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LÉVY-STABLE PRODUCTIVITY
SHOCKS

EDOARDO GAFFEO
University of Trento

In this paper, we analyze the distribution of TFP growth rates at the four-digit sectoral
level for the United States. We find that, contrary to the usual assumption employed in the
literature on business cycles theory, technological shocks are not normally distributed.
Instead, a Lévy-stable distribution with a divergent variance returns a better fit to the data.
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1. INTRODUCTION

This paper deals with productivity shocks at a sectoral level, and how they relate
to aggregate business fluctuations. A well-known argument in multisector real
business cycle models [see, e.g., Long and Plosser (1983)] is that as the number of
sectors or industries considered in the analysis becomes large, aggregate volatility
must tend to zero very quickly. This result, which follows directly from the Law
of Large Numbers (LLN), rests on the hypothesis that each sector is periodically
buffeted with idiosyncratic, identically and independently distributed shocks to
Total Factor Productivity (TFP). As negative and positive shocks tend to cancel
out each other, in an economy composed of N sectors—each one of approximately
size 1/N of GDP—aggregate volatility must converge to zero at a rate N

1/2 [Lucas
(1981)]. Furthermore, such a curse of aggregation is so compelling to offset, under
rather general conditions, any shock-propagation effects due to factor demand
linkages among industries [Dupor (1999)]. Hence, for a multisector business cycle
model to be able to replicate aggregate fluctuations with a degree of volatility in
line with that observed in real data, one has necessarily to appeal to aggregate
shocks.

Several mechanisms recently have been proposed for allowing small idiosyn-
cratic shocks to cause large macroeconomic fluctuations, all of them based on the
idea of forcing the rate at which the LLN applies to slow down.1 Horvath (1998,
2000), for instance, shows that if the input-output matrix is characterized by few
full rows and many sparse columns, so that few sectors are key inputs for all the
others, the LLN applies at a rate proportional to the rate of increase in the number
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of such key input sectors. Given that real data for the U.S. input-output matrix
suggest that out of N sectors, only N

1/2 are broadly used as inputs, a sizable portion
of aggregate volatility may be caused by shocks to selected, individual sectors.
Gabaix (2005), in turn, proves that if the firms’ size distribution follows a Zipf’s
Law, an empirical regularity recently confirmed for the United States by Axtell
(2001), an economy composed of N firms will display aggregate fluctuations with
size proportional to 1/ln N , rather than 1/N

1/2 .
At the heart of these lines of reasoning lays the assumption that sectoral shocks’

probabilistic processes possess finite moments. In this paper, we dispute the appro-
priateness of such an assumption. In particular, we show that the probability density
function of TFP growth rates for four-digit manufacturing industries plausibly be-
longs to the class of Lévy-stable distributions. Introduced and characterized back in
the 1920s by Paul Lévy (1925) and first sold to economists by Benoit Mandelbrot
as the core of the “Stable Paretian hypothesis” for the distribution of personal
incomes and commodities’ price dynamics (1960, 1963), stable2 distributions can
accommodate a rich set of features such as heavy tails, skewness, leptokurtosis,
and infinite second and higher moments. Furthermore, when the associated index
of stability α is comprised between 0 and 1, they do not even possess the mean. Far
from representing exotic objects, the class of Lévy-stable distributions naturally
emerges as the domain of attraction for sums of independently and identically
distributed random variables, as soon as the assumption that the variables to be
summed possess finite variance is dropped.3 In such a case, the so-called Gener-
alized Central Limit Theorem applies. The Gaussian distribution is a special case
of the Lévy-stable family when α = 2, and it is the only one for which the second
moment exists. Although the variance of a non-Gaussian Levy-stable distribution
is infinite, the sample variance is of course finite for any realization of the process
but the probability to observe extreme events—in our case, extreme variations in
sectoral TFP growth—is much higher than what we should expect if the data were
normally distributed. This causes the characteristic scale of aggregate fluctuations
to be of order N

1/α , with 1<α<2, that is larger than the Gaussian case N
1/2 .

The remainder of this paper is organized as follows. In Section 2, we motivate
our empirical analysis and briefly introduce the class of Lévy-stable distributions.
In Section 3, we assess the fit of Lévy-stable distributions as a statistical model
for the TFP growth rates of U.S. manufacturing sectors. Section 4 contains some
concluding comments.

