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Abstract
This paper models the decumulation period of a Personal Pension with Risk sharing (PPR). We derive
several relationships between the contract parameters. Individuals can adopt two approaches to the decu-
mulation period of a PPR: the investment approach and the consumption approach. In the investment
approach, individuals specify how to invest wealth and how much wealth to withdraw. Retirement con-
sumption follows endogenously. In the consumption approach, in contrast, individuals specify retirement
consumption exogenously. Investment and withdrawal policies follow endogenously. We explore these two
approaches in detail. Consistent with habit formation, we allow for excess smoothness and excess sensi-
tivity in retirement consumption.

Key words: Consumption approach; investment approach; liability-driven investment; personal pension plan; smoothing of
shocks
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Private pension provision is in transition, moving from employer-sponsored defined benefit (DB)
pension plans towards individual defined contribution (DC) pension plans (Investment Company
Institute (2017)). Many workers regard this trend as undesirable (Rhee and Boivie (2015)). Indeed,
a DC plan focuses primarily on accumulating retirement wealth rather than providing a stable
lifelong income stream. Recently, Bovenberg and Nijman (2015) propose a new pension contract
called a Personal Pension with Risk sharing (PPR). A PPR unbundles the three main functions
of variable annuity contracts: insurance, investment and withdrawal.1 In particular, a PPR
organizes the insurance function collectively and individualizes the investment and withdrawal
functions.2,3

© Cambridge University Press 2018

1A PPR differs from a variable annuity in three key aspects. First, a PPR defines property rights in terms of a personal
investment account rather than an income stream. Second, a PPR allows for more flexibility in tailoring investment and with-
drawal policies to individual needs. Third, a PPR integrates the accumulation period with the decumulation period.

2Individualization of the investment function is possible without any welfare loss. Indeed, pooling of systematic risks does
not generate any welfare gain. In fact, individualization of the investment function typically leads to a welfare improvement,
because pension providers can tailor the investment function to individual needs.

3Like a PPR, a pooled annuity fund allows individuals to pool idiosyncratic longevity risk and, at the same, it allows indi-
viduals to take systematic risks; see, e.g., Piggott et al. (2005), Valdez et al. (2006), Stamos (2008), and Donnelly (2015).
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While the work by Bovenberg and Nijman (2015) is descriptive in nature, this paper formalizes the
decumulation period of a PPR. We define the pension contract in terms of various parameters such as
the investment policy and the median growth rate of the benefit payout. We show how the budget
condition implies several relationships between the contract parameters. The budget condition does,
however, not uniquely identify all parameters. As a consequence, individuals must specify some
parameters exogenously. They can specify the parameters according to (at least) two alternative
approaches: the investment approach and the consumption approach. We explore these two
approaches in detail and show how they differ from each other.

In the investment approach, individuals specify, in each period, how to invest their accumulated
retirement wealth and how much to withdraw. The value of the investment account at the start of
the decumulation period (e.g., accumulated retirement wealth at the age of retirement) is also given
exogenously. Many pension providers adopt the investment approach in practice. For example,
when an individual purchases a variable annuity from a provider, the payout policy is (usually) a func-
tion of the adopted investment policy and the so-called Assumed Interest Rate (AIR). In particular, the
investment policy and the AIR together determine the median growth rate of the benefit payout.
Indeed, if a pension provider adopts a more conservative investment policy and leaves the AIR
unaffected, then the benefit payout will, in expectation, grow at a slower rate. Changes in not only
the investment policy but also the expected return on investments affect the median growth rate of
the benefit payout.

In the consumption approach, individuals specify the entire retirement consumption stream
exogenously.4 More specifically, individuals define the desired median growth rate and the volatility
of the benefit payout. They also specify the benefit payout at the start of the decumulation period
exogenously. The initial value of the investment account, the investment policy and the withdrawal
policy follow endogenously from these objectives. Individuals thus adopt the principle of liability-
driven investment. In fact, the investment policy consists of two endogenous components: a specula-
tive component and a hedging component. This decomposition of the investment policy is familiar
from the literature on optimal consumption and portfolio choice under a stochastic investment oppor-
tunity set (see, e.g., Brennan and Xia (2002), Wachter (2002), Chacko and Viceira (2005), and Liu
(2007)). The speculative portfolio allows individuals to take advantage of risk premia, while the hedg-
ing portfolio hedges changes in the investment opportunity set that affect the costs of future benefit
payouts (Merton (1971)).5 The hedging portfolio thus enables individuals to achieve a stable median
payout stream in retirement.

Standard variable annuities fully reflect a speculative shock into the current benefit payout; that is,
the current benefit payout responds one-to-one to an unexpected change in the value of the specula-
tive portfolio (see, e.g., Chai et al. (2011) and Maurer et al. (2013)).6 As a result, in a standard variable
annuity, a speculative shock does not affect the AIR. A PPR, in contrast, allows a speculative shock to
affect the AIR so as to reduce the year-on-year volatility of retirement consumption. This so-called
smoothing of speculative shocks is optimal in the presence of internal habit formation and loss aver-
sion (see, e.g., Fuhrer (2000), Pagel (2017), and Van Bilsen et al. (2017)).7 As the individual ages and
the duration of his pension liabilities declines, the AIR becomes less effective in absorbing speculative
shocks. Accordingly, in order to prevent an extreme year-on-year volatility of retirement consumption
at higher ages, the individual must reduce the riskiness of his investment portfolio over the course of
his life.

4Brown et al. (2008, 2013) find that individuals value annuities more if framed in terms of consumption rather than
investment.

5Changes in the investment opportunity set are due to shocks in, for instance, the real interest rate.
6Pension providers have also developed annuity products in which the current benefit payout responds sluggishly to a

speculative shock (see, e.g., Guillén et al. (2006) and Maurer et al. (2016)).
7Smoothing of speculative shocks implies an excessively smooth and excessively sensitive payout stream. Aggregate con-

sumption data also exhibit these properties (see, e.g., Flavin (1985), Deaton (1987), and Campbell and Deaton (1989)).
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1. Modelling the decumulation period of a PPR

1.1 Financial market

This section describes the financial market. Our specification of the financial market is closely related
to Liu (2007). The only difference between his specification and ours is that he does not assume a
complete financial market, whereas we do. Denote by Xt an N-dimensional vector of state variables.
This vector characterizes the asset prices in the financial market. The vector of state variables could
include the short-term real interest rate, the realized rate of inflation, or predictors of stock returns.
We assume that Xt satisfies the following dynamic equation:

dXt = mX Xt( )dt + SX Xt( )dZt, (1)

where the drift term μX(Xt) and the diffusion matrix ΣX(Xt) are an N-by-1 vector function and an
N-by-N matrix function of Xt, respectively, and Zt is an N-dimensional standard Brownian motion.

We consider a financial market consisting of N risky assets and one (locally) risk-free asset. The
vector of risky asset prices Pt = (P1t, …, PNt) and the risk-free asset price P0t satisfy, respectively,
the following dynamic equations:8

dPt = m(Xt)Ptdt + S(Xt)PtdZt, (2)

dP0t = Rf (Xt)P0tdt. (3)

The drift term μ(Xt), the diffusion matrix Σ(Xt) and the risk-free interest rate Rf(Xt) are functions of
Xt. In what follows, we write mX(Xt) = mX

t ,S
X(Xt) = SX

t ,m(Xt) = mt,S(Xt) = St and Rf (Xt) = Rf
t .

1.2 Survival probabilities

To protect individuals against the risk of outliving their accumulated retirement wealth, a PPR distributes
the accumulated retirement wealth of someonewho dies among the surviving individuals of the same age.
Hence, a PPR pools individual longevity risk.We assume that the risk-sharing pool is sufficiently large so
that the law of large numbers applies. Furthermore, we abstract away from macro longevity risk.

Denote by y the date of birth of an individual, by xr the age at which individuals retire, and by xmax the
maximum age individuals can reach. If the date of birth y falls between time t− xr and time t− xmax and
the individual has survived up to time t, then this individual receives a pension payment at time t. We
denote the probability that an individual aged x = t− y will survive to age x + h by

hpx = exp −
∫h
0

ux+vdv

⎧⎨
⎩

⎫⎬
⎭ (4)

Here, θx+v represents the force of mortality (i.e., hazard rate) at age x + v.

1.3 Budget condition

The value of the individual’s investment account should match the value of the individual’s pension
liabilities in every state of nature and at any date. Indeed, in a PPR, an individual finances its pension
liabilities by its own investment account. Let Wt,y and Vt,y denote, respectively, the value of the

8For notational convenience, we often write a column vector in the form z = (z1,…, zN), where zi represents the ith element
of z.
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investment account and the value of the pension liabilities at time t of an individual born at time y.
Mathematically, budget balance implies that for each t∈ [ y + xr, y + xmax]

Wt,y = Vt,y (5)

The budget condition (5) states that the (balance sheet) funding ratio Wt,y/Vt,y is equal to unity in
every state of nature and at any date. It follows from (5) that dlog Wt,y = dlog Vt,y. We explore the
dynamics of log Wt,y and log Vt,y in Sections 1.4 and 1.5, respectively. Section 1.6 derives several rela-
tionships between the contract parameters that follow from the budget condition (5).

