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1. Introduction

The regularity of weak solutions of the complex Monge–Ampère equation in the setting
of compact Kähler manifolds is a very timely topic (see [10,16]). A strong motivation
for this branch of research are the recent results in the theory of the Kähler–Ricci flow
(see [4,19–21], to mention only a few). In particular, it is important to understand the
limiting behaviour of the Kähler–Ricci flow near finite time singularities (if the canonical
divisor KX is big) or the limit at infinity if additionally KX is numerically effective.
In dimension 2 the picture is more or less clear and is very similar to the one in the
minimal model program for surfaces (see [4, 21]). In higher dimensions, as explained
in [19] and [20], the successful termination of the program depends on understanding
the following.

(1) The complex Monge–Ampère equation on singular varieties.

(2) The regularity of the solution of the corresponding Monge–Ampère equation in the
limiting case.

The first task was studied recently in [10]. The difficulty with the second one is due to
the fact that in the limiting cases the underlying metric is no more Kähler and thus the
equation is much less tractable. Even in the big form case the continuity of solutions is
still an unsolved problem, except in some special cases (see [9]).

However, even in the case of a Kähler metric the picture is far from being clear. Thus
in this note we restrict our attention to the Kähler case.
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706 S. Dinew

The first natural question is obtaining Hölder regularity for the potentials. The basic
result regarding this problem was obtained by Ko�lodziej in [16], where the following was
proved.

Theorem 1.1. Let (X, ω) be a compact n-dimensional Kähler manifold (n � 2). Con-
sider the following Monge–Ampère equation:

(ω + i∂∂̄φ)n = fωn, sup
X

φ = 0, φ ∈ PSH(X, ω) ∩ L∞(X), (1.1)

where f � 0 is a given function satisfying the additional property that f ∈ Lp(ωn),
p > 1 (and the necessary normalization

∫
X

fωn =
∫

X
ωn). Then the solution φ is Hölder

continuous with Hölder exponent dependent on X, n and p.

In [10] it was shown that that under the additional assumption that X is rational
homogeneous compact Kähler manifold the Hölder exponent is actually independent of
X and can be taken to be 2/(2+nq+ε), ∀ε > 0 (q is the conjugate of p, i.e. 1/p+1/q = 1).
It is unknown whether this exponent is sharp, however by modifying an argument of Plís
(see [17]) one can produce an explicit example showing that the exponent cannot be
bigger than 2/nq.

There are some results, however, which suggest that on a general manifold the exponent
should also depend only on p and n.

First, the corresponding equation in a strictly pseudoconvex domain was studied in
[12], and in this setting the exponent is indeed independent of the domain considered
(strictly speaking there is a universal lower bound γ, such that any solution is at least
γ-Hölder continuous).

Secondly, in [1] and [2] the same equation was studied, but instead of the condition
f � 0, f ∈ Lp(ωn), the author assumed that f � 0 and f1/n is Lipschitz. Then a
Lipschitz regularity for φ was obtained (in [1] under the extra condition of non-negative
bisectional curvature, which was later removed in [2]).

Finally, in [9] the following stability estimate was obtained (see also [14] for the original
(slightly weaker) result).

Theorem 1.2. Let φ and ψ solve the equations

(ω + i∂∂̄φ)n = fωn, (ω + i∂∂̄ψ)n = gωn, φ, ψ ∈ PSH(X, ω) ∩ L∞(X),

with f, g � 0, f, g ∈ Lp(ωn), p > 1. If the solutions are normalized so that supX(φ−ψ) =
supX(ψ−φ) (recall that solutions are bounded under the assumption that the right-hand
side is in Lp, p > 1 (see [13,15])), then there exists a constant c = c(p, ε, c0), where c0 is
an upper bound for ‖f‖p and ‖g‖p, such that

‖φ − ψ‖∞ � c‖f − g‖1/(n+ε)
1 , ∀ε > 0.