2. MOTIVATION

To motivate the empirical analysis contained in Section 3, let us start from the
growth accounting model proposed by Hulten (1978),4 who showed that the rate
of increase in GDP, gGDP, caused by Hicks-neutral i.i.d. productivity shocks τ to
N industries is equal to

gGDP =
N∑

i=1

Si

Y
τi, (1)
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where Si indicates industry i’s final sales, while Y represents GDP. Suppose, as
it is usually done in real business cycle (RBC) theory, that sectoral productivity
shocks have a common, finite variance σ 2

τ . If, for the sake of simplicity, we let
each industry to account for 1/N of GDP, from (1) it follows that

σGDP = στ√
N

. (2)

As disaggregation becomes finer—or, alternatively, as the number of industries
N grows large—one should expect the aggregate standard deviation to be van-
ishingly small. If we take an estimate of industries’ volatility on the average at
6%, and consider a economy with 450 industries,5 we end up with an aggregate
volatility of 0.15%, one order of magnitude smaller than the empirically measured
one for the United States. An obvious way to overcome such a curse of aggrega-
tion consists in substituting idiosyncratic shocks with aggregate shocks, a strategy
largely employed in the RBC literature in which business cycles stylized facts are
usually replicated by means of one-sector, representative agent models.

Alternatively, individual sectoral shocks may be consistent with aggregate fluc-
tuations as soon as some mechanism capable to slow down the rate at which the
LLN applies can be found. A natural candidate consists in relaxing the assumption
that individual units are of equal size. Gabaix (2005), for instance, builds a model
in which the firms’ size distribution is Pareto to show that individual firm-level
shocks can cause sizable aggregate fluctuations even as one considers an economy
with N = 106 firms. Horvath (1998, 2000), in turn, demonstrates that if some
sectors are important input suppliers while some other sectors are not, individual
shocks to the former ones are a major source of aggregate volatility.

Admittedly, far less attention—if none at all—has been so far devoted to the
distributional properties of idiosyncratic shocks στ . The fundamental and generally
undisputed assumption is that the (log)increments (i.e., growth rates) of TFP
are identically and independently Gaussian distributed. Indeed, if one considers
sectoral TFP changes as the sum of many small and independent variations in the
production possibility sets of various profit centers [Hansen and Prescott (1993)],
the Central Limit Theorem suggests the Gaussian as a natural candidate.6

However, even a cursory look at the data suggests us to be skeptical about
such an inference. In Figure 1, we report the time series of TFP growth rates
for a randomly selected small sample of four-digit U.S. industries,7 plus the
±3 standard deviations interval around the sample mean, which, if the data are
Gaussian distributed, contains 99.7% of the probability mass. A remarkable fact
emerges neatly: in spite of being composed of a limited number of observations
(38), three out of four series display at least one outlier, which, under the Gaussian
assumption, would have a negligible probability to occur. In other words, a casual
visual inspection of the data indicates that time series with presumably independent
increments tend to exhibit abrupt discontinuities or extreme events.8

Extreme events as those depicted earlier are attributable to the prominent weight
exerted by large firms in shaping the dynamics of industries at the four-digit level.
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FIGURE 1. TFP growth rates time series for randomly selected four-digit industries. Dotted
lines represent the ±3 standard deviations interval around the mean.

As a matter of example, the two extreme episodes experienced between 1994 and
1996 by the Household Cooking Equipment industry (SIC 3631) can be almost
entirely ascribed to a major restructuring (with a cut of 2,000 jobs) and a later
sudden increase in labor and material costs at Whirpool, which in those years
shared about 80% of the U.S. market with other three main competitors (General
Electric, AB Electrolux, and Maytag).9

Admittedly, the issue of very large productivity movements over short periods
of time have been documented and discussed in the literature on several occasions.
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LÉVY-STABLE PRODUCTIVITY SHOCKS 429

Section 4 of Prescott (1998) constitutes an outstanding example. The main points,
which seem to have been unnoticed by previous authors, however, are that such
a phenomenon suggests that TFP shocks might well be characterized by non-
Gaussian heavy-tailed probability density functions, and that this could have
remarkable implications for macroeconomic theory.

Heavy tails are quite popular in finance nowadays, where the increasing avail-
ability of high-frequency data has allowed scholars to appreciate that, although the
microstructure may be very different, some simple statistical properties of price
fluctuations in foreign exchange, stock, and futures markets are very general.
In particular, returns’ distributions in financial markets tend to be characterized
by sample leptokurtosis, cluster volatility, and unstable variance [Pagan (1996)].
All of these features, which were well known at least from the early 1960s, are
inconsistent with Gaussian distributed processes, and led Benoit Mandelbrot to
develop the “Stable Paretian hypothesis” as an alternative [Mandelbrot (1960,
1963)].10 The core of Mandelbrot’s working hypothesis rests on a family of
distributions known as Lévy-stable distributions [Lévy (1925)]. Provided that
Lévy-stable distributions do not in general possess a closed-form solution for
their density, they can be expressed conveniently in terms of their characteristic
function. Among the many different available parameterizations, we choose the
S0(α, β, γ, δ) parameterization proposed by Nolan (2007),11 according to which
the characteristic function of Y is given by