1.4 Dynamics of the value of the investment account

The value of the investment account of a surviving individual satisfies the following dynamic equation:

dWt,y = ut−y + Rf
t + v`

t,y[mt − Rf
t ]

( )
Wt,ydt + v`

t,yStWt,ydZt − Bt,ydt. (6)

Here, ωt,y and Bt,y represent, respectively, the vector of portfolio weights and the (annualized) benefit
payout at time t of an individual born at time y.9 We can view θt−y as the biometric rate of return.10

Indeed, because the accumulated retirement wealth of someone who dies goes to the surviving indi-
viduals (and not to its heirs), surviving individuals earn an additional return. The symbol ‘`’ denotes
the transpose sign.

Application of Itô’s lemma to log Wt,y yields

d logWt,y = ut−y + mW
t,y − ct,y

( )
dt + v`

t,yStdZt, (7)

where mW
t,y and ct,y denote, respectively, the (geometric) expected financial return on accumulated

retirement wealth and the withdrawal rate at time t of a person born at time y:11

mW
t,y = Rf

t + v`
t,y mt − Rf

t

( )
− 1

2
v`
t,yStS

`
t vt,y, (8)

ct,y =
Bt,y

Wt,y
. (9)

The withdrawal rate (9) controls the speed at which accumulated retirement wealth Wt,y = Vt,y is
depleted. In fact, it models how the individual’s accumulated retirement wealth is allocated between
his current payout and his future payouts.

1.5 Dynamics of the value of the pension liabilities

1.5.1 A factorization
Let Ct,y denote the conversion factor at time t of an individual born at time y. This factor is implicitly
defined as follows:

Ct,yBt,y = Wt,y = Vt,y. (10)
9The portfolio weight vit,y denotes the share of accumulated retirement wealth invested in the ith risky asset at time t of an

individual born at time y.
10In the absence of pooling of mortality risk, this term drops out.
11The last term on the right-hand side of (8) is due to Itô lemma. As a result, the geometric expected financial return mW

t,y

(see (8)) differs from the arithmetic expected financial return Rf
t + v`

t,y mt − Rf
t

( )
.
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It follows from (10) that

d logVt,y = d logCt,y + d logBt,y. (11)

Hence, to derive the dynamics of the log value of the individual’s pension liabilities Vt,y, we first need
to derive the dynamics of the log conversion factor Ct,y and the dynamics of the log benefit payout
logBt,y. Sections 1.5.2 and 1.5.3 explore the dynamics of log Ct,y and log Bt,y, respectively.

1.5.2 Dynamics of the log conversion factor
Denote by Vt,y,h the value of the future benefit payout Bt+h,y We can write the conversion factor Ct,y as
follows:

Ct,y =
Vt,y

Bt,y
=

∫xmax−(t−y)

0

Vt,y,h

Bt,y
dh =

∫xmax−(t−y)

0

Ct,y,hdh, (12)

where Ct,y,h = Vt,y,h/Bt,y.
Let δt,y,h denote individual y’s discount rate (or AIR) at time t for a benefit payout occurring at time

t + h. This discount rate is implicitly defined as follows:

Ct,y,h = h pt−y exp {−dt,y,hh}. (13)

The discount rate models the speed at which an individual withdraws his accumulated retirement
wealth. We allow the discount rate to depend on future expected financial rates of return and past
speculative shocks.12 Hence, we can divide δt,y,h into two parts:

dt,y,h = dut,y,h + dct,y,h. (14)

Here, dut,y,h models how the discount rate depends on future expected financial rates of returns. The
individual’s elasticity of intertemporal substitution determines the extent to which dut,y,h responds to a
change in the investment opportunity set. In the special case where the individual has unit elasticity of
intertemporal substitution, the discount rate dut,y,h is insensitive to changes in the investment oppor-
tunity set. The term dct,y,h models how the discount rate depends on past speculative shocks. By
increasing (decreasing) dct,y,h following a negative (positive) speculative shock, the individual (par-
tially) absorbs a shock into the future growth rates of the benefit payout. We call dut,y,h and dct,y,h
the unconditional and the conditional part of dt,y,h, respectively. Henceforth, we refer to dut,y,h as
the unconditional discount rate. We note that at the start of the decumulation period, the uncondi-
tional discount rate coincides with the actual discount rate (i.e., duy+xr,y,h = dy+xr,y,h for all h).

Using (13) and (14), we can write Ct,y,h as follows:

Ct,y,h = At,y,hFt,y,h, (15)

where

At,y,h = h pt−y exp {−dut,y,hh}, (16)

Ft,y,h = exp {−dct,y,hh}. (17)

12To dampen the impact of a speculative shock on the current benefit payout, we allow an individual to adjust his con-
version factor following a speculative shock.
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In what follows, we refer to At,y,h and Ft,y,h as the horizon-dependent annuity factor and the
horizon-dependent funding ratio, respectively.

It follows from Itô’s lemma, (12) and (15) that

d logCt,y =
∫xmax−(t−y)

0

at,y,hd logCt,y,hdh− ct,ydt

+ 1
2

∫xmax−(t−y)

0

at,y,hd logCt,y,h, logCt,y,h
[ ]

dh

− 1
2

∫xmax−(t−y)

0

∫xmax−(t−y)

0

at,y,uat,y,vd logCt,y,u, logCt,y,v
[ ]

dudv,

(18)

and

d logCt,y,h = d logAt,y,h + d log Ft,y,h. (19)

Here, αt,y,h = Ct,y,h/Ct,y and [log Ct,y,u, log Ct,y,v] denotes the quadratic covariation between log Ct,y,u and
log Ct,y,v. We now derive the dynamics of logAt,y,h and log Ft,y,h, respectively.

Dynamics of the Log Horizon-Dependent Annuity Factor. To derive the dynamics of the log
horizon-dependent annuity factor logAt,y,h, we assume that the unconditional discount rate dut,y,h
depends on the vector of state variables Xt. By Itô’s lemma, the log horizon-dependent annuity factor
logAt,y,h = logh pt−y − dut,y,hh (see also (16) for the definition of At,y,h ) satisfies the following dynamic
equation:

d logAt,y,h = ut−ydt +
∂ dut,y,hh
( )

∂h
dt − D`

t,y,hm
X
t dt

− 1
2
Tr SX

t

( )`
Ht,y,hS

X
t

[ ]
dt − D`

t,y,hS
X
t dZt.

(20)

Here, Dt,y,h = ∇X dut,y,hh
( )

and Ht,y,h = HX dut,y,hh
( )

are the gradient and the Hessian matrix of dut,y,hh

with respect to Xt, respectively, and Tr denotes the trace operator. The first term on the right-hand side
of (20) denotes the change in the (log) survival probability. This term is positive. Indeed, the probabil-
ity of surviving to age t + h− y increases as time proceeds. The second term represents the unwinding
of the discount rate. Finally, the last three terms model how the underlying state variables affect the log
horizon-dependent annuity factor.

Dynamics of the Log Horizon-Dependent Funding Ratio. Equation (20) shows that the (aggregate)
annuity factor At,y =

�xmax−(t−y)
0 At,y,hdh is typically stochastic. The hedging portfolio aims at hedging

stochastic variations in the annuity factor. If the hedging portfolio does not coincide with the actual
portfolio, then there is a speculative risk. The individual can absorb a speculative shock in either the
current benefit payout Bt,y or the future growth rates of the benefit payout or a combination of both.

