẋ = u

ẏ = v

ż = w

u̇ = ẍ = a

v̇ = ÿ = b (22)

ẇ = z̈ = c

ȧ = ẍ = jerkx = δ

ḃ = ÿ = jerky = γ

ċ = z̈ = jerkz = η

and the Hamiltonian is

H = λxu + λyv + λzw + λua + λvb + λwc + λaδ

+ λbγ + λcη + 1
2 (δ2 + γ 2 + η2). (23)

The necessary conditions for a minimum to exist are

−dλx

dt
= 0 −dλu

dt
= λx −dλa

dt
= λu

−dλy

dt
= 0 −dλv

dt
= λy −dλb

dt
= λv

−dλz

dt
= 0 −dλw

dt
= λz −dλc

dt
= λw.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(24)
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The necessary conditions on the control variables are

∂H

∂δ
= δ + λa = 0

∂H

∂γ
= γ + λb = 0 (25)

∂H

∂η
= η + λc = 0.

For our specific problem, the constraints are at the hand
position at time t1

x(t1) = x1

y(t1) = y1 (26)

z(t1) = z1.

The Hamiltonian H− for all times t ≤ t1 is

H− = λ−
x u− +λ−

y v− +λ−
z w− +λ−

u a− +λ−
v b− +λ−

wc−

+ λ−
a δ− +λ−

b γ − +λ−
c η− + 1

2 ((δ−)2 + (γ −)2 + (η−)2)

(27)

and the Hamiltonian H+ for all times t ≥ t1 is

H+ = λ+
x u+ +λ+

y v+ +λ+
z w+ +λ+

u a+ +λ+
v b+ +λ+

wc+

+ λ+
a δ+ +λ+

b γ + +λ+
c η+ + 1

2 ((δ+)2 + (γ +)2 + (η+)2).

(28)

Since the constraint equations only relate to position, the
only discontinuities are in λx, λy, and λz; therefore, according
to Eq. (20), we get

λ−
x = λ+

x + κ1

λ−
y = λ+

y + κ2

λ−
z = λ+

z + κ3.

(29)

While all the other Lagrange coefficients are continuous at
t = t1

λ−
u = λ+

u

λ−
v = λ+

v

λ−
w = λ+

w

λ−
a = λ+

a (30)

λ−
b = λ+

b

λ−
c = λ+

c .

Since time t1 is not explicitly specified, the Hamiltonian must
be continuous at t1 according to Eq. (21)

H+(t1) = H−(t1). (31)

Now we can derive the necessary conditions for the exist-
ence of a minimum separately for t ≤ t1 and t ≥ t1 as shown in
Eqs. (24) and (25). In addition, we require continuity of

velocities and accelerations at t1, so that

u+(t1) = u−(t1)

v+(t1) = v−(t1)

w+(t1) = w−(t1)

a+(t1) = a−(t1)

b+(t1) = b−(t1)

c+(t1) = c−(t1).

(32)

Applying the following boundary conditions

x(0) = x0 x(tf) = xf

y(0) = y0 y(tf) = yf

z(0) = z0 z(tf) = zf

u(0) = 0 u(tf) = 0

v(0) = 0 v(tf) = 0 (33)

w(0) = 0 w(tf) = 0

a(0) = 0 a(tf) = 0

b(0) = 0 b(tf) = 0

c(0) = 0 c(tf) = 0.

Solving Eqs. (24) and (25), and applying boundary condi-
tions (33) we can obtain an expression for x(t) for times
t ≤ t1

x−(τ ) = t5
f

720

(
κ
(
τ 4

1 (15τ 4 − 30τ 3) + τ 3
1 (80τ 3 − 30τ 4)

− 60τ 3τ 2
1 + 30τ 4τ1 − 6τ 5

)
+ c(15τ 4 − 10τ 3 − 6τ 5)

) + x0 (34)

and for times t ≥ t1 the expression is

x+(τ ) = t5
f

720

(
κ
(
τ 4

1 (15τ 4 − 30τ 3 + 30τ − 15)

+ τ 3
1 (−30τ 4 + 80τ 3 − 60τ 2 + 10)

)
+ c(−6τ 5 + 15τ 4 − 10τ 3 + 1)

) + xf

= x−(τ ) + κ
t5
f (τ − τ1)5

120
, (35)

where x(t) = [x(t), y(t), z(t)]T, κ = [κ1, κ2, κ3]T, and c = [c1,
c2, c3]T are vectors of constants, τ = t/tf and τ 1 = t1/tf. From
Eq. (26), we have

x+(t1) = x−(t1) = x1, (36)

where x1 = [x1, y1, z1]T. Substituting Eqs. (34) and (35) into
(36), we obtain the following