E exp (itY ) =

⎧⎪⎨
⎪⎩

exp
{
−γ α |t |α

[
1 + iβ

(
tan πα

2

)
(sign t)

(
(γ |t |)1−α − 1

)]
+ iδt

}
if α �= 1

exp
{
−γ |t |

[
1 + iβ 2

π
(sign t)

(
ln |t | + ln γ

)]
+ iδt

}
if α = 1

.

(3)

A major advantage of the functional form (3) is that the four parameters have
intuitive interpretations. The characteristic exponent or index of stability α, which
has a range 0 < α ≤ 2, measures the probability weight in the upper and lower
tails of the distribution. In general, the pth moment of a stable random variable is
finite if and only if p < α. Thus, for 1 ≤ α ≤ 2, a Lévy-stable process possesses a
mean equal to the location parameter δ (which in turn indicates the center of the
distribution), but it has infinite variance, whereas if α < 1, even the mean of the
distribution does not exist. β, defined on the interval −1 ≤ β ≥ 1, measures the
asymmetry of the distribution, with its sign indicating the direction of skewness.
Finally, the scale parameter γ , which must be positive, expands or contracts
the distribution around the location parameter δ. The Lévy-stable distribution
function nests several well-known distributions, such as the Gaussian N(µ, σ 2)

(when α = 2, β = 0, γ = σ 2/2 and δ = µ), the Cauchy (α = 1 and β = 0) and the
Lévy-Smirnov (α = 0.5 and β = ±1).

Although other statistical models, such as student-t distributions, mixture mod-
els, or time-varying variance models, have proved to be successful in capturing
important features of the data such as leptokurtosis, skewness, or instable variance,
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all of them are somehow arbitrary, as they are not limiting distributions. On the
contrary, Lévy-stable distributions represent an attractor in the functional space
of probability density functions, in that the Generalized Central Limit Theorem
[Gnedenko and Kolmogorov (1954)] states that the only possible limiting dis-
tribution for sums of independently and identically distributed random variables
belongs to the Lévy-stable family. It follows that the conventional Central Limit
Theorem is just a special case of this—a special case that applies whenever one
imposes the condition that each of the constituent random variables has a finite
variance. If for theoretical reasons one wants to appeal to some kind of LLN,
Lévy-stable distributions are the most natural candidate. In particular, Lévy-stable
distributions are stable under convolution. Simply stated, if we sum N i.i.d. Lévy-
distributed variables with characteristic exponent α, the renormalized sum TN :

TN =

N∑
i=1

τi

N
1/α

, (4)

is also Lévy-stable with characteristic exponent α. In addition to other interesting
properties,12 non-Gaussian Lévy-stable distributions (i.e., for α < 2) are charac-
terized by tails that are asymptotically Pareto distributed with exponent α.

The paradigm shift toward the Lévy-stable distribution for productivity shocks
has far-reaching implications for the “sectoral vs. aggregate shocks” debate.13 To
simplify the analysis as much as possible, let us suppose that TFP growth rates τ

are Lévy-stable iid random variables S0(α, 0, δ, 0), with 1 < α < 2.14 Making use
of (1), if we let each industry to account for 1/N of aggregate GDP, the sample
variance of GDP growth rates is given by

σ̃ 2
GDP =

N∑
i=1

τ 2
i

N2
. (5)

By the property of invariance under convolution (4), we can write N
2/α T̃ =

N∑
i=1

τ 2
i , where T̃ is a Lévy-stable distributed random variable. Thus

σ̃GDP = T̃
1
2

N(α−1
α )

. (6)

It follows that if TFP shocks are non-Gaussian Lévy-stable distributed, aggre-
gate fluctuations decays with N at the rate α−1

α
, that is much more slowly than

N− 1
2 as would be implied by Gaussian distributed shocks.15

3. EMPIRICAL ANALYSIS

We conduct our empirical analysis with data obtained from the NBER-CES Man-
ufacturing Productivity (MP) database.16 The MP contains annual information on
459 manufacturing industries as defined by the 1987 Standard Industrial Classifica-
tion system. Data, which span from 1959 through 1996, have been deflated at 1987
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TABLE 1. Statistical properties of TFP growth rate
distribution, full sample