Denote by vS
t,y the N-dimensional vector of speculative portfolio weights at time t of an individual

born at time y. The speculative shock at time t is thus given by vS
t,y

( )`
StdZt. The individual translates

a fraction qt,y,h of a current speculative shock into the future benefit payout Bt+h,y. That is, the exposure
of log Vt,y,h to a current speculative shock equals qt,y,h. We assume that qt,y,h (which we call the
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smoothing coefficient) weakly increases with the horizon h so that a current speculative shock does not
yield a smaller impact on a benefit payout in the distant future than on a benefit payout in the near
future. To absorb the entire speculative shock into the current payout and the future growth rates of
the payout, we must have that

∫xmax−(t−y)

0

at,y,hqt,y,hdh = 1. (21)

The exposure of the log horizon-dependent conversion factor log Ct,y,h = log Vt,y,h− log Vt,y,0 to a
current speculative shock equals qt,y,h− qt,y,0. Hence, the horizon-dependent funding ratio (which
models how the conversion factor depends on past speculative shocks) is given by13

Ft,y,h = exp
∫t

y+xr

qs,y,t+h−s − qs,y,t−s
( )

vS
s,y

( )`
SsdZs

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭. (22)

By comparing (17) with (22), we arrive at

dct,y,hh = −
∫t

y+xr

qs,y,t+h−s − qs,y,t−s
( )

vS
s,y

( )`
SsdZs = − log Ft,y,h. (23)

Equation (23) shows how past speculative shocks affect the discount rate. In the case of no horizon
differentiation in risk exposures (i.e., qt,y,h is equal to unity for every h), past speculative shocks do not
affect the conversion factor Ct,y. Indeed, in the absence of horizon differentiation in risk exposures, the
individual fully translates a speculative shock into the current benefit payout. The conditional part of
the discount rate, i.e., dct,y,h, is thus the consequence of the gradual adjustment of the current benefit
payout to a speculative shock. The log horizon-dependent funding ratio obeys the following equation
(this follows from (22)):

d log Ft,y,h = qt,y,h − qt,y,0
( )

vS
t,y

( )`
StdZt −

∫t
y+xr

dqs,y,t−s vS
s,y

( )`
SsdZs. (24)

The first term on the right-hand side of (24) represents the impact of a current speculative shock on
the horizon-dependent funding ratio. The second term denotes past speculative shocks that are
absorbed into the current benefit payout so that they are no longer included in the horizon-dependent
funding ratio.

Also, Guillén et al. (2006) and Maurer et al. (2016) consider a pension product in which a specu-
lative shock has less impact on the current benefit payout than on the future benefit payouts.14 Their
pension product works as follows. In the case of a positive investment return, only a fraction of the
positive return will be added to the benefit payout. The insurer retains the remainder of the return.
In the case of a negative investment return, only a fraction of the negative return will be subtracted
from the benefit payout. The insurer confers the additional benefit payout. A potential drawback of

13We note that the so-called balance sheet funding ratio Wt,y/Vt,y is equal to unity in every state of nature and at any date

(see (5)). In contrast, the so-called cash-flow funding ratio Ft,y =
�xmax−(t−y)
0 Ft,y,hAt,y,hdh/At,y = Wt,y/(Bt,yAt,y) can deviate

from unity.
14See also Jørgensen and Linnemann (2011), Guillén et al. (2013), and Linnemann et al. (2014).

268 Servaas van Bilsen and A. Lans Bovenberg

https://doi.org/10.1017/S1474747218000240  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747218000240


this shock absorbing mechanism is that the pension provider runs the risk of ending up with a nega-
tive reserve. Our specification, in contrast, implies individual buffers so that investment shocks do not
cause transfers between individuals and the provider.

1.5.3 Dynamics of the log benefit payout
We specify the benefit payout at time t + h of an individual born at time y as follows:

Bt+h,y = By+xr,y exp
∫t+h

y+xr

gus,yds+
∫t+h

y+xr

SB
s,y,t+h−s

( )`
dZs

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭. (25)

Here, gut,y denotes the unconditional median growth rate of the benefit payout at time t of an individ-

ual born at time y and SB
t,y,h models the exposure of the future benefit payout log Bt+h,y to a current

Brownian shock dZt. We require that SB
t,y,h weakly increases with the horizon h so that a current

Brownian shock does not yield a smaller impact on a benefit payout in the distant future than on a
benefit payout in the near future.

It follows from (25) that

Bt+h,y = Bt,yFt,y,h exp
∫t+h

t

gus,yds+
∫t+h

t

S
B
s,y,t+h−s

( )`
dZs

⎧⎨
⎩

⎫⎬
⎭, (26)

where

Ft,y,h = exp
∫t

y+xr

S
B
s,y,t+h−s − S

B
s,y,t−s

( )`
dZs

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭. (27)

Comparison of (27) with (22) yields

SB
t,y,h = qt,y,hS

`
t v

S
t,y. (28)

Equation (28) expresses how the vector of speculative portfolio weights vS
t,y and the smoothing

coefficient qt,y,h together determine the vector of payout exposures SB
t,y,h.

The log benefit payout log Bt,y evolves according to (this follows from (25)):

d logBt,y = gut,ydt +
∫t

y+xr

d SB
s,y,t−s

( )`
dZs + SB

t,y,0

( )`
dZt = gt,ydt + SB

t,y,0

( )`
dZt . (29)

Here, γt,y denotes the actual median growth rate of the current benefit payout. This rate depends
on current expected financial rates of return (i.e., if expected returns change, the individual may
want to reallocate consumption over time) and past Brownian shocks. Hence, we can divide γt,y
into two parts:

gt,y = gut,y + gct,y, (30)
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where

gct,y =
∫t

y+xr

d SB
s,y,t−s

( )`
dZs. (31)

We refer to g c
t,y as the conditional part of γt,y. Equation (31) represents past Brownian shocks that

affect the median growth rate of the current benefit payout.

1.6 Relationships between the contract parameters

The previous sections have modelled the decumulation period of a PPR in terms of seven parameters.
The first column of Table 1 lists these parameters. This section derives several relationships between the
contract parameters that follow from the budget condition (5).We canwrite this condition as follows (use
dlog Vt,y = dlog Ct,y + dlog Bt,y):

d logWt,y = d logCt,y + d logBt,y. (32)

Appendix A.1 shows that (32) is equivalent to:

mW
t,ydt + v`

t,yStdZt = mC
t,y + gt,y

( )
dt + [ vS

t,y

( )`
St − D̂`

t,yS
X
t ]dZt . (33)

Here, D̂t,y =
�xmax−(t−y)
0 at,y,hDt,y,hdh models the sensitivity of the conversion factor with respect to the

underlying state variables and mC
t,y is the expected financial rate of return on the conversion factor; see

Appendix A.1 for the expression of mC
t,y .

Using (5) and (33), we find the following system of equations:15

Wy+xr,y = Cy+xr,y By+xr,y, (34)

gt,y = mW
t,y − mC

t,y, (35)

vt,y = vS
t,y − SX

t S
−1
t

( )`
D̂t,y. (36)

Individuals can use this system of equations to determine the contract parameters. Condition (or
relationship) (35) shows that the median growth rate of the current benefit payout γt,y equals the dif-
ference between the expected financial rate of return on accumulated retirement wealth mW

t,y and the
expected financial rate of return on the conversion factor mC

t,y . Condition (36) shows that the vector of
portfolio weights ωt,y is equal to the sum of the vector of speculative portfolio weights vS

t,y and the

vector of hedge portfolio weights vH
t,y = − SX

t S
−1
t

( )`
D̂t,y . We also have a condition for every horizon

h (see also (28)):

S
B
t,y,h = qt,y,hS

`
t v

S
t,y. (37)

15In the absence of pooling of mortality risk, the right-hand side of (35) includes the biometric rate of return, i.e.,
gt,y = mW

t,y − mC
t,y − ut−y
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Conditions (34)–(37) do not uniquely identify all contract parameters. Individuals must thus
specify some parameters exogenously. They can specify the parameters according to (at least) two
alternative approaches: the investment approach and the consumption approach. In the investment
approach individuals specify the initial value of the investment account, the unconditional discount
rate (as a function of t and h), the vector of portfolio weights (as a function of t) and the smoothing
coefficient (as a function of t and h) exogenously; see also the second column of Table 1. In the con-
sumption approach individuals specify the benefit payout at the start of the decumulation period, the
unconditional median growth rate of the current benefit payout (as a function of t) and the vector of
payout exposures (as a function of t and h) exogenously; see also the third column of Table 1. The next
sections explore these two approaches in more detail and show how they differ from each other.

2. Investment approach

This section explores the investment approach which is commonly adopted by pension providers. In
this approach the benefit payout at the start of the decumulation period, the unconditional median
growth rate of the current benefit payout and the vector of payout exposures are endogenously deter-
mined; see also the second column of Table 1. Section 2.1 specifies the vector of state variables and its
dynamics. Section 2.2 considers the investment approach, with the restriction that the smoothing coef-
ficient qt,y,h is equal to unity for all h. Hence, past speculative shocks do not affect the discount rate.
We relax this restriction in Section 2.3.