Note that again stability exponent is independent of the manifold.
All these results lead to the following conjecture (posed in [9]).
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Conjecture 1.3. The Hölder exponent in Ko�lodziej’s theorem in [16] depends only on
n and p, not on X.

The main result in this note confirms the conjecture above for a large class of manifolds
(containing the homogeneous ones, so in particular it covers the case considered in [10],
although we get a worse exponent). Let us state it.

Theorem 1.4. Let (X, ω) be a compact n-dimensional Kähler manifold (n � 2). Assume
additionally that X has non-negative orthogonal bisectional curvature.∗ Consider the
following Monge–Ampère equation:

(ω + i∂∂̄φ)n = fωn, sup
X

φ = 0, φ ∈ PSH(X, ω) ∩ L∞(X),

where f � 0 is a given function satisfying
∫

X
fωn =

∫
X

ωn, f ∈ Lp(ωn), p > 1. Then
the solution φ is Hölder continuous with Hölder exponent at least 1/(nq + 1 + ε) for any
ε > 0.

Note that in [1] also an additional assumption on the bisectional curvature played a
role.

We would like to point out that the non-negativity of the orthogonal bisectional cur-
vature is needed in our approach, but we do not know whether this geometric condition
has any impact on the considered problem. In fact we still believe that the conjecture
is true in general and, perhaps as in [2], a new argument would allow to remove this
technical assumption.

Recently, in [11] (see also [5]) a characterization of all compact Kähler manifolds with
non-negative orthogonal bisectional curvature was obtained (in terms of the universal
covering spaces). The universal covering space of such a manifold should be isometrically
biholomorphic to an element in one of the following two families:

(Ck, h0) × (M1, h1) × · · · × (Ml, hl) × (Pn1 , ω1) × · · · × (Pnr , ωr), (1.2)

where h0 is the Euclidean metric, hi are canonical metrics on irreducible compact Hermi-
tian symmetric spaces Mi of rank at least 2, and ωj are Kähler metrics on P

nj carrying
non-negative orthogonal bisectional curvature;

(Y, g0) × (M1, h1) × · · · × (Ml, hl) × (Pn1 , ω1) × · · · × (Pnr , ωr), (1.3)

with Mi, hi, ωj as above and Y being either a simply connected Riemann surface with
Gauss curvature negative somewhere, or a non-compact simply connected Kähler mani-
fold (dimY � 2) with non-negative orthogonal bisectional curvature and the minimum
of the holomorphic sectional curvature is less than zero somewhere. In the latter case
also the holomorphic sectional curvatures of Mi and P

nj are less than

− min{holomorphic sectional curvature of Y } > 0.

∗ For simplicity we assume in the note that the metric carrying non-negative orthogonal bisectional
curvature coincides with ω, however the same proof, with minor modifications, carries over if this assump-
tion is with respect to another Kähler metric χ.
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Notation

Throughout the note C will denote different constants depending only on the relevant
quantities. If there is a possibility of confusion, these different Cs will be indexed. We
will use the standard notation for (local) partial derivatives hj := ∂h/∂zj , hj̄ := ∂h/∂z̄j .
In order to make the note more readable for analysts we have decided to avoid the usage
of Einstein summation.

2. Preliminaries

Throughout the note we shall work on a fixed compact n-dimensional Kähler manifold
X equipped with a fundamental Kähler form ω (that is d-closed strictly positive globally
defined form) given in local coordinates by

ω = 1
2 i

n∑
k,j=1

gkj̄ dzk ∧ dz̄j .

We assume that the metric is normalized so that∫
X

ωn = 1.

With ω one naturally associates the Kähler metric

g =
n∑

k,j=1

gkj̄ dzk ⊗ dz̄j

acting on the tangent bundle TX, i.e. it defines a hermitian product on each tangent
space TzX, z ∈ X.