Attribute Percentile

Mean 0.0063 1st −0.1712
Max 0.6178 10th −0.0583
Min −0.6215 25th −0.0243
St. Dev. 0.0635 50th 0.0068
Skewness −0.0539 75th 0.0369
Kurtosis 13.413 90th 0.0702
Observations 17442 99th 0.1838

prices [Bartelsmann and Grey (1996)]. Thus, the full sample comprises 17,442
data points. The TFP growth rates have been constructed using the Törnqvist
productivity growth index based on a five-factor production function:

τ = ẏ −
∑

i

ωi ẋi , i = K,N,L,M,E, (7)

where τ is TFP growth rate, y is the output quantity, ωi is the average cost share of
input i over the current and previous period, xi (i = K , N , L, M , E) is the quantity
of input i (capital, production worker hours, nonproduction workers, nonenergy
materials, and energy, respectively) and a (·) denotes a log first-difference. Table 1
reports attributes and quantiles of the TFP growth rates distribution.

The skewness statistic indicates that the distribution of productivity shocks is,
for any practical purpose, symmetric. The kurtosis statistics, on its part, signals that
the distribution is significantly leptokurtic. Figure 2, in which the empirical density
of TFP growth rates (solid line) is overlaid with the fitted Gaussian density (thick
dashed line) shows that the data depart sensibly from normality.17 The empirically
density is sharply peaked, and its tails are much more heavier than predicted by the
fitted Gaussian density function. In addition to visual inspection, both parametric
and nonparametric statistical tests reject the Gaussian null hypothesis for the TFP
growth rates data at the 1% marginal significance level.18

As an alternative statistical model, we consider the Lévy-stable distribu-
tion. Parameter estimates have been obtained by recurring to three alternative
methods:19 (1) the quantile method proposed by McCulloch (1986); (2) the em-
pirical characteristic function technique (ECF) in the version proposed by Kogon
and Williams (1998); and (3) the maximum likelihood method (ML) described in
Nolan (1997).20 Results are reported in Table 2.

If the data are stably distributed, parameter estimates from the quantile method,
the empirical characteristic function method, and maximum likelihood should not
differ sensibly, given that all the three procedures are consistent [Nolan (1999)].
Indeed, this informal diagnostic seems to support the idea that the TFP growth
rates are Lévy-stable distributed. If we take as the most accurate estimate the
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FIGURE 2. Empirical (solid line), fitted Lévy-stable (thin dashed line) and fitted Gaussian
(thick dashed line) density functions of TFP growth rates, full sample.

TABLE 2. TFP growth rate distribution parameter estimates, full sample; for max-
imum likelihood estimates, the 95% confidence bounds are reported

Method α β γ δ

Quantile 1.5609 −0.0095 0.0316 0.0069
ECF 1.7035 −0.0509 0.0330 0.0069
ML 1.6324 ± 0.0232 −0.0282 ± 0.0563 0.0323 ± 0.0005 0.0068 ± 0.0008

one obtained by maximum likelihood, we find that the characteristic exponent is
1.63, whereas we cannot reject the hypothesis that the skewness parameter is null,
signaling that the probability weights on both the upper and the lower tails are
higher than the Gaussian case and approximately equal.

This intuition is confirmed by a further look at Figure 2, which clearly shows
that the fitted stable density (thin dashed line)—contrary to the Gaussian one—
does a good job in capturing the sharp peakedness of TFP data. Furthermore,
one can appreciate from Figure 3, which offers an expanded view of both tails,
that the non-Gaussian Lévy-stable distribution turns out to be a far better model
for extreme outcomes as well. In fact, the Gaussian density does not assign any
probability mass to positive and negative productivity shocks in excess of ±20%.21

Given that a four-parameter model as the Lévy-stable provides a better fit than
a two-parameter model as the Gaussian almost by definition, the next step consists
in assessing whether the Lévy-stable can be considered a good description of the
data per se. To accomplish this task, we return to several exploratory data analysis
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FIGURE 3. Expanded lower (panel a) and upper (panel b) tails of the empirical (squares),
fitted Lévy-stable (dashed) and fitted Gaussian (solid) density functions, as shown in
Figure 2.

and regression techniques. All of the results presented in what follows refer to
maximum likelihood estimation.