2.1 State variables

For the sake of simplicity, we characterize asset prices by three state variables: the inflation rate πt, the
real interest rate rt, and the stock price St. Hence, Xt = (πt, rt, St). Following Brennan and Xia (2002),
the inflation rate and the real interest rate follow Ornstein–Uhlenbeck processes and the stock price
follows a geometric Brownian motion. The drift term mX

t and the diffusion coefficient SX
t are thus

specified as follows:16

mX
t =

h �p− pt( )
k �r − rt( )

StR
f
t + StlSsS

⎛
⎝

⎞
⎠,SX

t =
sp 0 0
0 sr 0
0 0 StsS

⎛
⎝

⎞
⎠. (38)

Here, η > 0 and κ > 0 are mean reversion coefficients, �p and �r denote long-term means, λS is the equity
risk premium per unit of risk, and σπ > 0, σr > 0 and σS > 0 correspond to diffusion coefficients.17

The individual invests his retirement wealth in three risky assets: two nominal zero-coupon bonds
with times to maturity h1 and h2, and a stock. We find the following expressions for the expected
excess return mt − Rf

t and the diffusion matrix Σt (see Appendix A.2):

Table 1. Investment approach versus consumption approach. The second (third) column of this table summarizes the
exogenous and endogenous parameters of the investment (consumption) approach

Parameter Investment approach Consumption approach

Value of investment account at start of period Exogenous Endogenous
Vector of portfolio weights Exogenous Endogenous
Unconditional discount rate Exogenous Endogenous
Smoothing coefficient Exogenous Endogenous
Benefit payout at start of period Endogenous Exogenous
Unconditional median growth rate Endogenous Exogenous
Vector of payout exposures Endogenous Exogenous

16We assume that the state variables are uncorrelated. It is straightforward to extend our analysis to the case where the state
variables are correlated.

17In the standard model with neither interest rate risk nor inflation risk, we have σπ = σr = 0.
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mt − Rf
t =

−lpspKh1 − lrsrLh1
−lpspKh2 − lrsrLh2

lSsS

⎛
⎝

⎞
⎠,St =

−spKh1 −srLh1 0
−spKh2 −srLh2 0

0 0 sS

⎛
⎝

⎞
⎠. (39)

Here, λ = (λπ, λr, λS) is the vector of market prices of risk, Kh1 = (1− e−hh1 )/h and
Lh1 = (1− e−kh1 )/k. Table 2 reports the parameter values that we use in our numerical illustrations.

2.2 No Smoothing of speculative shocks

Figure 1 illustrates the investment approach, with the following two restrictions. First, the smoothing
coefficient qt,y,h is equal to unity for all h. Second, the (unconditional) discount rate is constant (i.e.,
dut,y,h = du = d for all t and h). The latter restriction implies that the vector of hedge portfolio weights
is equal to zero:

vH
t,y = 0. (40)

The benefit payout at the start of the decumulation period, the (unconditional) median growth rate
of the current benefit payout and the vector of payout exposures follow from (34), (35) and (37),
respectively. We find18

By+xr,y =
Wy+xr,y

Cy+xr,y
, (41)

gut,y = mW
t,y − du, (42)

S
B
t,y,h = S

B
t,y = S

`
t v

S
t,y. (43)

Equation (42) shows that the expected rate of return on accumulated retirement wealth

mW
t,y = Rf

t + v`
t,y mt − Rf

t

( )
− 1/2v`

t,yStS
`
t vt,y and the (unconditional) discount rate δu together

determine the (unconditional) median growth rate of the current benefit payout gut,y . As a result,
the median growth rate of the current benefit payout is not constant but rather depends on the infla-
tion rate and the real interest rate.19 To obtain a constant median growth rate, the individual must
determine the discount rate endogenously. Section 3 derives the discount rate under the assumption
that the individual specifies the median growth rate of the current benefit payout exogenously. We will

Table 2. Parameter values. This table reports the parameter values that we use in our numerical illustrations

Parameter Value Parameter Value

�p 0.02 �r 0.01
η 0.2 κ 0.1
σπ 0.01 σr 0.015
λπ −0.05 λr −0.15

18We note that the conditional part of the median growth rate of the current benefit payout is equal to zero. Furthermore,
in the absence of pooling of mortality risk, the right-hand side of (42) includes the biometric rate of return, i.e.,
gut,y = mW

t,y − du − ut−y .
19This assumes the presence of interest rate risk and/or inflation risk. In the absence of both risks (i.e., σπ = σr = 0), the

median growth rate of the current benefit payout will be constant.
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see that the discount rate then depends on the current inflation rate, the current real interest rate and
the horizon. In fact, the discount rate has an endogenous term structure.

2.3 Smoothing of speculative shocks

This section assumes that the individual now adjusts the conversion factor following a speculative shock;
in other words, the smoothing coefficient qt,y,h increases with the investment horizon h. As a direct con-
sequence, the conditional part of the discount rate, i.e., dct,y,h, differs from zero (see (23)).We still assume

that the unconditional discount rate is constant (i.e., dut,y,h = du for all t and h). The unconditional

median growth rate of the current benefit payout, i.e., gut,y is given by (42). However, equation (43)
no longer applies. The exposure of the future log benefit payout log Bt+h,y to a current Brownian
shock is now given by

SB
t,y,h = qt,y,hS

`
t v

S
t,y. (44)

It follows from (21) that qt,y,0 increases and converges to one when the individual becomes older
because his remaining life expectancy declines and the value weights of the shorter horizons αt,y,h
increase. Hence, under the condition that the vector of speculative portfolio weights vS

t,y does not
change over time, the vector of payout exposures SB

t,y,0 becomes larger as the individual ages (see
(44)). Intuitively, a relatively old individual with a short remaining life expectancy can no longer
smooth the investment results over a long remaining lifetime. Hence, the year-on-year volatility of
retirement consumption increases as the individual ages. To arrive at a constant year-on-year volatility
of retirement consumption, the individual must determine the investment policy endogenously.
Section 3.2.2 below derives an endogenous investment policy such that the year-on-year volatility of
retirement consumption is constant.

3. Consumption approach

This section explores the consumption approach. We consider the same setting as in Section 2.1. In
the consumption approach, individuals specify the entire retirement consumption stream exogenously.

Figure 1. Illustration of the Investment Approach: A Special Case. The figure illustrates the investment approach, with the restric-
tion that the smoothing coefficient qt,y,h is equal to unity for all h and the (unconditional) discount rate is constant. The left-hand
side of the figure shows the exogenous parameters of the contract. These exogenous parameters determine the parameters of the
contract on the right-hand side of the figure.
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Section 3.1 examines the DB approach in which retirement consumption is constant in either nominal
or real terms. Section 3.2 extends the DB approach to stochastic benefit payouts.

3.1 DB approach

In the DB approach individuals specify the benefit payout at the start of the decumulation period and the
rate at which the benefit payout grows over time. The benefit payout either grows with the inflation rate
(inflation-linked annuity) or does not grow at all (nominal annuity). This section derives, in line with the
principle of liability-driven investment, the (unconditional) forward discount rate and the vector of port-
folio weights endogenously from the liabilities of the contract. Figure 2 illustrates the DB approach.

The DB approach specifies the (unconditional) growth rate of the current benefit payout as follows:

gut,y = g0 + g1 · pt, (45)

where g1∈ {0, 1}. If g1 equals zero (unity), retirement consumption is constant in nominal (real) terms.

Let ď
u
t,y,v denote individual y’s (unconditional) forward discount rate at time t for horizon v. The

(unconditional) forward discount rate is implicitly defined as follows:

dut,y,h =
1
h

∫h
0

ď
u
t,y,vdv. (46)

We find that the forward discount rate ď
u
t,y,v is specified as follows (see Appendix A.3):

ď
u
t,y,v = Et[(1− g1)pt+v + rt+v] − g0 − D1vsp lp + 1

2
D1vsp

( )
− D2vsr lr + 1

2
D2vsr

( )
, (47)

Figure 2. Illustration of the DB Approach. The figure illustrates the DB approach. The left-hand side of the figure shows the exogen-
ous parameters of the contract. These exogenous parameters determine the parameters of the contract on the right-hand side of
the figure.
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where D1v = (1− g1)1/η(1− e−ηv), D2v = (1/κ)(1− e−κv) and Et[(1− g1)pt+v + rt+v] = (1− g1)
[pt + (1− e−hv)(�p− pt)] + rt + (1− e−kv)(�r − rt).

We observe that the coefficients g0 and g1, which model the median growth rate of the current
benefit payout, determine the forward discount rate (47). Intuitively, the higher the median growth
rate of the current benefit payout is, the higher the costs of future benefit payouts are and the
lower the forward discount rate will be.

Mean reversion in the state variables also affects the forward discount rate and is captured by the
term Et[(1− g1)πt+v + rt+v]. Indeed, if the current inflation rate and the current real interest rate exceed
their long-term means (i.e.,pt . �p and rt . �r), then returns are expected to decline over time (i.e.,
Et[(1− g1)πt+v + rt+v] decreases with v), and hence it may be relatively more expensive to finance long-
term benefit payouts than to finance short-term benefit payouts depending on the size of the second
term, i.e., −D1vσπ(λπ + (1/2)D1vσπ)−D2vσr(λr + (1/2)D2vσr).

The latter term reflects the expected excess return on the underlying hedging portfolio and typically
increases with the horizon. Indeed, larger horizons are more exposed to inflation risk and real interest
rate risk and thus benefit from higher risk premia (i.e., D1v and D2v increase with v and λπ, λr < 0).
Hence, the later the payout date is, the larger the second term will be. The discount rate thus exhibits
an endogenous term structure, which depends both on current state variables (i.e., current inflation
rate and the current real interest rate) and the horizon. In particular, the term structure is upward
sloping unless the current inflation rate and the current real interest rate are substantially above
their long-term means.