κ = 1

t5
f τ 5

1 (1 − τ1)5

(
(xf − x0)

(
120τ 5

1 − 300τ 4
1 + 200τ 3

1

)
− 20(x1 − x0)

)
(37)
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c = 1

t5
f τ 2

1 (1 − τ1)5

(
(xf − x0)

(
300τ 5

1 − 1200τ 4
1 + 1600τ 3

1

)
+ τ 2

1 (−720xf + 120x1 + 600x0)

+ (x0 − x1)(300τ1 − 200)
)
, (38)

where x0 = [x0, y0, z0]T and xf = [xf, yf, zf]T.
Next we substitute Eqs. (37) and (38) into (31), which

reduces to

κ1u(t1) + κ2v(t1) + κ3w(t1) = 0 (39)

and we can obtain a polynomial equation in τ 1 = t1/tf

(κ∗ · κ∗)
(
2τ 3

1 − 7τ 2
1 + 8τ1 − 3

)
+ (κ∗ · c∗)

(−τ 3
1 + 2τ 2

1 − τ1
) = 0, (40)

where

κ∗ = (xf − x0)
(
6τ 5

1 − 15τ 4
1 + 10τ 3

1

) − (x1 − x0) (41)

c∗ = (xf − x0)
(
15τ 5

1 − 60τ 4
1 + 80τ 3

1

)
+ τ 2

1 (−36xf + 6x1 + 30x0) + (x0 − x1)(15τ1 − 10).

(42)

We then find the real roots of this polynomial equation,
which has only one acceptable root lying between 0 and 1.
Substituting this value for τ 1 in the expressions for κ and c
in Eqs. (37) and (38), we can finally get the expressions for
x(t) during the entire motion.

4. MAPPING FROM CARTESIAN SPACE
TO JOINT SPACE
As we have already obtained the path in Cartesian space
for unconstrained and curved (for obstacle avoidance)
trajectories by minimizing the jerk during motion, we can
now find joint profiles in joint space that will allow for the
desired motion of the hand and simultaneously minimize jerk
in Cartesian space.

We will use B-splines to represent joint displacements as
a function of time, one for each joint (readers are referred
to the Appendix for NURBS basic concepts). The B-spline
curve of joint j can be obtained as

qj (t) =
nc∑

i=1

Ni,3(t)P j

i , 0 ≤ t ≤ tf, j = 1, 2, . . . , l,

(43)

where Ni,3(t) are the base functions, P j

i are control points for
joint j, and the total number of control points for joint j is
nc.33

When we have the start and end points, the optimization-
based posture prediction algorithm34 is first used to predict
the natural postures at the start and end points, i.e., one
can obtain P

j

1 and P
j
m, where j = 1, . . . , l. Therefore, the

optimization problem is defined as

Find P
j

i , i = 2, . . . , nc − 1, j = 1, . . . , l.

Minimize

fcost = w1fjoint-displacement + w2finconsistency

+w3fnon-smoothness +w4fnon-continuity. (44)

Subject to

‖x(q(t)) − p(t)‖ =
∥∥∥∥∥x

(
nc∑

i=1

Ni,3(t)Pi

)
− p(t)

∥∥∥∥∥ < ε (45)

qL
j ≤ P

j

i ≤ qU
j , (46)

where 0 ≤ t ≤ tf, ε is a small positive number as the
tolerance; Pi = [P 1

i . . . P n
i ]T ; p(t) is the path obtained from

the planning in Cartesian space phase; w1, w2, w3, and w4

are the weights added to each performance index, L in the
superscript denotes lower limit and U denotes upper limit.

(1) The joint-displacement function of all joints:

fjoint-displacement(q) =
n∑

j=1

ξj

(
qj − qN

j

)2

=
n∑

j=1

ξj

(
nc∑

i=1

Ni,3(t)P j

i − qN
j

)2

, (47)

where qN
j is the neutral position of a joint measured from

the starting home configuration and ξ j is a weight function
assigned to each joint in order to give more importance to
joints that are typically more affected than others.