The first diagnostic exercise consists in plotting the density functions for real
data and the Lévy-stable and Gaussian models on semilogarithmic paper. Such
a transformation, by accentuating larger observations, allows us to explore more
deeply the behavior on the tails. The bulk of the divergent variance argument ac-

cording to which aggregate volatility is proportional to N
−
(

α−1
α

)
rests on the tails

of the empirical distribution being asymptotically Paretian. A good fit of empirical
data to a non-Gaussian Lévy-stable distribution in the central regime could well be
consistent with finite variance as soon as observations higher than a threshold |l| de-
cay faster than a power law [Mantegna and Stanley (1994)]. As shown in Figure 4,
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FIGURE 4. Semilog plot of the empirical (triangles), fitted Lévy-stable (thin line), and fitted
Gaussian (thick line) density functions of TFP growth rates, full sample.
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FIGURE 5. Variance-stabilized p-p plot (panel a) and thinned q-q plot (panel b) for Lévy-
stable fitted TFP growth rates, full sample. In panel b diamonds are quantiles, whereas the
two curves define the 95% confidence interval.

regardless of large fluctuations due to sparseness of data for large (in absolute
value) TFP shocks, both extreme tails behave in good accordance with the Paretian
hypothesis, thus suggesting the appropriateness of the infinite variance stable
model.

Second, we follow Nolan (1999) in assessing whether the data are consistent
with the hypothesis of stability by means of diagrammatic diagnostic tests. The
variance-stabilized probability plot presented in panel a of Figure 5, in which a
transformation is applied to make the variance in the p-p plot uniform,22 signals
that the stable fit is extremely good even for extreme values. Furthermore, panel
b of Figure 5 presents a thinned q-q plot, where a point at every 4.5% of the data
is given (diamonds),23 which shows that TFP growth rates are consistent with the
random variation of a Lévy-stable distribution and fall within the corresponding
95% confidence bands (lines). All in all, both diagnostics strongly support the
hypothesis that productivity shocks at the four-digit level for the U.S. economy
are Lévy-stable distributed.

As a motivation for a third diagnostic exercise, recall that by definition a random
vector τ = (τ1, . . . , τN) is said to be Lévy-stable if all components τi are α-stable
with a common α. The testing idea consists in partitioning the full sample into 20
subsamples corresponding to two-digit industries, in order to have a sufficiently
high number of degrees of freedom. Estimates of the index of stability α for the full
sample and for all subsamples, or at least for a significant number of them, should
then be consistent. Both the Bera-Jarque and the Kolmogorov-Smirnov tests reject
Normality for each two-digit industries group at the 1% marginal significance level
except for Petroleum and Coal Products, for which the null hypothesis of normality
is rejected at the 5% significance level. Lévy-stable estimates obtained with the
quantile, the empirical characteristic function, and the maximum likelihood meth-
ods are listed in Table 3. In each case, the stable hypothesis seems to be confirmed
by the value assumed by estimated parameters. Furthermore, the goodness of fit of
the Lévy-stable model is confirmed by the q-q plots shown in Figure 6, from which
it clearly emerges that the two-digit TFP growth rates data always fall within the
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TABLE 3. TFP growth rates distribution parameter estimates, two-digit groups

Method α β γ δ

Industry 20
Quantile 1.3689 −0.1168 0.0329 0.0069
ECF 1.5219 −0.0284 0.0347 0.0085
ML 1.4208 ± 0.0713 −0.0869 ± 0.1226 0.0333 ± 0.0017 0.0057 ± 0.0026

Industry 21
Quantile 1.4555 −0.0707 0.0283 −0.0021
ECF 1.6655 −0.3739 0.0307 −0.0026
ML 1.5517 ± 0.2520 −0.0353 ± 0.5235 0.0238 ± 0.0050 −0.0034 ± 0.0083

Industry 22
Quantile 1.5656 −0.1540 0.0293 0.0113
ECF 1.8095 −0.4415 0.0313 0.0108
ML 1.7160 ± 0.0987 −0.2338 ± 0.2888 0.0307 ± 0.0019 0.0113 ± 0.0036

Industry 23
Quantile 1.5448 −0.0151 0.0323 0.0049
ECF 1.7676 −0.2273 0.0340 0.0038
ML 1.6548 ± 0.0885 −0.0226 ± 0.2266 0.0329 ± 0.0018 0.0058 ± 0.0033

Industry 24
Quantile 1.5675 0.0761 0.0315 0.0027
ECF 1.7693 0.1878 0.0330 00022
ML 1.6650 ± 0.1190 0.0412 ± 0.3109 0.0322 ± 0.0024 0.0038 ± 0.0044

Industry 25
Quantile 1.6696 −0.2020 0.0272 0.0032
ECF 1.8371 −0.5107 0.0279 0.0022
ML 1.8547 ± 0.1101 −0.0647 ± 0.6593 0.0281 ± 0.0021 000227 ± 0.0042