3.1.1 Guaranteed nominal benefit payouts
The individual receives guaranteed flat nominal benefit payouts if g0 = g1 = 0. We find the following
expression for the (unconditional) forward discount rate (substitute g0 = g1 = 0 into (47)):

ď
u
t,y,v = Rt,v, (48)

where Rt,v denotes the nominal forward interest rate:

Rt,v = Et[pt+v + rt+v] − D1vsp lp + 1
2
D1vsp

( )
− D2vsr lr + 1

2
D2vsr

( )
. (49)

Figure 3 illustrates the forward discount rate ď
u
t,y,v for various values of the current inflation rate πt and the

current real interest rate rt as a function of the horizon v. The solid line shows the case inwhich the current
inflation rate and the current real interest rate are equal to their long-termmeans (i.e., Et[pt+v] = �p and
Et[rt+v] = �r for all v). As shown by Figure 3, the solid line is not horizontal, but rather rises with the
investment horizon v. Indeed, the longer the investment horizon, the more a nominal benefit payout
is exposed to inflation risk and real interest rate risk, and hence the larger the nominal interest rate
risk premium ď

u
t,y,v − Et[pt+v + rt+v] = −D1vsp(lp + (1/2)D1vsp) − D2vsr(lr + (1/2)D2vsr).20

The dash-dotted and the dashed line show the case in which the current inflation rate and the cur-
rent real interest rate deviate from their long-term means. If the current inflation rate and the current
real interest rate exceed their long-term means, then the term Et[πt+v + rt+v] in (49) decreases with the
investment horizon v. Indeed, in a situation where returns are expected to decline over time, it may be
relatively more expensive to finance long-term benefit payouts than to finance short-term benefit pay-
outs if the mean-reversion term Et[πt+v + rt+v] dominates the risk premium term −D1vσπ(λπ + (1/2)
D1vσπ)−D2vσr(λr + (1/2)D2vσr)

20In the absence of interest rate risk and inflation risk, the nominal interest rate would be fixed so that the solid line in
Figure 3 would be flat.

Journal of Pension Economics and Finance 275

https://doi.org/10.1017/S1474747218000240  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747218000240


The inflation sensitivity and the real interest rate sensitivity of the value of the pension liabilities
are, respectively, given by

D̂1t,y =
∫xmax−(t−y)

0

at,y,hD1hdh =
∫xmax−(t−y)

0

at,y,h(1− e−hh)dh/h, (50)

D̂2t,y =
∫xmax−(t−y)

0

at,y,hD2hdh =
∫xmax−(t−y)

0

at,y,h(1− e−kh)dh/k. (51)

Pension providers can replicate the pension contract by investing in a portfolio of nominal bonds
with inflation sensitivity D̂1t,y and real interest rate sensitivity D̂2t,y ; that is, the portfolio weights ω1t,y

and ω2t,y solve the following system of equations:

D̂1t,y = v1t,yKh1 + v2t,yKh2 , (52)

D̂2t,y = v1t,yLh1 + v2t,yLh2 . (53)

Equations (52) and (53) show that the portfolio weights ω1t,y and ω2t,y are not constant (as is usually
the case under the investment approach), but rather depend on the inflation sensitivity and the real
interest rate sensitivity of the value of the liabilities. In particular, the larger the inflation sensitivity

Figure 3. Illustration of the Nominal Forward Interest Rate. The figure illustrates the nominal forward interest rate for various
values of the current inflation rate πt and the current real interest rate rt as a function of the horizon v. The benchmark parameter
values are given in Table 2.
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and the real interest rate sensitivity of the value of the liabilities, the greater the extent to which the
value of the bond portfolio responds to a change in the inflation rate and the real interest rate.

3.1.2 Guaranteed inflation-linked benefit payouts
The individual receives guaranteed flat inflation-linked benefit payouts if g0 = 0 and g1 = 1. We find the
following expression for the (unconditional) forward discount rate (substitute g0 = 0 and g1 = 1 into (47)):

ď
u
t,y,v = rt,v, (54)

where rt,v denotes the real forward interest rate:

rt,v = Et[rt+v] − D2vsr lr + 1
2
D2vsr

( )
. (55)

Figure 4 illustrates the forward discount rate ď
u
t,y,v for various values of the current real interest rate

rt as a function of the horizon v. The solid line shows the case in which the current real interest rate is
equal to its long-term mean. This line increases with the investment horizon v. Indeed, the longer the
investment horizon, the more an inflation-linked benefit payout is exposed to real interest rate risk,
and hence the larger the real interest rate risk premium ď

u
t,y,v − Et[rt+v] = −D2vsr(lr+

(1/2)D2vsr). Also here, the slope of the term structure depends on the risk premium term, which
is typically upward sloping, and the mean-reversion term, which may be both upward and downward
sloping depending on how the current short-term real interest rate compares with its long-term mean.

The real interest rate sensitivity of the value of the pension liabilities is given by

D̂2t,y =
∫xmax−(t−y)

0

at,y,hD2hdh =
∫xmax−(t−y)

0

at,y,h(1− e−kh)dh/k. (56)

Budget balance requires the pension provider to invest in an investment portfolio that is insensitive
to changes in the inflation rate and, furthermore, has the same real interest rate sensitivity as the value
of the liabilities, i.e.,

0 = v1t,yKh1 + v2t,yKh2 , (57)

D̂2t,y = v1t,yLh1 + v2t,yLh2 . (58)

The investment portfolio is thus continuously rebalanced over time.

3.2 Defined Ambition (DA) Approach

The DA approach generalizes the DB approach to stochastic benefit payouts. In the DA approach indi-
viduals specify the benefit payout at the start of the decumulation period, the unconditional median
growth rate of the current benefit payout and the vector of payout exposures. As in the DB approach,
the unconditional forward discount rate and the vector of portfolio weights follow endogenously from
the liabilities of the contract. The DA approach generalizes the DB approach in two directions.

First, the unconditional median growth rate of the current benefit payout (45) may depend on the
real interest rate rt, i.e.,

gut,y = g0 + g1 · pt + g2 · rt, (59)
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where the coefficients g0, g1 and g2 are given exogenously.21 In fact, the coefficient g2 models the pref-
erence for intertemporal substitution (i.e., the extent to which the drawdown policy changes in
response to a real interest rate shock). We note that if g1∈ {0, 1} and g2 = 0, (59) reduces to (45).

Second, the individual is allowed to take the speculative risk (i.e., SB
t,y,h = 0). Section 3.2.1 assumes

that the exposure of a future benefit payout to a current Brownian shock does not depend on the
investment horizon h; that is, SB

t,y,h = SB
t,y . Figure 5 illustrates this case. Section 3.2.2 considers the

DA approach with gradual adjustment of the current benefit payout to a current Brownian shock;
that is, SB

t,y,h increases with the horizon h. This case is illustrated by Figure 6.

3.2.1 Direct adjustment of the current benefit payout
We find that the forward discount rate ď

u
t,y,v is given by (see Appendix A.3):

ď
u
t,y,v = Et[(1− g1)pt+v + (1− g2)rt+v] − g0 − D1vsp lp + 1

2
D1vsp

( )

− D2vsr lr + 1
2
D2vsr

( )
+ vS

t,y

( )`
mt − Rf

t

( )
− 1

2
St(St)`vS

t,y

[ ]

+ vS
t,y

( )`
St D`

v S
X
t

( )`
,

(60)

where the vector of (efficient) speculative portfolio weights vS
t,y follows from the vector of payout

exposures SB
t,y :

vS
t,y = S−1

t

( )`
SB
t,y. (61)

Figure 4. Illustration of the Real Forward Interest Rate. The figure illustrates the real forward interest rate for various values of the
current real interest rate rt as a function of the horizon v. The benchmark parameter values are given in Table 2.

21Appendix B derives the optimal coefficients g0, g1 and g2 in case the individual aims to maximize constant relative risk
aversion utility. This appendix also derives the optimal median growth rate of the current benefit payout in case mortality risk
is not pooled.
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Figure 5. Illustration of the DA Approach: Direct Adjustment of the Current Benefit Payout. The figure illustrates the DA approach
with direct adjustment of the current benefit payout. The left-hand side of the figure shows the exogenous parameters of the con-
tract. These exogenous parameters determine the parameters of the contract on the right-hand side of the figure.

Figure 6. Illustration of the DA Approach: Gradual Adjustment of the Current Benefit Payout. The figure illustrates the DA approach
with gradual adjustment of the current benefit payout. The left-hand side of the figure shows the exogenous parameters of the
contract. These exogenous parameters determine the parameters of the contract on the right-hand side of the figure.
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Comparing (60) with (47), we observe that the forward discount rate ď
u
t,y,v now includes two add-

itional terms. The first additional term

vS
t,y

( )`
mt − Rf

t

( )
− 1

2
St(St)`vS

t,y

[ ]
= S

B
t,y

( )`
S
−1
t mt − Rf

t

( )
− 1

2
S
B
t,y

[ ]
(62)

is due to taking the speculative risk. By taking the speculative risk, pension providers are able to offer
an adequate expected payout stream at an affordable price.