(2) The inconsistency function: By comparing the two
postures (initial and end points), an overall changing trend
of each joint (increasing or decreasing) can be predicted to
avoid abrupt change in each joint’s velocity. As a result, the
consistency between the joint rate change (first derivative)
and predicted overall trend is evaluated and will be added to
the cost function. The detailed formulation of this consistency
is as follows:

x0 → q0

xf → qf

}
→ trendi =

{
1 if

(
qf

j − q0
j

) ≥ 0

−1 if
(
qf

j − q0
j

)
< 0

(48)

and

finconsistency =
n∑

j=1

(|sign(q̇j (t)) − trendj | + 1)|q̇j (t)|, (49)

where

sign(q̇j (t)) =
{

1 if q̇j (t) ≥ 0

−1 if q̇j (t) < 0,
(50)

and q0 and qf are the joint vectors corresponding to the
starting and ending position of the path, respectively. The
(+1) in Eq. (49) is to make sure the amplitude of the joint rate
change still effectively optimizes a smooth joint trajectory
when the first term within the parentheses is evaluated as
zero. Multiplying the amplitude of this joint change rate
enforces the underlying assumption that the smaller the joint
angle change rate is, the smoother the joint trajectory will be.
It also has a significant effect on the optimization process,
by quantifying as well as qualifying the consistency so as to
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avoid the zero gradient of this objective, that is characteristic
of an ill-stated optimization problem statement.

(3) The non-smoothness function: The second derivative
of the joint trajectory is considered in a non-smoothness (or
smoothness) function as

fnon-smoothness =
n∑

j=1

(q̈j (t))2. (51)

If joint (angular) accelerations q̈j exist, then q̇j and qj will
exist and be continuous, and it is called that the qj are smooth.

(4) The non-continuity function: The amplitudes of joint
angle rates at the start and final target points are considered
as the continuity function:

fnon-continuity =
n∑

j=1

∣∣q̇0
j

∣∣ +
n∑

j=1

∣∣q̇f
j

∣∣. (52)

With respect to multi-objective optimization (MOO), from
a mathematical perspective, there is no “best” set of weights
in Eqs. (44) and (47). There is no single “correct” solution.
Technically, there are infinitely many solution points to an
MOO problem, and these solutions form the Pareto optimal
set. In order to determine a single final solution, the user must
articulate preferences at some point in some form.

A weighted sum provides one of many methods for
articulating preferences a priori.35 Investigating alternative
methods is beyond the scope of this paper. Nonetheless,
despite certain deficiencies,36 the weighted sum provides
a common and standard approach, sufficient for an initial
MOO study in the context of the problem presented in
this paper. Conceptually, the weights represent the relative
importance of the criteria, and ideally, the magnitude for the
weights should be similar to that of the objective-function
values.37 However, the weighted sum represents only a linear
approximation (in terms of the criteria or objectives) of the
user’s preferences. The slope of this approximating function
is modified by changing the weights. Consequently, it may
be necessary to modify the weights once a corresponding
solution is obtained. The solution does not always reflect
the intended preferences with perfect accuracy. This can
result in a trial-and-error approach to setting the weights
and articulating preferences.

Once the control points of joint curves are selected by the
iterative optimization algorithm, the cost function of Eq. (44)
can be integrated (we integrate the first three terms and add
the fourth term to it) to obtain the total cost at any point along
the path. The same principle applies to the distance, where the
total deviation along the path can be obtained by the integra-
tion of the distance between the calculated and desired paths
from the start to the end points. For simplicity, the cost func-
tion and distance constraints in our algorithm are evaluated
by selecting representative points on the path where higher
density is distributed close to the ends. Since each joint’s
profile has nc control points, the total number of the design
variables will initially be nnc. In our calculation, the joint
values at the start and end points have been obtained directly
using the posture-prediction algorithm, where we only need
to calculate the remaining nc − 2 control points for each joint,
i.e., the design variables for the optimization are reduced to

n(nc − 2). A nonlinear optimization code DOT-Design Op-
timization Tools Program38 is used to solve the optimization
problem. From Eqs. (48) to (50), part 2 of Eq. (44) is not
continuous. However, we use finite difference method for
the gradient and the optimization problem always converges.

5. ILLUSTRATIVE EXAMPLES
Based on simulation experiments, a set of weights (50,
100, 1, 1000) are selected for w1, w2, w3, and w4, and
the modified feasible direction method is used for the
optimization. The overall calculation time is around 17–18 s
on a 1.8 GHz Pentium 4 CPU with 512 MB RAM. An
interface is implemented in 3D Studio Max, which can
interact with the user, call the path-prediction algorithm to do
the calculations, show results, and animate human motions
in real time.

5.1 Point-to-point example
Figures 5–10 are snapshots of a predicted motion, where
the digital human starts from point [34.4 −56.6 33.6]T

Fig. 5. Predicted motion at time 0 s.