Industry 26
Quantile 1.6535 −0.0619 0.0278 0.0044
ECF 1.6925 −0.3499 0.0275 0.0042
ML 1.6217 ± 0.1203 −0.1594 ± 0.2785 0.0267 ± 0.0021 0.0039 ± 0.0036

Industry 27
Quantile 1.5939 −0.0036 0.0241 0.0014
ECF 1.8406 0.2039 0.0262 0.0025
ML 1.7702 ± 0.1214 0.0914 ± 0.4422 0.0259 ± 0.0020 0.0005 ± 0.0038

Industry 28
Quantile 1.5922 −0.1312 0.0372 0.0133
ECF 1.7621 −0.1305 0.0390 0.0122
ML 1.6615 ± 0.0909 −0.1297 ± 0.2323 0.0380 ± 0.0022 0.0144 ± 0.0039

Industry 29
Quantile 1.6149 −0.3042 0.0326 0.0094
ECF 1.7804 −1.0000 0.0345 0.0089
ML 1.6627 ± 0.2161 −0.3928 ± 0.5316 0.0334 ± 0.0046 0.0078 ± 0.0084

Industry 30
Quantile 1.4814 −0.5087 0.0206 0.0205
ECF 1.8428 −1.0000 0.0233 0.0228
ML 1.7248 ± 0.1158 −0.6518 ± 0.2974 0.0228 ± 0.0017 0.0167 ± 0.0033
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TABLE 3. (Continued.)

Method α β γ δ

Industry 31
Quantile 1.4534 −0.0703 0.0348 0.0002
ECF 1.7092 −0.4116 0.0383 −0.0017
ML 1.5601 ± 0.1510 −0.1710 ± 0.1510 0.0366 ± 0.0036 0.0016 ± 0.0062

Industry 32
Quantile 1.5830 −0.0627 0.0326 0.0084
ECF 1.7531 −0.0217 0.0342 0.0079
ML 1.7003 ± 0.0943 −0.1819 ± 0.2612 0.039 ± 0.0020 0.0096 ± 0.0037

Industry 33
Quantile 1.6534 −0.1389 0.0369 0.0060
ECF 1.8060 −0.1600 0.0385 0.0058
ML 1.7279 ± 0.0922 −0.1673 ± 0.2850 0.0378 ± 0.0022 0.0066 ± 0.0041

Industry 34
Quantile 1.6532 0.1550 0.0304 0.0025
ECF 1.7119 0.1742 0.0308 0.0018
ML 1.6793 ± 0.0792 0.0397 ± 0.2136 0.0305 ± 0.0015 0.0027 ± 0.0028

Industry 35
Quantile 1.4936 0.2254 0.0315 0.0030
ECF 1.6454 0.2217 0.0332 0.0035
ML 1.6108 ± 0.0692 0.3144 ± 0.1519 0.0330 ± 0.0015 0.0021 ± 0.0026

Industry 36
Quantile 1.6905 −0.1613 0.0337 0.0162
ECF 1.7283 −0.1256 0.0337 0.0174
ML 1.6667 ± 0.0807 −0.0217 ± 0.2122 0.0331 ± 0.0017 0.0144 ± 0.0030

Industry 37
Quantile 1.5310 −0.0319 0.0309 0.0065
ECF 1.6906 0.0562 0.0330 0.0066
ML 1.6574 ± 0.1157 −0.0893 ± 0.2950 0.0325 ± 0.0024 0.0073 ± 0.0043

Industry 38
Quantile 1.8398 0.4933 0.0341 0.0018
ECF 1.8561 0.1073 0.0348 −0.0011
ML 1.7858 ± 0.1087 0.0916 ± 0.4174 0.0343 ± 0.0024 0.0048 ± 0.0046

Industry 39
Quantile 1.4864 −0.0555 0.0297 0.0106
ECF 1.6477 −0.1247 0.0309 0.0114
ML 1.5690 ± 0.1184 −0.0830 ± 0.2508 0.0301 ± 0.0023 0.0099 ± 0.0040

95% confidence bands associated with maximum likelihood. Interestingly enough,
the maximum likelihood estimate of the characteristic exponent for the full sample
(α = 1.63) is fully consistent—in that such a value is inside the 95% confidence
interval—with the corresponding estimates for 17 out of 20 subsamples.