The last additional term in (60)

vS
t,y

( )`
St D`

v S
X
t

( )`
= −s2

p vS
1t,yKh1 + vS

2t,yKh2

( )
D1v − s2

r vS
1t,yLh1 + vS

2t,yLh2
( )

D2v (63)

is due to the interaction between the speculative portfolio and the hedging portfolio. Appendix A.4
shows that vS

1t,y and vS
2t,y are positive if the individual invests efficiently. Hence, the longer the invest-

ment horizon is, the larger D1v and D2v are and thus the more negative the interaction term

vS
t,y

( )`
St D`

v S
X
t

( )`
becomes. Intuitively, long investment horizons benefit less from speculative

risk premia because lower interest rates raising the value of the speculative portfolio go together
with a higher value of the liabilities. This applies especially to longer horizons for which the value
of the liabilities is relatively more sensitive to interest rates. Figure 7 illustrates the forward discount
rate (60) (panel (a)) and the interaction term (panel (b)) as a function of the horizon v. This figure
assumes that the current inflation rate and the current real interest rate equal their long-term means.

The inflation sensitivity and the real interest rate sensitivity of the value of the pension liabilities
are, respectively, given by

D̂1t,y = (1− g1)
∫xmax−(t−y)

0

at,y,h(1− e−hh)dh/h, (64)

D̂2t,y = (1− g2)
∫xmax−(t−y)

0

at,y,h(1− e−kh)dh/k. (65)

To replicate the benefit payouts of the contract, the pension provider should choose a hedging port-
folio with the same sensitivities.

3.2.2 Gradual adjustment of the current benefit payout
We find that the forward discount rate ď

u
t,y,v is given by (see Appendix A.3):

ď
u
t,y,v = Et[(1− g1)pt+v + (1− g2)rt+v] − g0 − D1vsp lp + 1

2
D1vsp

( )

− D2vsr lr + 1
2
D2vsr

( )
+ qt,y,v vS

t,y

( )`
mt − Rf

t

( )
− 1

2
qt,y,vStS

`
t v

S
t,y

[ ]

+ qt,y,v vS
t,y

( )`
St D`

v S
X
t

( )`
,

(66)
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where the vector of speculative weights is given by

Ŝ
B

t,y =
∫xmax−(t−y)

0

at,y,hS
B
t,y,hdh. (67)

with

Ŝ
B

t,y =
∫xmax−(t−y)

0

at,y,hS
B
t,y,hdh. (68)

Figure 7. Illustration of the Forward
Discount Rate. Panel (a) illustrates
the forward discount rate in the pres-
ence of speculative risk. We assume
that pt = �p = 2%, rt = �r = 1%

g0 = g1 = g2 = 0,S
B
1t,y = lp/5, S

B
2t,y =

lr/5 and SB
3t,y = lS/5 Panel (b) illus-

trates the reduction in the forward dis-
count rate (in %-points) as a result of
the interaction between the hedging
portfolio and the speculative portfolio.
The benchmark parameter values are
given in Table 2.
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Equations (67) and (68) show that the individual implements a life-cycle investment strategy if the

vector of payout exposures SB
t,y,h – which is exogenously given – increases with the horizon h. Indeed,

when the remaining life expectancy declines, the value weights αt,y,h of the shorter horizons become

larger. As a result, Ŝ
B

t,y decreases as the individual ages. Hence, the vector of speculative portfolio

weights vS
t,y is also a decreasing function of age.

Equation (66) shows that gradual adjustment of the current benefit payout to speculative shocks
(i.e., qt,y,v increases with v) is another reason why the forward discount rate ď

u
t,y,v depends on the hori-

zon v. Indeed, the further into the future a benefit payout occurs, the larger the exposure of the benefit
payout to a current speculative shock is, and hence the higher the discount rate will be.

We note that gradual adjustment of the current benefit payout also impacts the interaction term

qt,y,v vS
t,y

( )`
St D`

v S
X
t

( )`
. This term causes the term structure to become less upward sloping.

Hence, although gradual adjustment causes the forward discount rate to increase more rapidly with
the horizon, the interaction term somewhat mitigates the increase in the slope of the term structure
of the forward discount rates.

We illustrate the forward discount rate (66) in Figure 8. This figure assumes that the current infla-
tion rate and the current real interest rate equal their long-term means. Moreover, the vector of payout
exposures is given by SB

t,y,v = (1− e−0.2v)(lp/5, lr/5, lS/5). Hence, it takes 3 1/2 years before 50% of
the Brownian shocks λπ/5dZ1t, λr/5dZ2t, and λS/5dZ3t are reflected in the current benefit payout.

4. Concluding remarks

This paper has explored how to model the decumulation period of a PPR. We have derived a system of
restrictions on the contract parameters. These restrictions do not uniquely identify all parameters. As a

Figure 8. Illustration of the Forward Discount Rate. The figure illustrates the forward discount rate in the case of smoothing of specu-
lative shocks. We assume that pt = �p = 2%, rt = �r = 1%, g0 = g1 = g2 = 0, S

B
1t,y,v = 1− e−0.2v

( )
lp/5, S

B
2t,y,v = 1− e−0.2v

( )
lr/5 and

SB
3t,y,v = 1− e−0.2v

( )
lS/5. The benchmark parameter values are given in Table 2. We also illustrate the case in which the individual

does not smooth speculative shocks, i.e.,SB
1t,y = lp/5, SB

2t,y = lr/5 andS
B
3t,y = lS/5. Hence, the exposure of a future benefit payout

to a current Brownian shock is always strictly smaller in the case of smoothing than in the case of no smoothing.
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result, individuals must specify some parameters exogenously. They can specify the parameters
according to (at least) two alternative approaches: the investment approach and the consumption
approach. In the investment approach, individuals specify the speed of decumulation and the invest-
ment policy exogenously. We have shown how these exogenous parameters determine the median
growth rate and the volatility of retirement consumption. The consumption approach, in contrast, spe-
cifies the entire retirement consumption stream exogenously. We have shown how to derive the dis-
count rate and the investment policy given a particular exogenous consumption profile.

If the median retirement consumption is assumed flat in real terms and benefit payouts respond
gradually to a current speculative shock, then the discount rate depends on the investment horizon
because of four reasons.22 First, mean reversion in the state variables affects the discount rate. Indeed,
if the real interest rate exceeds its long-term mean, then returns are expected to decline, and hence
long-term benefit payouts benefit less from the current high real interest rate than short-term benefit
payouts. Second, the degree of real interest rate exposure varies across horizons. Typically, longer hor-
izons are more exposed to real interest rate risk than shorter horizons and thus benefit from a higher
real interest rate risk premium. Hence, the discount rate for a short horizon is lower than the discount
rate for a long horizon unless the current real interest rate is substantially above its long-term mean.
Third, if the individual invests efficiently, then the hedging portfolio and the speculative portfolio are
positively correlated with each other. In particular, longer horizons benefit less from speculative risk
premia because lower interest rates raising the value of the speculative portfolio go together with a
larger value of the liabilities. Fourth, since a speculative shock is smoothed, such a shock has a larger
impact on benefit payouts in the far future than on benefit payouts in the near future. With a larger
risk premium for longer horizons, the discount rate increases with the horizon.
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Appendix

A.1 Derivation of (A1.33)
The log horizon-dependent conversion factor logCt,y,h satisfies the following dynamic equation (the second equality follows
from (A1.20) and (A1.24)):

d logCt,y,h = d logAt,y,h + d log Ft,y,h

= ut−ydt +
∂ dut,y,hh
( )

∂h
dt −

∫t
y+xr

dqs,y,t−s vS
s,y

( )`
SsdZs

D`
t,y,hm

X
t + 1

2
Tr SX

t

( )`
Ht,y,hS

X
t

[ ]( )
dt

+ qt,y,h − qt,y,0
[ ]

vS
t,y

( )`
St − D`

t,y,hS
X
t

( )
dZt .

(A1.69)

The dynamic equation of the log conversion factor log Ct,y is given by (this follows from (A1.12), (A1.21) and (A1.69))

d logCt,y = ut−y + mC
t,y

( )
dt + 1− qt,y,0

[ ]
vS
t,y

( )`
St − D̂`

t,yS
X
t

( )
dZt − ct,ydt, (A170)

where mC
t,ydt is defined as follows:

mC
t,ydt =− ut−ydt +

∫xmax−(t−y)

0

at,y,hEt[d logCt,y,h]dh

+ 1
2

∫xmax−(t−y)

0

at,y,hd[logCt,y,h, logCt,y,h]dh

− 1
2

∫xmax−(t−y)

0

∫xmax−(t−y)

0

at,y,uat,y,vd[logCt,y,u, logCt,y,v]dudv.