Fig. 6. Predicted motion at time 0.30 s.

Fig. 7. Predicted motion at time 0.5 s.
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Fig. 8. Predicted motion at time 0.60 s.

Fig. 9. Predicted motion at time 0.8 s.

Fig. 10. Predicted motion at time 1.0 s.

and goes to the target point [74.6 −22.3 33.7]T, where the
global coordinate is shown in Fig. 3 with x0y0z0. The small
spheres on the path are the constraints enforced on the hand
position when predicting the joint B-splines. From the time
stamps of the snapshots shown, it is easy to observe that
the hand moves slower around the start and the end than in
the middle. This is the so-called bell-shape velocity profile
that is characteristic of a smooth and natural human arm
movement,8 and predictability of this profile is actually the
strength of the minimum-jerk model. The predicted joint
profiles for the 15 joints are shown in Figs. 11–13, where q7

and q8 are translational joints and are given in centimeters,
and other joints are revolute joints and are given in radians.
The (angular) velocities are shown in Figs. 14–16, where
velocities q̇7 and q̇8 are in cm/s, and angular velocities

Fig. 11. Joint profiles for q1, . . . , q5.

Fig. 12. Joint profiles for q6, . . . , q10.

Fig. 13. Joint profiles for q11, . . . , q15.

Fig. 14. Joint angular velocities for q̇1 ∼ q̇5.

Fig. 15. Joint (angular) velocities for q̇6 ∼ q̇10.
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Fig. 16. Joint angular velocities for q̇11 ∼ q̇15.

for other angles are in rad/s, and the (angular) accelerations
are shown in Figs. 17–19, where accelerations q̈7 and q̈8 are
in cm/s2, and angular accelerations for other angles are in
rad/s2. We see that each joint moves smoothly towards the
final position.

From Figs. 5–10, the torso moves a lot more than expected
and the arm moves too little than expected. This result shows
that the selected weights for Eq. (47) are not accurate. The
joints located on the torso should have larger weights relative
to the joints on the arm. This conclusion comes from the fact
that when minimizing the cost function (Eq. (47)), joints
with larger weights will not change too much. Next example
for via point will show that the selected weights are much
more realistic. Figures 11–13 show that all joint profiles
are smooth. Figures 14–19 show that although the hand
velocity and acceleration are zero in the start and final target

Fig. 17. Joint angular accelerations for q̈1 ∼ q̈5.

Fig. 18. Joint (angular) accelerations for q̈6 ∼ q̈10.

Fig. 19. Joint angular accelerations for q̈11 ∼ q̈15.

positions, joint (angular) velocities and accelerations are not.
The reason is that when ẋ = J q̇, where J is the Jacobian
matrix of the position vector of the end-effector, there exist
ẋ|t=0 = 0 and ẋ|t=tf = 0; however, J is not a diagonal matrix,
therefore q̇ �= 0 in the initial and final target points. The
similar situation is for the joint (angular) accelerations.

5.2 Curved and obstacle-avoidance example
For curved and obstacle-avoidance movements, it is assumed
that the hand is required, in the motion between the end
points, to pass through a third specified point (for example,
an artificial intelligence engine can provide a via point to pass
so as to go around the obstacle by examining the diameter
of the obstacle). So given the start and end points, and a
third via point, a curved path in Cartesian space can be first
generated,8 while the time taken in passing through the via
point is first solved. Figures 20–25 give the snapshots of such
movements while the digital human begins moving from the
initial point [23.7 −68.5 43.0]T to the end point [66.5 4.3
34]T, passing through the via point [34.0 −45.5 38.7]T. The
big green sphere is the via point and the curve is the Cartesian
path predicted using the minimum-jerk model. The small
spheres are where distance constraints are enforced during
the optimization for joint splines. The predicted joint profiles
for the 15 joints are shown in Figs. 26–28, (angular) velocities
in Figs. 29–31, and accelerations in Figs. 32–34, from which

Fig. 20. Predicted motion at time 0 s.
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Fig. 21. Predicted motion at time 0.30 s.

Fig. 22. Predicted motion at time 0.5 s.

Fig. 23. Predicted motion at time 0.60 s.

we can see that each joint moves smoothly towards the
final position where the units for the joint profiles and their
first and second derivatives are the same as in the previous
example.

As shown in the figures given earlier, the proposed method
and algorithm can predict smooth and graceful movements of
the upper body even for point-to-point and nonlinear (curved)
paths. Figures 20–25 show that the predicted motion for the
torso part is much more realistic than the previous example.
It means that the weights in Eq. (47) for this example are
good weights. Figures 26–28 show that the joint profiles

Fig. 24. Predicted motion at time 0.8 s.