It must be pointed out that very large observations on the tails of the uncon-
ditional pooled distribution may be due to large aggregate disturbances hitting
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FIGURE 6. q-q plots for Lévy-stable fitted TFP growth rates, two-digit groups.

sectors in particular years. The severe oil shocks of the 1970s, for instance, had
likely caused large negative TFP movements for almost all industries. Instead of
being a signature of stable TFP shocks at a sectoral level, the right and left tails in
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FIGURE 6. Continued.

the distribution reported in Figure 2 could therefore be the outcome of aggregate
shocks. Thus, as a final exercise, we control for possible effects of common
shocks.
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The standard approach entails the use of common factor models, according to
which TFP growth rates corresponding to sector i, τit, can be decomposed as

τit = λ′
ift + uit, t = 1, . . . , T ; i = 1, . . . , N (8)

where ft = [f1t , . . . , frt ]′ is a vector of r common factors, while λt =
[λit, . . . , λir ]′ is a vector of i’s responses to common components. Finally, the
vector ut = [u1t , . . . , uNt ]′ comprises N idiosyncratic components. The decom-
position (8) between common shocks and idiosyncratic disturbances is acceptable
as soon as E(ftu

′
t ) = 0. The null hypothesis we want to test is that ut is non-

Gaussian Lévy-stable distributed.
Unfortunately, in our case, the standard common factors approach is not useful,

as the principal component estimator of the loading matrix 
 = [λ1·, . . . , λN ·]′

requires the matrix � = E(utu
′
t ) to be finite. This amounts to impose a restriction

on the stochastic process for ut , which hopelessly prevents us from testing our
null hypothesis.

As an alternative line of attack, we make use of the maximum likelihood
estimator for linear regressions with stable disturbances developed by McColloch
(1998). Such an ML estimator, in particular, allows jointly estimates of regression
coefficients and of the index of stability characterizing the errors distribution,
under the assumption that the random disturbances follow a symmetric stable
distribution with median zero, S0(α, 0, γ, 0).

The empirical strategy we choose is simply to run, for each year from 1959 to
1996, a cross-sectional equation of the type

τi = f1 + ui, i = 1, . . . , 459, (9)

under the assumption that in each year a unique common shock hits all sec-
tors simultaneously. The idiosyncratic disturbances we get from each linear re-
gression can be immediately interpreted as the annual distribution of sectoral
shocks netted from common influences. If the estimated characteristic exponent
of the errors distribution turns out to be significantly lower than 2, we can-
not reject the null hypothesis that for that year the idiosyncratic component of
TFP sectoral shocks is non-Gaussian stable. If, on the contrary, α is equal to
2, we should reject the null in favor of the alternative of Gaussian idiosyncratic
errors.

Table 4 reports the estimated index of stability of the errors distribution ob-
tained from the 38 yearly cross-section regressions. The characteristic exponents
are in all cases significantly lower than 2. These results confirm that, even
after having controlled for aggregate shocks, we cannot reject the hypothesis
that TFP growth rates follow a non-Gaussian stable distribution with infinite
variance.
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TABLE 4. Characteristic exponents of the errors distri-
bution from cross-section linear regressions with stable
disturbances

α (s.e.) α (s.e.)

1959 1.4967 (0.0715) 1978 1.5308 (0.0747)
1960 1.4935 (0.0717) 1979 1.5136 (0.0748)
1961 1.5686 (0.0739) 1980 1.4947 (0.0738)
1962 1.6281 (0.0800) 1981 1.5538 (0.0700)
1963 1.4500 (0.0704) 1982 1.5679 (0.0693)
1964 1.5908 (0.0735) 1983 1.4483 (0.0719)
1965 1.7071 (0.0827) 1984 1.5629 (0.0770)
1966 1.6389 (0.0757) 1985 1.5278 (0.0711)
1967 1.8781 (0.0666) 1986 1.5027 (0.0709)
1968 1.9031 (0.0594) 1987 1.5022 (0.0727)
1969 1.6302 (0.0742) 1988 1.6202 (0.0750)
1970 1.7838 (0.0701) 1989 1.5373 (0.0700)
1971 1.7503 (0.0713) 1990 1.6273 (0.0729)
1972 1.4675 (0.0768) 1991 1.5569 (0.0716)
1973 1.5068 (0.0795) 1992 1.6260 (0.0724)
1974 1.5160 (0.0746) 1993 1.5823 (0.0742)
1975 1.5342 (0.0772) 1994 1.5327 (0.0691)
1976 1.4383 (0.0717) 1995 1.5707 (0.0795)
1977 1.5102 (0.0748) 1996 1.5799 (0.0743)

4. CONCLUSIONS

The extension from one-sector to multisector models represents a challenge for
the theory of business cycles. If shocks to economic activity are idiosyncratic,
that is, at a firm or at a sectoral level, the Law of Large Numbers implies that
aggregate volatility should be negligible, as positive shocks tend to be offset by
negative shocks. The standard assumptions are that idiosyncratic shocks are given
by changes of the Solow residual or, put differently, of the total factor productivity,
and that such changes can be modeled as Gaussian increments. In other words,
the growth rates of TFP are random variables with finite mean and variance.