(A1.71)
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Here, d[log Ct,y,u, log Ct,y,v] is given by

d[logCt,y,u, logCt,y,v] = qt,y,u − qt,y,0
[ ]

vS
t,y

( )`
St − D`

y,uS
X
t

( )

× qt,y,v − qt,y,0
[ ]

vS
t,y

( )`
St − D`

y,vS
X
t

( )`

dt.

(A1.72)

Substitution of (A1.7), (A1.70) and (A1.29) into (A1.32) yields (A1.33).

A.2 Derivation of (A2.39)
We start by deriving the analytical solution to the stochastic differential equation (SDE) for the Ornstein–Uhlenbeck process.
After applying Itô’s lemma to the function f (t,pt) = eht(pt − �p), we find

df (t,pt) = heht(pt − �p)dt + ehtdpt

= heht(pt − �p)dt − ehth(pt − �p)dt + ehtspdZ1t = spe
ht
d Z1t

(A2.73)

The solution of (A2.73) is given by

f (t,pt+v) = f (t,pt) + sp

∫t+v

t

ehudZ1u. (A2.74)

The inflation rate at time t + v > t is given by (the first and third equality follow from the definition of f (t, πt), and the
second equality follows from (A2.74))

pt+v = �p+ e−h(t+v)f (t,pt+v) = �p+ e−h(t+v)f (t,pt) + sp

∫t+v

t

e−h(t+v−u)dZ1u

= �p+ e−hv(pt − �p) + sp

∫v
0

e−h(v−u)dZ1(t+u)

= pt + (1− e−hv)(�p− pt) + sp

∫v
0

e−h(v−u)dZ1(t+u).

(A2.75)

In a similar fashion, we find

rt+v = rt + (1− e−kv)(�r − rt) + sr

∫v
0

e−k(v−u)dZ2(t+u). (A2.76)

The (conditional) expectation of the inflation rate Et[πt+v] and the (conditional) expectation of the real interest rate
Et[rt+v] are given by

Et[pt+v] = pt + h(�p− pt)Kv, (A2.77)

Et[rt+v] = rt + k(�r − rt)Lv. (A2.78)
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The aggregate inflation rate �pt,h =
�h
0 pt+vdv and the aggregate real interest rate �rt,h =

�h
0 rt+vdv play a key role in deter-

mining the yield to maturity. We find (the first equality follows from substituting (A2.75) to eliminate πt+v)

�pt,h =
∫h
0

pt+vdv

=
∫h
0

(pt + (�p− pt)(1− e−hv))dv + sp

∫h
0

∫v
0

e−h(v−u)dZ1(t+u)dv

=
∫h
0

(pt + (�p− pt)(1− e−hv))dv + sp

∫h
0

∫h
v

e−h(h−u)dudZ1(t+v)

=
∫h
0

(pt + (�p− pt)hKv)dv + sp

h

∫h
0

(1− e−h(h−v))dZ1(t+v)

=
∫h
0

Et[pt+v]dv + sp

∫h
0

Kh−vdZ1(t+v).

(A2.79)

In a similar fashion, we find that the aggregate real interest rate �rt,h is given by

�rt,h =
∫h
0

rt+vdv =
∫h
0

Et[rt+v]dv + sr

∫h
0

Lh−vdZ2(t+v). (A2.80)

The pricing kernel is given by (see, e.g., Brennan and Xia (2002)):

jt = exp −
∫t
0

ps + rs + 1
2
l`lds− l`Zt

( )⎧⎨
⎩

⎫⎬
⎭. (A2.81)

Here, λ = (λπ, λr, λS) represents the vector of market prices of risk. Denote by P1t the price of a bond with time to maturity
h1. We can determine P1t as follows:

P1t = Et
jt+h1

jt

[ ]
,= Et exp −

∫h1
0

pt+v + rt+v + 1
2
l`ldv − l Zt+h1 − Zt

( )( )⎧⎨
⎩

⎫⎬
⎭

⎡
⎣

⎤
⎦. (A2.82)

Substituting (A2.79) and (A2.80) into the pricing formula (A2.82) to eliminate
�h
0 pt+vdv and

�h
0 rt+vdv, we arrive at

P1t = exp −
∫h1
0

Et pt+v + rt+v[ ] + 1
2
l`ldv

( )⎧⎨
⎩

⎫⎬
⎭Et exp −

∫h1
0

lSdZ3(t+v)

⎧⎨
⎩

⎫⎬
⎭

⎡
⎣

exp
∫h1
0

−lp − spKh1−v
( )

dZ1(t+v)+
∫h1
0

−lr − srLh1−v
( )

dZ2(t+v)

⎧⎨
⎩

⎫⎬
⎭
⎤
⎦

exp −
∫h1
0

Et pt+v + rt+v[ ] − lpspKv − lrsrLv − 1
2
spKv( )2 − 1

2
srLv( )2

( )
dv

⎧⎨
⎩

⎫⎬
⎭

= exp −
∫h1
0

Rt,vdv

⎧⎨
⎩

⎫⎬
⎭.

(A2.83)
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The instantaneous nominal forward interest rate Rt,v is defined as follows:

Rt,v = Et[pt+v + rt+v]− lpspKv − lrsrLv − 1
2
(spKv)

2 − 1
2
(srLv)

2. (A2.84)

The log bond price is given by (this follows from (A2.77), (A2.78), (A2.83) and (A2.84))

log P1t =−
∫h1
0

(−pt + h(�p− pt)Kv + rt + k(�r − rt)Lv − lpspKv

− lrsrLv − 1
2
(spKv)

2 − 1
2
(srLv)

2)dv.

(A2.85)

Solving the integral (A2.85), we arrive at23

log P1t =− pth1 − �p− pt( ) h1 − Kh1

( )− rth1 − �r − rt( ) h1 − Lh1
( )

+ lpsp

h
h1 − Kh1

( )+ lrsr

k
h1 − Lh1
( )

+ 1
2

sp

h

( )2

h1 − 2Kh1 +
1
2
K2h1

( )
+ 1

2
sr

k

( )2
h1 − 2Lh1 +

1
2
L2h1

( )

= −ptKh1 − rtLh1 −Mh1 .

(A2.86)

Here, the horizon-dependent constant Mh1 is defined as follows:

Mh1 = �p− lpsp

h
− 1
2

sp

h

[ ]2( )
h1 − Kh1

( )+ 1
4h

spKh1

( )2

+ �r − lrsr

k
− 1
2

sr

k

[ ]2( )
h1 − Lh1
( )+ 1

4k
srLh1
( )2

.

(A2.87)

To calculate how the value of the bond with a fixed maturity date t + h1 develops as time proceeds (i.e., t + h1 is fixed but t
changes), we apply Itô’s lemma to

P1t = exp {−ptKh1 − rtLh1 −Mh1 }. (A2.88)

We find

dP1t
P1t

= (Rt,h1 − h �p− pt( )Kh1 − k �r − rt( )Lh1 +
1
2

spKh1

( )2+ 1
2

srLh1
( )2)dt

spKh1 dZ1t − srLh1 dZ2t

= rt + pt − lpspKh1 − lrsrLh1
( )

dt − spKh1 dZ1t − srLh1 dZ2t .

(A2.89)

A.3 Derivation of (A3.47), (A3.60) and (A.66)
We show that the following specification of the (unconditional) forward discount rate yields budget balance:

ď
u
t,y,v = d0v + d1v · pt + d2v · rt . (A3.90)

23The first equality follows from K2
v = (1− 2e−hv + e−2hv)/h2 and the second equality follows from

K2
h1
= (2Kh1 − K2h1 )/h.
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Budget balance implies that (see also (A3.35))

gt,ydt = mW
t,ydt − mC

t,ydt.

Substituting (A3.59) and (A3.31) into (A3.91), we arrive at

g0 + g1 · pt + g2 · rt
( )

dt +
∫t

y+xr

d SB
s,y,t−s

( )`
dZs = mW

t,ydt − mC
t,ydt. (A3.92)

The vector of portfolio weights depends on D̂t,y =
�xmax−(t−y)
0 at,y,hDt,y,hdh and is given by

vt,y = vH
t,y + vS

t,y = − SX
t S

−1
t

( )`
D̂t,y + S−1

t

( )`
Ŝ
B

t,y. (A3.93)

Here, Dt,y,h = ∇X dt,y,hh
( ) = �h

0 d1vdv,
�h
0 d2vdv, 0

( )
= D1h,D2h,D3h( ) = Dh models the sensitivity of the discount rate with

respect to the underlying state variables.
Substitution of (A3.93) into (A3.8) yields

mW
t,ydt = pt + rt+ Ŝ

B

t,y

( )`
− D̂

`

t,yS
X
t

[ ]
S−1
t mt − Rf

t

( )(

− 1
2

ŜB
t,y

( )`
ŜB
t,y−

1
2
D̂`
t,yS

X
t SX

t

( )`
D̂t,y + D̂`

t,yS
X
t Ŝ

B
t,y

)
dt.