Let D denote the Levi-Civita connection associated to the Kähler metric g. Let also
Θ = Θ(D) = D2 be the associated curvature tensor. It is known (see [8]) that iΘ is
a section of the bundle C∞

1,1(X, Herm(TX, TX)) which analytically means that iΘ is
(locally) a matrix with (1, 1)-forms as entries. Explicitly, in a local basis ∂/∂zi, i =
1, . . . , n, of TX the curvature tensor Θ reads

iΘ = i
∑

1�k,l�n, 1�i,j�n

Cklij dzk ∧ dz̄l ⊗
(

∂

∂zi

)∗
⊗ ∂

∂zj
,

for some coefficients Cklij ∈ C.
These coefficients can be computed according to the formula∗

iΘ = i∂̄[(ḡ)−1∂ḡ],

where g is the local matrix of the coefficients of the Kähler metric, (ḡ)−1 is the inverse
transposed matrix of g and the computation is done componentwise (we use matrix

∗ This formula varies in the literature (compare with [18], for example). The difference comes simply
from reversal of the row/column notation.
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notation in the above equation). In terms of the local coordinates the (h, l)th entry is
the (1, 1)-form

i
n∑

j,k=1

(
−

n∑
p=1

ghp̄glp̄jk̄ +
n∑

r,s,p=1

ghs̄grp̄grs̄k̄glp̄j

)
dzj ∧ dz̄k, (2.1)

where, as usual, gab̄ is the entry of the inverse transposed matrix of (gab̄) (the minus sign
comes from the fact that we have interchanged the order of dzj and dz̄k).

With the curvature tensor one associates the Chern curvature form which is a bilinear
form on TX ⊗ TX defined by

iΘ(ζ ⊗ η, ζ ⊗ η) :=
n∑

j,k,m,l=1

cjk̄ml̄ζjηmζ̄kη̄l,

where

cjk̄ml̄ := −
n∑

h=1

n∑
p=1

ghm̄ghp̄glp̄jk̄ +
n∑

h=1

n∑
r,s,p=1

ghm̄ghs̄grp̄grs̄k̄glp̄j

= −glm̄jk̄ +
n∑

r,p=1

grp̄grm̄k̄glp̄j . (2.2)

Geometrically, this form arises as a contraction of the curvature tensor with the metric
gij̄. The hermitian property of iΘ gives the formulae

c̄kl̄ij̄ = clk̄jı̄. (2.3)

The Kählerness of g gives us the commutation identities

gij̄k = gkj̄i, gij̄k̄ = gik̄j̄,

from which one easily deduces the well-known fact that in the Kähler case

cjk̄hl̄ = Rjk̄hl̄, (2.4)

where R denotes the bisectional curvature tensor. Therefore, non-negative bisectional
curvature (in the Kähler case) is equivalent to Griffiths semi-positivity of the tangent
bundle, while non-negative orthogonal bisectional curvature is equivalent to partial pos-
itivity of the curvature of the tangent bundle in the sense of Demailly (see [7]).∗

Recall that

PSH(X, ω) := {φ ∈ L1(X, ω) : i∂∂̄φ � −ω, φ ∈ C↑(X)},

where C↑(X) denotes the space of upper semicontinuous functions. We call the functions
that belong to PSH(X, ω) ω-plurisubharmonic (ω-psh for short).

∗ Recall that in [7] a more general situation was considered. In the non-Kähler case this equivalence
fails.
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The main topic of this note are the weak solutions of the following nonlinear problem:

(ω+i∂∂̄φ)n = fωn, f � 0, f ∈ Lp(ωn), p > 1, sup
X

φ = 0, φ ∈ PSH(X, ω), (2.5)

where the wedge product on the left-hand side is defined using pluripotential theory
(see [14,15]). We have the following stability theorem for the solutions of this problem.

Theorem 2.1 (Eyssidieux et al . [10]). Let u, v ∈ PSH(X, ω) ∩ L∞(X) solve the
equations

(ω + i∂∂̄u)n = fωn, (ω + i∂∂̄v)n = gωn,

where f and g are non-negative functions with the right total integral and moreover
f, g ∈ Lp(ωn), p > 1. Then there exists a constant C dependent on X, p, s, ε, ‖f‖Lp ,
‖g‖Lp such that

‖u − v‖∞ � C‖u − v‖s/(nq+s+ε)
Ls(ωn) , ∀s > 0, ε > 0.