In this paper, we dispute this last assumption, suggesting a statistical model for
TFP growth rates alternative to the Gaussian. In particular, our proposal consists
in modeling TFP shocks as Lévy-distributed random variables, which are char-
acterized by a divergent variance. This assumption can find a motivation in that
the family of Lévy-stable distributions is an attractor in the functional space of
probability density functions for sums of i.i.d. random variables, so that one can
appeal to the generalized version of the Central Limit Theorem for its application.

Lévy-stable estimations, obtained by means of the quantile, the empirical char-
acteristic function, and the maximum likelihood techniques, respectively, return a
good fit, both for the whole sample as derived from the NBER-CES Manufacturing
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Productivity database for industries at the four-digit level, and for groups at the
two-digit levels. Our results also seem to be robust after controlling for possible
cross-sectional dependence due to aggregate shocks.

NOTES

1. In addition to the ones discussed in the main text, other mechanisms that may slow down
convergence implied by the LLN include the following: (1) local interactions and nonconvexities
leading to self-organized criticality [Scheinkman and Woodford (1994)]; (2) imperfect competition
and strategic complementarities [Murphy et al. (1989)]; and (3) large multiplier effects [Jovanovic
(1987)].

2. These distributions are called stable because they are invariant under convolution. In other words,
sums of stable distributed random variables are stable distributed.

3. See, for example, Samorodnitsky and Taqqu (1994).
4. See also Gabaix (2005).
5. As we will see later, these figures are consistent with real data for four-digit U.S. manufacturing

industries.
6. For an introductory exposition of the degree of heterogeneity across establishments in the

distribution of output and productivity growth rates in the U.S. economy, see Haltiwanger (1997).
7. Data are annual, and cover the period 1959–1996.
8. Such a property is also known as the “Noah effect” [Mandelbrot (1969)].
9. See G. Steinmetz and C. Quintanilla, “Tough target: Whirpool expected easy going in Europe,

and it got a big shock,” Wall Street Journal, April 10, 1998; and I. Katz, “Whirlpool: In the wringer,”
Business Week, December 14, 1998.

10. Mirowski (2004) provides an illuminating account of how the economics community reacted
to the pioneering work of Mandelbrot.

11. The parameterization of the characteristic function S0 is particularly convenient because the
density and the distribution functions are jointly continuous in all four parameters.

12. A comprehensive reference is Samorodnitsky and Taqqu (1994).
13. Furthermore, fat-tailed distributed productivity shocks can explain the equity premium puzzle,

as shown in recent papers by Barro (2005) and Weitzman (2005).
14. Recall that when α < 1, the population mean of the process does not exists. In this case, it is

trivial to show that averaging would result in amplification of volatility.
15. For a discussion on this point, see Sornette (2000, pp. 90–93).
16. Available at http://www.nber.org/nberces/nbprod96.htm.
17. The empirical density plot has been obtained by smoothing the data with a Gaussian kernel

with the width parameter equal to 2(inter-quartile range) N−1/3. We also tried the Epanechnikov kernel
smoothing, but the empirical density appears to be virtually insensitive to the particular kernel used.

18. In particular, we performed both a Bera-Jarque test and a Lilliefors version of the Kolmogorov-
Smirnov test.

19. These three estimation methods are described and compared in, for example, Weron (2004).
20. Parameter estimation and computation of theoretical density functions were performed using

the software package STABLE by John Nolan (1997).
21. Although it is generally accepted that inventions and discoveries may cause positive shifts

in TFP of the order of magnitude at hand, the possibility of such extreme decreases in TFP due to
technological regressions are generally viewed with suspicion, if not aversion [Zarnowitz (1992)]. In
fact, a decline in TFP measures not only negative technology shocks but also unfavorable regulations
and relative price movements. Another possible reason for large TFP declines has been recently
advanced by Jovanovic (2006), according to whom the introduction of a new technology may imply
unexpectedly large training costs, which force measured TFP to decline sensibly.
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22. This transformation, originally suggested in Michael (1983), is aimed at detecting with higher
precision a lack of fit near the extremes of the distribution, given that standard p-p plots emphasize
behavior around the mode and squeeze the curve near the tails of the distribution.

23. The practice of reducing the number of points in q-q plots (hence, thinned q-q plots) is
recommended by Nolan (1999) for large data sets.
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