(A3.94)

Substituting (A3.90) and the expression for mX
t (see (A3.38)) into (A3.71), we arrive at

mC
t,ydt =

∫xmax−(t−y)

0

at,y,hd0hdhdt + pt

∫xmax−(t−y)

0

at,y,hd1hdhdt

+ rt

∫xmax−(t−y)

0

at,y,hd2hdhdt − D̂`
1t,yh �p− pt( )dt − D̂`

2t,yk �r − rt( )dt

−
∫t

y+xr

dqs,y,t−s vS
s,y

( )`
SsdZs + 1

2

∫xmax−(t−y)

0

at,y,hd logCt,y,h, logCt,y,h
[ ]

dh

− 1
2

∫xmax−(t−y)

0

∫xmax−(t−y)

0

at,y,uat,y,vd logCt,y,u, logCt,y,v
[ ]

dudv.

(A3.95)

It follows from substituting (A3.94) and (A3.95) into (A3.92) that d1h and d2h must satisfy the following two conditions:

d2h = 1− g2 + kD2h. (A3.96)

d2h = 1− g2 + kD2h. (A3.97)

Solving these two equations, we find d1v = (1− g1)e
−ηv and d2v = (1− g2)e

−κv.
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The coefficient d0h must satisfy

∫xmax−(t−y)

0

at,y,hd0hdhdt =− g0dt + Ŝ
B

t,y

( )`
− D̂`

t,yS
X
t

[ ]
S−1
t mt − Rf

t

( )
dt

− 1
2

Ŝ
B

t,y

( )`
Ŝ
B

t,ydt −
1
2
D̂`
t,yS

X
t SX

t

( )`
D̂t,ydt + D̂`

t,yS
X
t Ŝ

B

t,ydt

+ D̂`
1t,yh�pdt + D̂`

2t,yk�rdt

− 1
2

∫xmax−(t−y)

0

at,y,hd logCt,y,h, logCt,y,h
[ ]

dh

+ 1
2

∫xmax−(t−y)

0

∫xmax−(t−y)

0

at,y,uat,y,vd logCt,y,u, logCt,y,v
[ ]

dudv.

(A3.98)

We note that

∫t
y+xr

d SB
s,y,t−s

( )`
dZs =

∫t
y+xr

dqs,y,t−s vS
s,y

( )`
SsdZs. (A3.99)

Straightforward computations yield (A3.66). Equations (A3.47) and (A3.60) emerge as a special case of (A3.66).

A.4 Derivation of the Efficient Speculative Investment Portfolio
This appendix derives the efficient speculative investment portfolio. In particular, we show that SB

1 =
−sp vS

1t,yKh1 + vS
2t,yKh2

( )
and SB

2 = −sr vS
1t,yLh1 + vS

2t,yLh2
( )

are (typically) negative. The individual aims to minimize
the variance of the change in the log benefit payout, i.e., Vt[dlog Bt,y], subject to a given expected excess return on the specu-
lative portfolio c≥ 0. Hence, the individual’s optimization problem is given by

SB
1

( )2

SB
1 ,S

B
2 ,S

B
3
min

+ SB
2

( )2
+ SB

3

( )3

s.t. SB
1lp + SB

2lr + SB
3lS = c.

(A4.100)

The Lagrangian L is given by

L = SB
1

( )2
+ SB

2

( )2
+ SB

3

( )3
+ y c− SB

1lp + SB
2lr + SB

3lS
( )

. (A4.101)

Here, y≥ 0 denotes the Lagrange multiplier.
The first-order optimality conditions are given by

2SB∗
1 = ylp, (A4.102)

2SB∗
2 = ylr, (A4.103)

2SB∗
3 = ylS. (A4.104)

It follows from (A4.102)–(A4.104) that SB∗
1 / lp,S

B∗
2 / lr and SB∗

S / lS. Since λr and λπ are typically negative, it fol-
lows that SB∗

1 and SB∗
2 are also typically negative.
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Optimal Benefit Policy
This appendix derives the optimal benefit policy with and without pooling of mortality risk. We assume the same economy as
in Section 2.1. Denote by xD the age at which the individual dies. In case mortality risk is pooled, we can determine the opti-
mal benefit policy by assuming xD is known in advance. Hence, we have the following maximization problem:

max
Bt,y :xr+y≤t≤xD+y

∫xD+y

xr+y

e−r t−xr−y( )Exr+y
1

1− g

Bt,y

Pt

( )1−g
[ ]

dt

s.t. Exr+y

∫xD+y

xr+y

jt
jxr+y

Bt,ydt

⎡
⎢⎣

⎤
⎥⎦ ≤ Wxr+y.

(A4.105)

Here, ξt represents the nominal pricing kernel (or stochastic discount factor) at time t (see (A4.81) for an explicit analytical
expression of ξt), Pt = exp

�t
0 psds

{ }
corresponds to the consumer price index at time t, γ stands for the coefficient of relative

risk aversion, and ρ denotes the rate of time preference.
Maximizing (A4.105), we arrive at

B
∗
t,y = Pt er t−xr−y( )yPt

jt
jxr+y

( )−
1
g
, (A4.106)

where y > 0 denotes the Lagrange multiplier.
Substituting (A4.81) into (A4.106), we find

B∗
t,y = B∗

xr+y,y exp
∫t

xr+y

psds− r− (1/2)l`l
g

t − xr − y
( )

⎧⎪⎨
⎪⎩

+1
g

∫t
xr+y

rsds+ lp
g

∫t
xr+y

dZ1s + lr
g

∫t
xr+y

dZ2s + lS
g

∫t
xr+y

dZ3s

⎫⎪⎬
⎪⎭.

(A4.107)

Hence, the optimal g0, g1 and g2 are given by

g0 = (1/2)l`l− r

g
, (A4.108)

g1 = 1, (A4.109)

g2 = 1
g
. (A4.110)

We now consider the case where mortality risk is not pooled. We have the following maximization problem in case the
individual does not have bequest motives:

max
Bt,y :xr+y≤t≤xmax+y

∫xmax+y

xr+y

e−r(t−xr−y)Exr+y
[
11t,xD+y

]
Exr+y

1
1− g

Bt,y

Pt

( )1−g
[ ]

dt

s.t.Exr+y

∫xmax+y

xr+y

jt
jxr+y

Bt,ydt

⎡
⎢⎣

⎤
⎥⎦ ≤ Wxr+y.

(A4.111)
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Assuming independence between the age of death and financial returns, we can write (A4.111) as follows:

s.t. Exr+y

∫xmax+y

xr+y

jt
jxr+y

Bt,ydt

⎡
⎢⎣

⎤
⎥⎦ ≤ Wxr+y. (A4.112)

Note that Exr+y[1t , xD + y] represents the probability that an individual aged xr at time xr + ywill survive at least t− y− xr
years, i.e.,

Exr+y[1t , xD + y] =t−y−xr pxr . (A4.113)

Problem (A4.112) is thus equivalent to:

max
Bt,y :xr+y≤t≤xmax+y

∫xmax+y

xr+y

e−r t−xr−y( )
t−y−xr

pxrExr+y
1

1− g

Bt,y

Pt

( )1−g
[ ]

dt

s.t. Exr+y

∫xmax+y

xr+y

jt
jxr+y

Bt,ydt

⎡
⎢⎣

⎤
⎥⎦ ≤ Wxr+y.

(A4.114)

Maximizing (A4.114), we arrive at

B
∗
t,y = Pt

er t−xr−y( )
t − y − xrpxr

yPt
jt

jxr+y

( )−
1
g
, (A4.115)

where y > 0 denotes the Lagrange multiplier.
Note that the following holds (see also (A4.4)):

t−y−xr pxr = exp −
∫t−y−xr

0

uxr+vdv

⎧⎨
⎩

⎫⎬
⎭ (A4.116)

Substituting (A4.81) into (A4.115) and using (A4.116), we find

B∗
t,y = B∗

xr+y,y exp
∫t

xr+y

psds− r− (1/2)l`l
g

t − xr − y
( )

⎧⎪⎨
⎪⎩

+ 1
g

∫t
xr+y

rs − us−y
( )

ds+ lp
g

∫t
xr+y

dZ1s + lr
g

∫t
xr+y

dZ2s + lS
g

∫t
xr+t

dZ3s

⎫⎪⎬
⎪⎭.

(A4.117)

In case of no pooling of mortality risk, the optimal median growth rate of the benefit payout is thus given by:

gut,y = pt + 1
g
· rt + 1

2
l`l− r− ut−y

( )
.

Compared to the case where mortality risk is pooled, the biometric rate of return θt−y reduces the effective median growth
rate of the current benefit payout.
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