By analysing the proof of this theorem in [10] one obtains the following corollary.

Corollary 2.2. In the setting as above if we additionally know that u > v, then the
same conclusion holds if merely g is in Lp, i.e. we put an assumption only on the Monge–
Ampère measure of the smaller function.

3. Proof

Let φ be the given function with (ω + i∂∂̄φ)n = fωn, f ∈ Lp(ωn), p > 1. The main idea
of the proof is to use an approximating technique, due to Demailly (see [7]), to produce
an approximating sequence φε which looks similarly to the convenient regularization by
convolution.

If z ∈ X then the exponential mapping

expz : TzX � ζ → expz(ζ) ∈ X,

is defined by expz(ζ) := γ(1), where γ : [0, 1] → X is the geodesic starting from z = γ(0)
with the initial velocity (dγ/dt)(0) = ζ.

In C
n endowed with the Euclidean metric exp reads expz(ζ) = z + ζ. However, on a

general complex manifold the exponential mapping is not holomorphic. To circumvent
this difficulty Demailly (in [7]) introduced the new mapping exph as follows.

Definition 3.1. exph : TX � (z, ζ) → exphz(ζ) ∈ X, ζ ∈ TzX is defined by

(1) exph is a C∞ smooth mapping;

(2) ∀z ∈ X, exphz(0) = x and dζ exph(0) = IdTzX ;

(3) ∀z ∈ X the map ζ → exphz ζ has a holomorphic Taylor expansion at ζ = 0.
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An intuitive way to see this mapping is to take the ordinary ζ → expz(ζ) mapping,
Taylor expand it at 0 and erase all non-holomorphic terms in ζ. By Borel’s theorem there
exists a smooth mapping with Taylor expansion matching this erased data. Note that
the mapping is not uniquely defined, however any two mappings differ by a C∞ functions
flat along the zero section of TX which is naturally identified with X.

Of course, the exph mapping is still not holomorphic in ζ (the Taylor expansion at 0
may well be divergent), but it does share some properties of holomorphic functions that
will be satisfactory for our needs.

Let χ : R+ → R+
∗ be a cut-off function with χ(t) = 0 for t � 1, χ(t) > 0, for t < 1,

such that ∫
Cn

χ(‖z‖2) dλ(z) = 1, (3.1)

with λ the Lebesgue measure on C
n. We define φε to be

φε(z) =
1

ε2n

∫
ζ∈TzX

φ(exphz(ζ))χ
(

|ζ|2
ε2

)
dλω(ζ), ε > 0. (3.2)

Here |ζ|2 stands for
n∑

i,j=1

gij̄(z)ζiζ̄j ,

and dλω(ζ) is the induced measure (1/2nn!)(i∂∂̄|ζ|2)n. Intuitively this corresponds to
the familiar convolution with smoothing kernel (actually in the case of C

n endowed with
the Euclidean metric this is exactly the smoothing convolution).

Demailly introduced yet another function, namely for w ∈ C, |w| = ε he defines
Φ(z, w) := φε(z). One has the following equality:

Φ(z, w) =
∫

ζ∈TzX

φ(exphz(wζ))χ(|ζ|2) dλω(ζ). (3.3)

The reason for introducing the new variable w (as far as the author understands
Demailly’s intentions) is twofold.

• First, Demailly proves that (a modification of) Φ(z, w) is subharmonic in the w

variable and, since Φ is a radial function in w, one obtains that (modifications of) φε

are increasing with ε (like it is the case when convoluting ordinary plurisubharmonic
functions)—a fact that is probably hard to achieve by merely working with φε.