Fig. 25. Predicted motion at time 1.0 s.

Fig. 26. Joint profiles for q1, . . . , q5.

Fig. 27. Joint profiles for q6, . . . , q10.
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Fig. 28. Joint profiles for q11, . . . , q15.

Fig. 29. Joint angular velocities for q̇1 ∼ q̇5.

Fig. 30. Joint (angular) velocities for q̇6 ∼ q̇10.

Fig. 31. Joint angular velocities for q̇11 ∼ q̇15.

are smooth although the hand passes through the via point.
Figures 29–34 have the same characteristic as Figs. 14–19
for the start and final target positions.

Fig. 32. Joint angular accelerations for q̈1 ∼ q̈5.

Fig. 33. Joint (angular) accelerations for q̈6 ∼ q̈10.

Fig. 34. Joint angular accelerations for q̈11 ∼ q̈15.

6. CONCLUSIONS
The proposed method for predicting joint profiles is broadly
applicable to any type of path, i.e., to linear (straight) or
nonlinear (curved) path trajectories. Nonlinear paths are ap-
plicable to obstacle-avoidance problems, where trajectories
are deviated from the typical linear point-to-point motion
with an extended minimum-jerk model. It is shown that a
mathematical formulation applicable to any number of DOFs
has been developed and demonstrated. Each of the joint
profile has been defined by a smooth B-spline, where control
points are calculated using a novel direct optimization-
based algorithm. A Cartesian path (including the time to
traverse through the via point) is first predicted based
on the extended minimum-jerk model (within an iterative
optimization algorithm), and is followed by the calculation of
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joint profiles characterized by B-splines, where the objective
is to minimize a joint displacement function, non-consistency
function, non-smoothness function, and non-continuity func-
tion. It is also shown that the experimental code associated
with this formulation was implemented in a graphical real-
time simulation interface. It is shown that the weights are an
important factor to make sure the results are realistic.
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APPENDIX

There are a number of ways to define the B-spline basis
functions; the most useful for computer implementation is
the recurrence formula. We shall use the recurrence formula
to represent a B-spline, such that its control points will be
calculated as a result of the iterative numerical algorithm
and will be based on optimizing the minimum-jerk formula.
Let U = {u1, . . . , um} be a non-decreasing sequence of real
numbers, i.e., ui ≤ui+1, i = 1, . . . , m − 1. The ui are called
knots and U is the knot vector. The ith B-spline basis function
of p-degree (order p + 1), denoted by Ni,p(u), is defined
as

Ni,0(u) =
{

1 if ui ≤ u < ui+1

0 otherwise

Ni,p(u) = u−ui

ui+p −ui

Ni,p−1(u)+ ui+p+1 −u

ui+p+1 −ui+1
Ni+1,p−1(u).

(A1)

A pth-degree B-spline curve is defined by

C(u) =
n∑

i=1

Ni,p(u)Pi a ≤ u ≤ b, (A2)

where {Pi} are the control points, and {Ni,p(u)} are the pth-
degree B-spline basis functions defined on the non-periodic
knot vector

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, b, . . . , b︸ ︷︷ ︸
p+1

}(m knots).

The polygon formed by {Pi} is called the control polygon
and its calculation is the objective of this work. Three steps
are required to compute a point on a B-spline curve at a fixed u
value: (1) Find the knot span in which u lies; (2) compute the
basis functions; (3) multiply the values of the basis functions
with the corresponding control points. A degree three B-
spline with seven control points is shown in Fig. A1.

The following is the formulation to calculate the kth
derivative of the basis function Ni,p(u) in terms of the
functions Ni,p−k, . . . , Ni+j,p−k which is

N
(k)
i,p = p!

(p − k)!

k∑
j=0

ak,jNi+j,p−k (A3)

with

a0,0 = 1

ak,0 = ak−1,0

ui+p−k+1 − ui

ak,j = ak−1,j − ak−1,j−1

ui+p+j−k+1 − ui+j

j = 1, . . . , k − 1

ak,k = −ak−1,k−1

ui+p+1 − ui+k

.

(A4)

Then the kth derivative of a pth-degree B-spline curve is
given by

C(k)(u) =
n∑

i=1

N
(k)
i,p(u)Pi a ≤ u ≤ b, (A5)

where k should not exceed p (all higher derivatives are zero).

Fig. A1. A B-spline.
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