• Secondly, Demailly’s motivation was to obtain an approximation of (1, 1)-currents
and he was mainly interested in highly singular ones, i.e. those with non-vanishing

∗ In his proof Demailly made the explicit choice

χ(t) =
C

(1 − t)2
exp

(
1

t − 1

)

for t < 1 with a suitable constant C.
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Lelong numbers. By introducing the new variable Demailly made possible applica-
tions of Kiselman minimum principle so that one can kill the Lelong numbers up
to certain level (see [7] for the details). Since our motivation is different (and since
i∂∂̄φ for a bounded φ has all Lelong numbers zero) we shall at places proceed in
a slightly different manner, for example putting attention to quantities that were
immaterial in Demailly’s approach.

Below we state the fundamental technical estimate for the (complex) Hessian of Φ(z, w)
[7, Proposition 3.8].

Proposition 3.2. We have the following estimate:

i∂∂̄Φ(z, w)[θ, η]2

� 1
π

|w|2
∫

Cn

−χ1(|ζ|2)
n∑

j,k,l,m=1

∂2φ

∂z̄l∂zm
(exphz(wζ))

(
cjk̄lm̄ +

1
|w|2 δjmδkl

)
τj τ̄k dλ(ζ)

− K ′(|θ| |η| + |η|2).

Here i∂∂̄ acts on X ×C (i.e. also on the w variable) and the symbol [θ, η]2 means that we
compute the Levi form on the vector (θ, η) ∈ TzX ×C (we follow Demailly’s notation for
the ease of the reader). The constants cjk̄lm̄ are the coefficients in the Chern curvature
form (alternatively the coefficients of the bisectional curvature tensor). The vector τ is of
the form θ + ηζ + O(|w|)∗ and χ1(t) := −

∫ ∞
t

χ(u) du. K ′ denotes a constant dependent
merely on X and finally δjm is the Kronecker delta.

We shall not reproduce the technical details of the (computationally involved) proof—
we refer to [7] (there is a similar computation in [6] made on the ‘ordinary’ exponential
mapping). Instead we shall explain a detail that a priori seems to make such a result
impossible.

Indeed, since exph is not holomorphic in general, when differentiating under the
integral (one first parametrizes the tangent space TzX so that we pull back the com-
putation of the ‘vector part’ onto C

n) one inevitably gets terms where elements like
(∂2φ/∂zi∂zj)(exphz(wζ)) appear! Since for a plurisubhamonic function we have infor-
mation only on the mixed complex derivatives (i.e. of type ∂2φ/∂zi∂z̄j) one might feel
that there is no hope of getting any estimates.

Note however that exphz is a local diffeomorphism (when viewed as a real mapping)
and its real Jacobian is invertible. So, if in a coordinate chart exph reads exphz =
(F 1, . . . , Fn), then the matrix

⎛
⎜⎜⎜⎝

∂F (i)

∂zj

∂F (i)

∂z̄j

∂F̄ (i)

∂zj

∂F̄ (i)

∂z̄j

⎞
⎟⎟⎟⎠

i,j

∗ For its definition and geometric meaning we refer to [7], these are immaterial in our approach.
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Hölder continuous potentials 713

is also invertible. In the matrix notation we have

(φ(F )′
1, . . . , φ(F )′

n, φ(F )′
1̄, . . . , φ(F )′

n̄) = (φ′
1, . . . , φ

′
n, φ′

1̄, . . . , φ
′
n̄)F ×

⎛
⎜⎜⎜⎝

∂F (i)

∂zj

∂F (i)

∂z̄j

∂F̄ (i)

∂zj

∂F̄ (i)

∂z̄j

⎞
⎟⎟⎟⎠ .

(3.4)
So, if

(
aij bij̄

cı̄j dı̄j̄

)
:=

⎛
⎜⎜⎜⎝

∂F (i)

∂zj

∂F (i)

∂z̄j

∂F̄ (i)

∂zj

∂F̄ (i)

∂z̄j

⎞
⎟⎟⎟⎠

−1

,

then each of the coefficients among a, b, c and d is a smooth function and one can write
down

φ′
p(F ) =

n∑
i=1

φ(F )iaip +
n∑

i=1

φ(F )ı̄cı̄p,

φ′
p̄(F ) =

n∑
i=1

φ(F )ibip̄ +
n∑

i=1

φ(F )ı̄dı̄p̄.

These formulae actually allow one to integrate by parts.
Thus, for example, doing this operation twice an element of type∫

φ′′
ps(F )F p′

l̄
F s′

k G

can be exchanged with a sum of elements of type
∫

φ(F )H for some smooth function
H. Thus the analysis is reduced to estimation of these error terms, which indeed can be
done as Demailly has shown.

Heuristically the argument above is nothing but the multilinear analogue of the well
known integration-by-parts formula∫

u′(f(t))g(t) dt =
∫

u′(f(t))f ′(t)
(

g(t)
f ′(t)

)
dt = −

∫
u(f(t))

d
dt

(
g(t)
f ′(t)

)
dt,

which is justified in the case when f ′ 	= 0.
In order to estimate further Demailly has shown a simple lemma [7, Lemma 4.4]).

Here we prove a slightly different version, since we shall use the lemma in a bit different
context (strictly speaking we are interested in the quantity δ(|w|) in the original proof
(see [7, Theorem 4.1]), which was more or less immaterial for Demailly, whose main
concern was the quantity λ(z, |w|) there).

Lemma 3.3. Suppose X has non-negative orthogonal bisectional curvature, i.e.
n∑

j,k,l,m=1

1
2π

cjk̄lm̄τj τ̄kξlξ̄m � 0
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for any tangent vectors τ and ξ, satisfying
∑n

i,j=1 gij̄τiξ̄j = 0. At a point z we choose
geodesic coordinates, so that gij̄ = δij (δ is the Kronecker delta). Then there exists a
constant C dependent only on the geometry of X such that at z

n∑
j,k,l,m=1

1
2π

(
cjk̄lm̄ +

1
|w|2 δjmδkl

)
τj τ̄kξlξ̄m + C|w|‖τ‖2 ‖ξ‖2 � 0

for all tangent vectors τ , ξ and |w| ∈ R>0.

Remark 3.4. Actually instead of merely the Chern curvature form Demailly considered
the form

(iΘ + u ⊗ IdTX)(τ ⊗ ξ, τ ⊗ ξ)

for some semi-positive (1, 1)-form u on X. In local coordinates it reads

n∑
j,k,l,m=1

1
2π

cjk̄lm̄τj τ̄kξlξ̄m +
n∑

j,k,l=1

ujk̄τj τ̄kξlξ̄l.

This notion is close to the orthogonal bisectional curvature with conformal factor (see [18,
Chapter 5]). For our application, however, it is crucial that u vanishes identically.

Proof. Let
µ := sup

‖τ‖=1=‖ξ‖
|iΘ(τ ⊗ ξ, τ ⊗ ξ)|

(this quantity depends only on the geometry of X). We will show that actually one can
take C = 5µ

√
µ although we shall not use this explicit bound.

If µ = 0 there is nothing to prove, so in the sequel we assume µ > 0. Note that, by
assumption, iΘ(τ ⊗ ξ, τ ⊗ ξ) � 0 whenever τ ⊥ ξ. Consider two cases.

First case. Suppose |
∑n

i=1 τiξ̄i| > |w|√µ. Then

iΘ(τ ⊗ ξ, τ ⊗ ξ) +
1

|w|2

∣∣∣∣ ∑
i

τiξ̄i

∣∣∣∣
2

+ 5µ
√

µ|w|‖τ‖2 ‖ξ‖2

� −µ + µ + 5µ
√

µ|w|‖τ‖2 ‖ξ‖2 � 0.

Second case. Let now |
∑n

i=1 τiξ̄i| � |w|√µ. By homogeneity it is enough to prove the
inequality for all unit vectors τ and ξ. Let τ = aξ + bϑ for some a, b ∈ C and some unit
vector ϑ perpendicular to ξ∗ (so |a|2 + |b|2 = 1 and |a| = |

∑n
i=1 τiξ̄i| � |w|√µ). Then we

calculate

iΘ(τ ⊗ ξ, τ ⊗ ξ) +
1

|w|2

∣∣∣∣ ∑
i

τiξ̄i

∣∣∣∣
2

+ 5µ
√

µ|w|‖τ‖2 ‖ξ‖2

� |a|2iΘ(ξ ⊗ ξ, ξ ⊗ ξ) + |b|2iΘ(ϑ ⊗ ξ, ϑ ⊗ ξ) + 2 Re(ab̄iΘ(ξ ⊗ ξ, ϑ ⊗ ξ)) + 5µ
√

µ|w|.
∗ In the sense that

∑n
j=1 ξj ϑ̄j = 0.
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The second term is non-negative. We estimate the third one using a polarization. So, we
get

|a|2iΘ(ξ ⊗ ξ, ξ ⊗ ξ) + |b|2iΘ(ϑ ⊗ ξ, ϑ ⊗ ξ) + 2 Re(ab̄iΘ(ξ ⊗ ξ, ϑ ⊗ ξ)) + 5µ
√

µ|w|
� −|a|2µ − |a| |b|[2|Re(iΘ(ξ ⊗ ξ, ϑ ⊗ ξ))| + 2|Im(iΘ(ξ ⊗ ξ, ϑ ⊗ ξ))|] + 5µ

√
µ|w|

� −|a|2µ − |a| |b|
∣∣∣∣iΘ

(
(ξ + ϑ)√

2
⊗ ξ,

(ξ + ϑ)√
2

⊗ ξ

)
− iΘ

(
(ξ − ϑ)√

2
⊗ ξ,

(ξ − ϑ)√
2

⊗ ξ

)∣∣∣∣
− |a| |b|

∣∣∣∣iΘ
(

(ξ + iϑ)√
2

⊗ ξ,
(ξ + iϑ)√

2
⊗ ξ

)
− iΘ

(
(ξ − iϑ)√

2
⊗ ξ,

(ξ − iϑ)√
2

⊗ ξ

)∣∣∣∣
+ 5µ

√
µ|w|

� −|a|2µ − 4|a| |b|µ + 5µ
√

µ|w|
� −5|a|µ + 5µ

√
µ|w|

� 0

(recall that ϑ is perpendicular to ξ, so all the vectors (ξ ± ϑ)/
√

2, (ξ ± iϑ)/
√

2 are
unitary). �

Now, following Demailly [7] if we apply the above inequality to each vector ξ in a basis
of eigenvectors of i∂∂̄φ, multiply by the corresponding non-negative eigenvalue and take
the sum, we get

1
2π

n∑
j,k,l,m=1

∂2φ

∂z̄l∂zm
(exphz(wζ))

(
cjk̄lm̄ +

1
|w|2 δjmδkl

)
τj τ̄k

+
n∑

l=1

∂2φ

∂zl∂z̄l
(exphz(wζ))C|w|‖τ‖2 � 0.

(Strictly speaking one has to apply an approximation procedure to get this estimate,
since a priori i∂∂̄φ is merely a current, and we cannot apply pointwise linear algebra.)

Plugging this into the Demailly’s Proposition 3.2 we infer
1
π

i∂∂̄Φ(z, w)[θ, η]2

� −2|w|2
∫

Cn

−χ1(|ζ|2)
n∑

l=1

∂2φ

∂zl∂z̄l
(exphz(wζ))C|w|‖τ‖2 dλ(ζ) − K ′(|θ| |η| + |η|2)

� −
[
2|w|2

∫
Cn

−χ1(|ζ|2)
n∑

l=1

∂2φ

∂zl∂z̄l
(exphz(wζ)) dλ(ζ)

]
C|w| |θ|2 − K ′′(|θ| |η| + |η|2),

where we have used τ = θ + ηζ + O(|w|). Since the element in the square brackets is
uniformly bounded (roughly speaking it is comparable with the integral of the Laplacian
over a ball with radius |w|) we obtain

1
π

i∂∂̄Φ(z, w)[θ, η]2 � −C|w| |θ|2 − K(|θ| |η| + |η|2), (3.5)

for some constant K dependent only on X.
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Let us stress that this estimate holds for plurisubharmonic functions as well as for ω-
psh ones. This is due to the fact that the estimate, as well as all the quantities appearing
in it are local. Thus instead of working with φ one can apply the construction to ρ + φ

with ρ a local potential for the Kähler metric ω. Everything will be well defined for small
enough ε. Of course we would have to take into account the difference between ρ(z) and
ρε(z), but, since the potential is smooth, this difference is easily estimated to be of order
ε2, i.e. it can be absorbed harmlessly into the estimate.

Note that the estimate shows that Φ(z, w) + K|w|2 is subharmonic in w. Since it
depends on |w| it must be an increasing function. Therefore, φε + Kε2 is increasing with
ε. Also, for a given bounded ω-psh function φ on a complex Kähler manifold with non-
negative orthogonal bisectional curvature the Demailly regularization gives us a quasi-psh
function φε satisfying

i∂∂̄φε � −(1 + Cε)ω,

for some constant C depending on the geometry of X (just take η = 0 and |w| = ε).
Without loss of generality we may assume φ � −1. Then φε � 0 for small ε (by

construction) and

ϕε :=
φε + C1ε

2

1 + Cε

is a family of smooth ω-psh functions decreasing towards φ.∗ By the corollary after
Theorem 2.1 we have the estimate

sup
X

|ϕε − φ| � C‖ϕε − φ‖1/(nq+1+ε)
L1(ωn) . (3.6)

Note, however, that

‖ϕε − φ‖∞ =
∥∥∥∥φε − φ + C1ε

2 − Cεφ

1 + Cε

∥∥∥∥
∞

� ‖φε − φ‖∞ − C2ε

1 + Cε
,

for some C2 dependent on X and ‖φ‖∞. Similarly,

‖ϕε − φ‖L1(ωn) �
‖φε − φ‖L1(ωn) + C3ε

1 + Cε
,

for some constant C3 also dependent on X and ‖φ‖∞.
Note however that ‖φε − φ‖L1(ωn) � Cε2. Indeed, to see this, consider a double covering

Ωi � Ω1
i , i = 1, . . . , M . In each Ω1

i we fix a Kähler potential ρi. For ε small enough we
have the inclusion

{exphz(ζ) | z ∈ Ωi, ‖ζ‖ � ε} ⊂ Ω1
i .

As we have already mentioned, instead of φ one can make approximation with ψi := ρi+φi

whenever the base point varies in Ωi. Also it is enough to estimate
∫

Ωi
(ψi)ε(z) − ψi(z) dz

(recall that the error term coming from the regularization of the Kähler potential is of
order ε2). But then an application of Jensen type formula as in Lemma 4.3 in [12] gives
us the desired statement.

∗ A similar idea was used in [3].
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Coupling all these estimates one obtains

‖φε − φ‖∞ � Cε1/(nq+1+ε) (3.7)

for some C dependent on ‖φ‖∞, X, ‖f‖p, n and p.∗ Now, in a local chart, after addition of
Kähler potential (so that we obtain true local plurisubharmonic functions) we may follow
the proof of Lemma 4.2 in [12] to conclude that φ is Hölder continuous with exponent
1/(nq + 1 + ε) (roughly speaking this follows from the fact that for plurisubharmonic
functions the maximum over a small ball and the average over it are comparable). This
completes the proof of Hölder continuity.
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19. J. Song and G. Tian, The Kähler–Ricci flow on surfaces of positive Kodaira dimension,
Invent. Math. 170 (2007), 609–653.

20. J. Song and G. Tian, Canonical measures and the Kähler–Ricci flow, preprint (arXiv
0802.2570).

21. G. Tian and Z. Zhang, On the Kähler–Ricci flow on projective manifolds of general
type, Chin. Annals Math. 27(2) (2006), 179–192.

https://doi.org/10.1017/S1474748010000113 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000113

